
Learning and Inference for Structured Prediction: A Unifying Perspective

Aryan Deshwal1 , Janardhan Rao Doppa1 , Dan Roth2

1School of EECS, Washington State University
2Department of Computer and Information Science, University of Pennsylvania

{aryan.deshwal,jana.doppa}@wsu.edu, danroth@seas.upenn.edu

Abstract
In a structured prediction problem, one needs to
learn a predictor that, given a structured input, pro-
duces a structured object, such as a sequence, tree,
or clustering output. Prototypical structured predic-
tion tasks include part-of-speech tagging (predict-
ing POS tag sequence for an input sentence) and se-
mantic segmentation of images (predicting seman-
tic labels for pixels of an input image). Unlike sim-
ple classification problems, here there is a need to
assign values to multiple output variables account-
ing for the dependencies between them. Conse-
quently, the prediction step itself (aka “inference”
or “decoding”) is computationally-expensive, and
so is the learning process, that typically requires
making predictions as part of it. The key learning
and inference challenge is due to the exponential
size of the structured output space and depend on
its complexity. In this paper, we present a unify-
ing perspective of the different frameworks that ad-
dress structured prediction problems and compare
them in terms of their strengths and weaknesses.
We also discuss important research directions in-
cluding integration of deep learning advances into
structured prediction methods, and learning from
weakly supervised signals and active querying to
overcome the challenges of building structured pre-
dictors from small amount of labeled data.

1 Introduction
Structured prediction (SP) tasks arise in several domains in-
cluding natural language processing, computer vision, com-
putational biology, and graph analysis. In a SP problem, the
goal is to learn a mapping from structured inputs to struc-
tured outputs. For example, in semantic labeling of images,
the structured input is an image and the structured output is a
labeling of the image regions. In structured prediction tasks,
we need to predict multiple output variables by exploiting the
dependencies between them. Viewed as a traditional clas-
sification problem, the set of candidate classes in structured
prediction is exponential in the size of the output. The large
number of candidate structured outputs pose significant infer-
ence and learning challenges (inference task is NP-Hard and

learning for probabilistic SP is #P-hard due to the computa-
tion of partition function. Specifically, the time complexity
of exact inference depends on the complexity of model that
tries to capture the dependency structure between input and
output variables. Efficient solutions exist only when this de-
pendency structure forms a tree with small width. Therefore,
the core research challenge in structured prediction has been
to achieve a balance between two conflicting goals: 1) It must
be flexible to allow for complex and accurate predictors to be
learned, and 2) It must support computationally-efficient in-
ference of outputs.

There are different structured prediction frameworks that
make varying trade-offs between the above two goals. In
this paper, we present a unifying perspective of the differ-
ent frameworks to solve structured prediction problems and
compare them in terms of their strengths and weaknesses.
The unifying perspective relies on two key abstractions: 1)
Inference is formulated as implicit or explicit search process;
and 2) Learning is performed with a fixed inference scheme
or learning also supports to optimize the efficiency and ac-
curacy of inference. We also discuss some important future
research directions in this area, namely, integrating advances
in deep learning for structured prediction and learning from
small amount of labeled data. Since the literature on struc-
tured prediction is vast, we refer the reader to our recent IJ-
CAI and AAAI tutorials for a complete set of references.

2 Problem Setup
A structured prediction problem specifies a space of struc-
tured inputs X , a space of structured outputs Y , and a non-
negative loss function L : X × Y × Y 7→ <+ such that
L(x, y′, y∗) is the loss associated with labeling a particular
input x by output y′ when the true output is y∗. Without loss
of generality, we assume that each structured output y ∈ Y
be represented using d discrete and/or continuous variables
v1, v2, · · · , vd, and each variable vi can take candidate values
from a set C(vi). Since all algorithms will be learning func-
tions or objectives over input-output pairs, they assume the
availability of a joint feature function Φ : X × Y 7→ <m that
computes an m dimensional feature vector for any pair.

Example 1: Part-of-speech (POS) tagging task. Each
structured input is a sequence of words. Each output vari-
able vi stands for POS tag of a word and C(vi) is the list

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6291



of all candidate POS tags. Hamming loss (number of incor-
rect POS tags) is typically employed as loss function. Joint
features include unary features (representing words and their
POS tags as in a multi-class classifier) and structural features
(e.g., label pairs to capture the strength of label transitions).
Example 2: Image labeling task. Each structured input is
an image. Each output variable vi corresponds to a seman-
tic label of one pixel in the image and C(vi) is the list of all
candidate labels. Intersection-over-Union (IoU) loss – simi-
larity between the predicted region and the ground-truth re-
gion for a given semantic labeling – is employed as loss func-
tion. Unlike Hamming loss, IoU loss doesn’t decompose over
the loss of individual output variables. Joint features include
unary features and structural features (e.g., context features
that count the co-occurrences of different labels in different
spatial relationships such as left, right, above, and below. In-
tuitively, we are capturing, for example, whether a pixel la-
beled “sky” is below another pixel labeled “grass”).
We are provided with a training set of structured input-output
pairs {(x, y∗)} drawn from an unknown target distribution
D. The goal is to return a function/predictor from structured
inputs to outputs whose predicted outputs have low expected
loss with respect to the distribution D. The manner in which
this goal is achieved varies among SP algorithms.

3 Cost Function Learning Approaches
Cost function learning approaches correspond to general-
izations of traditional classification algorithms: Conditional
Random Fields (CRFs) [Lafferty et al., 2001], Structured Per-
ceptron [Collins, 2002], and Structured Support Vector Ma-
chines (SSVM) [Taskar et al., 2003; Tsochantaridis et al.,
2004]. These methods typically learn a linear cost function
C(x, y) = w · Φ(x, y) to score a candidate structured out-
put y given a structured input x, where w ∈ <m stands for
weights/parameters. Given such a cost function and a new in-
put x, the output computation then involves finding the mini-
mum cost output (aka Argmin inference problem):

ŷ = arg min
y∈Y (x)

C(x, y).

These methods typically do not have any explicit search for-
mulation for solving the inference problem.
Learning objective. The goal is to learn weights w of cost
function C(x, y) such that for each training example (x, y∗),
the cost of the correct output is lower than score of any other
candidate output y, i.e., C(x, y∗) < C(x, y), ∀y ∈ Y (x)\y∗.
General learning framework. The general template for
cost function learning is shown in Algorithm 1. There are two
key design choices: 1) Inference method to solve the argmin
inference problem. Efficient methods exist only when joint
features Φ(x, y) are simple. Some examples include Viterbi
algorithm for sequences and CKY algorithm for parsing. To
optimize a given loss function L, we need to solve loss-
augmented inference problem (i.e., adding loss in addition to
cost to score candidate outputs). 2) Optimization method to
tune the weights of cost function based on negative examples.
Some examples include stochastic gradient descent, cutting
plane, and dual coordinate descent algorithms. The general

learning approach is iterative by nature. In each iteration, we
perform three main steps: select a subset of inputs D′ from
the training set and compute predictions D′y by running the
inference algorithm with current weights; generate ranking
examples if predictions don’t match with ground-truth out-
puts; and update weights based on new or aggregate ranking
examples using appropriate optimization method. By varying
|D′|, we can get online (|D′| = 1), mini-batch (|D′| < |D|),
and full batch (|D′| = |D|) training methods. Cost func-
tion learning approaches treat inference solver as a “black-
box” during training (aka learning with inference).

Algorithm 1 Cost Function Learning Framework
Input: D = {x, y∗}, structured training examples
1: Initialize the weights of cost function C: w ← 0
2: repeat
3: Select a batch D′ ⊆ D for (loss-augmented) inference
4: // Call inference algorithm
5: D′y ← Inference-Solver(D′, C(x, y))
6: for each (x, y∗) ∈ D′ and ŷ ∈ D′y do
7: If y∗ 6= ŷ, create a ranking example C(x, y∗) < C(x, ŷ)
8: end for
9: // Optimization to update weights

10: Update weights w using new or aggregate ranking examples
11: until convergence
12: return w, weights of the learned cost function C

Learning with approximate inference. It is conceivable
that the above learning mechanism may not be reliable with
approximate inference solvers. Researchers have investi-
gated the impact of approximation on learning by consid-
ering two categories of approximate inference solvers [Fin-
ley and Joachims, 2008]: 1) Undergenerating, which con-
sider a subset of the structured output space (e.g., greedy
search); and 2) Overgenerating, which consider a superset
of the output space (e.g., LP relaxations). Overgenerating
methods are found to better than undergenerating ones both
theoretically and empirically [Finley and Joachims, 2008;
Kulesza and Pereira, 2007]. Learning methods that explic-
itly account for approximation in inference is an active area
of research [Stoyanov et al., 2011; Hazan et al., 2016].
Key challenges. The three main challenges for cost func-
tion learning framework are as follows: 1) Time complex-
ity of solving inference problem is very high for complex
(i.e., higher-order) features; 2) Since weight learning ap-
proach repeatedly calls the inference solver, training is com-
putationally expensive; and 3) It is hard to optimize non-
decomposable loss functions (e.g., IoU loss) due to the dif-
ficulty in solving loss-augmented inference problems.

3.1 Recent Advances
In this section, we discuss some recent advances to address
the above challenges.
Constrained conditional models and ILP inference.
[Roth and Yih, 2004] developed a generic formulation of in-
ference problem as a Integer Linear Program (ILP). The con-
strained conditional modeling (CCM) framework [Chang et
al., 2012] allows to combine the learned cost function C(x, y)
and background knowledge in the form of declarative con-
straints using ILP based inference. The CCM approach has

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6292



shown great success in a large number of NLP applications.
ILP formulations were found to be helpful in modeling a large
number of problems; the inference problems can be solved
exactly or via various relaxation methods and are shown to
work very well in practice. A recent work [Meshi et al.,
2016] provided a theoretical insight that explains this success:
a large number of relaxed solutions are integral (relaxations
are tight), and this tightness on training instances generalizes
to testing instances (PAC theory for ILP based inference).

Decomposed learning. The decomposed learning frame-
work [Samdani and Roth, 2012; Sontag et al., 2010] improves
the speed of training by performing inference over a subset of
the structured output space Y ′(x) ⊂ Y (x). The size of Y ′(x)
is determined by a parameter k and grows exponentially as a
function of k. The general construction considers all candi-
date structured outputs whose Hamming loss with respect to
correct output y∗ is at most k (referred as neighborhood of
y∗): Y ′(x) = {y ∈ Y (x) : Hamm-Loss(y, y∗) ≤ k}. Sam-
dani and Roth [Samdani and Roth, 2012] provide theoreti-
cal conditions under which decomposed learning is equiva-
lent to standard learning that considers entire output space
Y (x). In practice, decomposed learning is shown to achieve
same accuracy as standard learning with a small value of k
(e.g., 1,2,3) [Samdani and Roth, 2012; Sontag et al., 2010]:
significantly improves the training time.

Amortized inference and structured learning. We need
to solve inference problems for multiple structured inputs
during both training and testing. The naive approach is to
run an inference solver independently on each input exam-
ple. It is conceivable that we can learn useful knowledge
while solving inference problems on past examples to im-
prove the speed of inference on future examples. This is
referred to as amortizing the cost of inference [Srikumar et
al., 2012], which is highly related to the speedup learning
literature [Fern, 2010]. Recent work has exploited the ILP
inference formulation as an abstraction to provably achieve
amortized inference [Srikumar et al., 2012] and significantly
improve the speed of inference and of training cost functions
[Chang et al., 2015b]. The key idea is to store a set of cached
solutions for ILP problems and reuse them for new inference
problems without calling the inference solver when theoreti-
cal conditions are met. For NLP applications, many sentences
have identical structured outputs such as POS tag sequences,
parse trees, semantic parses etc. Therefore, the amortization
theorems “fire” often and result in significant savings. By
viewing inference procedures as computational search pro-
cesses will allow us to study generic approaches to address
speedup learning problems arising in structured prediction.
Some examples include treating ILP inference as a white box
(i.e., branch and bound search) to learn heuristic functions to
achieve amortized inference.

Theoretical results. Early theoretical results for general-
ization were based on covering number bounds for decom-
posable loss functions and linear scoring functions [Taskar et
al., 2003]; and PAC Bayesian theory. Recent results based
on factor graph complexity provide improved bounds, and
served as a motivation to derive the voted risk minimization
principle to achieve better generalization by learning a en-

Figure 1: An example search space for handwriting recognition.

semble of simpler scoring functions [Cortes et al., 2016].

Structured prediction cascades. This approach addresses
inference complexity via cascade training [Felzenszwalb and
McAllester, 2007; Weiss and Taskar, 2010], where efficiency
is achieved by performing multiple runs of inference from
a coarse level to a fine level of abstraction using learned
cost functions of varying complexity. We can view this as
a form of progressive filtering of candidate structured outputs
by trading-off the accuracy (number of errors) and efficiency
(number of filtered outputs) of filtering at each level. [Weiss
and Taskar, 2010] developed a forward training approach to
learn the weights of different cost functions employed in the
cascade. These methods have shown good success in prac-
tice, but they need to place some restrictions on the form of
the cost functions to facilitate “cascading.”

4 Search-based Learning Approaches
In this section, we discuss different search-based learning ap-
proaches and their distinction with traditional cost function
learning methods. Search-based approaches formulates in-
ference as an explicit search problem.

Overview. Search-based methods formulate the problem of
structured prediction as an explicit state-space search process
using a search architecture (search space, search procedure,
and termination criteria). They learn appropriate search con-
trol knowledge (e.g., heuristics, cost functions) using training
data to optimize the accuracy of this search architecture in
making predictions. Unlike traditional approaches, there is
no need to solve a global optimization problem at prediction
time. In effect, the system learns how to do inference (aka
learning for inference) when compared to learning with in-
ference) style of cost function learning approaches.

Potential advantages. Some advantages of search-based
methods include: 1) Scale gracefully with the representa-
tion complexity. We can employ higher-order features for
functions that guide the search without increasing the infer-
ence complexity. 2) Since inference is modeled as “white-
box”, learning process can observe search errors and perform
robust training. It can help with debugging from a practi-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6293



tioner’s perspective. 3) Can potentially train to optimize non-
decomposable loss functions.

4.1 Heuristic Learning Methods
Heuristic learning approaches vary depending on the search
space and search procedure employed in the overall search
architecture. There are three key elements in the heuristic
learning framework: 1) Search space over partial structured
outputs; 2) Search procedure that is used to make predictions
(e.g., beam search, greedy search); and 3) Search control
knowledge to guide the search process.

Search space. A search space over partial structured out-
puts Sp is a 4-tuple 〈I, A,Φ, T 〉, where I is a function that
maps an input x to an initial search node, A is a finite set
of actions (or operators), Φ is a feature function from search
nodes to real-valued feature vectors, and T is the terminal
state predicate that maps search nodes to {0, 1} indicating
whether the node is a terminal or not. Each terminal node in
the search space corresponds to a complete structured out-
put, while non-terminal nodes correspond to partial struc-
tured outputs. Fig. 1 provides an illustration of search space
for a simple handwriting recognition problem. Each search
state is a pair (x, y′) where x is the structured input (binary
image of the handwritten word) and y′ is a partial labeling of
the word. The arcs in this space correspond to actions that
label the characters in the input image in a left-to-right order
by extending y′ in all possible ways by one element. The ter-
minal states or leaves of this space correspond to complete
labelings of input x. The terminal state corresponding to the
correct output y∗ is labeled as goal state.

Making predictions. Given a structured input x, a search
procedure P , and a learned heuristic functionH, the decision
process for predicting a structured output corresponds to ex-
ploring the search tree rooted at initial node until reaching a
terminal state. The complete structured output ŷ from that
terminal state is returned as the predicted output.

Learning objective. The goal is to learn parameters of
heuristic function H such that for each training example
(x, y∗), the search procedure P guided by H will return y∗

as the predicted output.

Learning for Beam Search
We discuss the general framework for learning beam search
heuristics and different instantiations below.

General framework. The heuristic function H is repre-
sented as a linear function: H(n) = w ·Φ(n), where w stands
for weights and Φ(n) correspond to features of search node
n. The general template for learning weights of heuristic H
is shown in Algorithm 2. It is an iterative online learning ap-
proach. In each iteration, we perform learning on each train-
ing example (x, y∗) ∈ D as follows. Beam B is initialized
with the initial state x. Beam search is performed using the
current weights until reaching a terminal state. If a search
error is identified, weights are updated to move towards cor-
rectness and search is continued by updating the beam. There
are three key design choices in this framework: 1) How is
search error defined?; 2) What is the form of weight update;
and 3) How to update beam after weight update?

Algorithm 2 Heuristic Learning for Beam Search
Input: D = {x, y∗}, structured input-output training examples;
Sp = 〈I, A,Φ, T 〉, search space; b: beam width
1: Initialize the weights of heuristic functionH: w ← 0
2: repeat
3: for each training example (x, y∗) ∈ D do
4: Initialize beam B with I(x)
5: repeat
6: Perform beam search with current weights w
7: if Search Error then
8: Update weights w
9: Reset beam B

10: end if
11: (Dis)continue search
12: until reaching terminal state
13: end for
14: until convergence or maximum iterations
15: return w, weights of the learned heuristic functionH

Instantiations. We describe three main instantiations of
the general framework that make different design choices.
1) Early update [Collins and Roark, 2004]. A search er-
ror is declared when a target node — node with all out-
put variables are correct (green colored nodes in Fig. 1)
— is not present in the beam. Intuitively, the search can-
not reach the goal node anymore. Weight update is sim-
ilar to structured perceptron over the partially labeled out-
puts. The positive and negative labelings differ in the last
output variable. After weight update, beam is reset with
the initial node I(x) and search is (dis)continued for the
current training example. One drawback on early-update
is that learning can be very slow. 2) Learning as Search
Optimization (LaSO) update [Daumé III and Marcu, 2005;
Xu et al., 2009]. Search error is defined similar to early-
update. Intuitively, the weight update tries to increase the
score of target nodes and decrease the score of non-target
nodes. Specifically, weights are updated by adding the aver-
age feature vectors of target nodes and subtracting the average
feature vectors of non-target nodes in the candidate set. After
weight update, the beam is reset with target nodes in the can-
didate set (ties are broken using the updated heuristic scores).
[Xu et al., 2009] study different notions of margin and the
conditions under which the weights will converge. Their
work formalizes the intuition that learning becomes easier as
we increase the beam width b (i.e., amount of search for rea-
soning). 3) Max-violation update [Huang et al., 2012]. The
key insight in this approach is that we only need violations to
ensure convergence of weights (and not exact search). This
framework is referred as violation-fixing perceptron. Early-
update is a special case of this framework as it guarantees
violation, but learning is very slow. To improve the speed of
learning, max-violation update considers the worst-mistake
(i.e., prefix where violation is maximum) by performing beam
search until reaching a terminal state. A single weight update
is performed per training example (x, y∗).

Learning for Greedy Search
Greedy search corresponds to constructing structured outputs
based on a sequence of decisions: one for each output vari-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6294



able v1, v2, · · · , vd. This is formalized for a given structured-
prediction problem by defining a search space by employing
a fixed ordering over output variables (e.g., left-to-right in se-
quence labeling). The search control knowledge corresponds
to a recurrent classifier (or policy) that predicts the label for
the next output variable. In Fig. 1, highlighted search nodes
correspond to the trajectory of the optimal recurrent classi-
fier (i.e., a classifier that chooses correct action at every state
leading to the goal state).

Imitation learning formulation. The problem of learning
greedy policy can be formulated in the framework of Imita-
tion Learning (IL) . IL is considered to be an efficient frame-
work for learning sequential decision-making policies when
a good expert policy is available to drive the learning process.
For structured prediction, ground-truth structured outputs can
be considered as demonstrations of expert policy.

Exact imitation and error propagation. The most basic
approach to learning a recurrent classifier is via exact imita-
tion of the trajectory followed by the optimal classifier. For
example, the sequence of highlighted states in Fig. 1 corre-
spond to the solution path for producing y∗ from x. The exact
imitation approach learns a classifier by creating one classifi-
cation training example for each search node n on the solution
path with feature vector Φ(n) and label equal to the action
followed by the path at node n. The aggregate set of classifi-
cation examples collected over all the training examples in D
are given to a classifier learning algorithm (e.g., SVM) to in-
duce a recurrent classifier. We can view this as a reduction of
structured prediction to classifier learning for simple outputs
[Beygelzimer et al., 2016]. This allows us to leverage off-the-
shelf classifier learning algorithms to solve structured predic-
tion problems. Unlike supervised learning problems that as-
sume IID input examples, our problem is non-IID because the
next state depends on the decision of the classifier at the pre-
vious state. Therefore, recurrent classifiers learned via exact
imitation can be prone to error propagation.

Advanced imitation learning algorithms. To address the
error propagation issue, we can employ advanced imitation
learning algorithms including SEARN [Daumé III et al.,
2009], DAgger [Ross et al., 2011], and LOLS [Chang et al.,
2015a]. The general idea is to iteratively observe the behavior
of the current recurrent classifier and augment training data to
better represent important states. This additional data allows
us to learn robust classifiers that can recover from their own
mistakes. Recent work has extended IL methods to handle
continuous structured outputs including time-series [Venka-
traman et al., 2015; Le et al., 2017].

Easy-First Learning
The main drawback of classifier-based structured prediction
approaches is that they require a fixed ordering over the out-
put variables. The easy-first framework [Goldberg and El-
hadad, 2010; Stoyanov and Eisner, 2012; Xie et al., 2015]
overcomes this drawback by allowing the learner to dynami-
cally select the ordering. Specifically, we modify the search
space to consider labeling all unassigned output variables at
each greedy search step. The structured output is constructed
incrementally by making the easiest (most confident) deci-

sion at each decision step to gather more evidence for making
hard decisions later. This principle is very similar to that of
constraint satisfaction algorithms.
Good and bad actions. Given the actions A(s) from a spe-
cific state s, we consider any action a ∈ A(s) that results in
a state s′ with L(s′) < L(s) as a good action; otherwise, it
is a bad action. Within the Easy-first framework, it is typical
to encounter states that have more than one good action. We
denote the set of all good actions in state s as G(s) and the
set of all bad actions as B(s).
Action scoring function. The action scoring function H,
evaluates all actions in A(s) and guides the greedy search
to incrementally produce the structured output. Existing ap-
proaches consider linear action-scoring functions H(s, a) =
w · Φ(s, a), where w is the weight vector and Φ(s, a) is a
predefined feature function.
Learning approach. The learning goal within the Easy-
first framework is to learn a weight vector w such that the
highest scoring action in each step is a good action. The gen-
eral online training procedure is described in Algorithm 3. In
any given state s, if the current highest scoring action ap is a
bad action, then weights are updated. Existing strategies for
weight update include: 1) perceptron style update involving
highest-scoring good action and highest-scoring bad action
[Goldberg and Elhadad, 2010]; 2) highest-scoring good ac-
tion and all violated bad actions [Xie et al., 2015]; and 3) the
regularized versions of (1) and (2) to minimize the change of
weights that were shown to perform better in practice [Xie et
al., 2015]. After the weight update, a ChooseAction pro-
cedure is called to select the next action, and we transit to the
next search state. The choice of ChooseAction will deter-
mine the training trajectories. Two types of approaches have
been pursued in the literature for this purpose: on-trajectory
training, which always chooses an action in G(s) (e.g., the
highest-scoring action in G(s)), and off-trajectory training,
which always chooses the highest-scoring action based on the
current scoring function even when it is a bad action. This is
repeated until reaching a terminal state.

4.2 Heuristic and Cost Learning Methods
In this section, we discuss approaches that learn both heuristic
and cost functions for structured prediction.

HC-Search Framework

Overview. The HC-Search framework [Doppa et al.,
2014a; Lam et al., 2015; Doppa et al., 2014c] decomposes
the structured prediction problem into three steps: 1) Find an
initial complete output; 2) Explore a search tree of alternative
candidate outputs rooted at the initial solution; and 3) Score
each of these candidates to select the best one. Step 1 can be
done by any method. Step 2 is guided by a learned heuristic
H and Step 3 is performed by a learned cost function C.
Advantages. First, in the standard approaches a global
cost function must be trained to “defend against” the
exponentially-large set of all wrong candidate outputs to the
problem. This is expensive both computationally and in terms
of sample complexity. It can require highly expressive rep-
resentations (e.g., higher-order potentials). In contrast, the

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6295



Algorithm 3 Easy-First Policy Learning
Input: D = {x, y∗}, structured input-output training examples;
Sp = 〈I, A,Φ, T 〉; L: loss function
1: Initialize the weights of policy H: w ← 0
2: repeat
3: for each training example (x, y∗) ∈ D do
4: s← I(xi) and TERMINATE← False
5: while not TERMINATE do
6: ap ←a∈A(s) w · Φ(s, a)
7: // update weights if a bad action is selected
8: if ap ∈ B(s) then
9: UPDATE(w,G(s), B(s))

10: end if
11: ac ← ChooseAction(A(s))
12: s← Apply ac on s
13: if Terminal(s) then
14: TERMINATE = True
15: end if
16: end while
17: end for
18: until convergence or maximum iterations

heuristic function H only needs to correctly rank the succes-
sors of each state that is expanded during the heuristic search
in Step 2, and the cost function C only needs to correctly
find the best of these in Step 3. These are much easier learn-
ing problems, and hence, simpler potential functions can be
applied. Second, for making predictions there is no need to
solve a global optimization problem at prediction time. In
effect, the system learns not only how to score candidate so-
lutions but also how to find good candidates—it learns to do
inference more efficiently. Third, HC-Search can be applied
to non-decomposable loss functions. This is another conse-
quence of using a search space formulation. Finally, HC-
Search provides a clean engineering methodology for deter-
mining which components of the system would most benefit
from additional engineering effort.

Key learning challenges. There are three key learning
challenges in this framework: How can we automatically de-
sign an efficient search space over outputs? (Search space
design); How can we learn a heuristic function H for effec-
tively guiding the search? (Heuristic learning); and How can
we learn a cost function C that can accurately select the best
output among the candidate outputs? (Cost function learning)

Search space design. The effectiveness of this framework
critically depends on the quality of search space, where qual-
ity is defined as the expected search depth at which target
outputs y∗ can be located. If target search depth is small, it
will make the heuristic and cost function learning problems
easier. Some generic search spaces over structured outputs
include Flipbit space, Limited Discrepancy Search (LDS)
space [Doppa et al., 2014b] that leverages greedy recurrent
classifers, and Randomized Segmentation space [Lam et al.,
2015] for computer vision tasks. We note that search space
design is a very under-studied problem and lot more work
needs to be done in this direction.

Heuristic function learning. The heuristic learning ap-
proach is based on the observation that for many SP prob-

lems, we can quickly generate very high-quality outputs by
guiding the search procedure using the true loss function
(which is only available during training). Motivated by this
observation, the heuristic learning problem is formulated in
the framework of imitation learning to learn a heuristic that
mimics the search decisions made by the true loss function
on training examples. This is a generic approach that is ap-
plicable to all ranking-based search procedures (e.g., greedy
search and beam search). The aggregate set of ranking con-
straints collected over all of the training examples is given to
a rank learning algorithm to learn the heuristic function H .
Cost function learning. Given a learned heuristic H , we
want to learn a cost function that correctly ranks the candidate
outputs generated by the search procedure guided by H . This
is formulated as another rank-learning problem such that the
cost function C scores the best loss output generated during
search higher than the other outputs.

Other Frameworks
Re-Ranking methods generate a k-best set of candidate out-
puts and score them using a learned cost function. Candidate
outputs can be produced using a generative model [Collins,
2002] or a MAP inference solver [Yadollahpour et al., 2013].
blueAdditionally, if we model ILP inference solver as a com-
putational search process using branch-and-bound procedure,
we can learn heuristics and policies to adaptively decide the
node searching order to improve the speed of inference —
another way to amortize the cost of inference. Recent work
on randomized greedy search based amortized inference and
learning approach can be seen as an instantiation of HC-
Search. Evaluation function to select good starting solu-
tions for greedy search and scoring function to select the fi-
nal structured output correspond to H and C respectively, but
they are learned using different methods.

5 Deep Learning ∩ Structured Prediction
An interesting question to ask is “Do we need structured pre-
diction in the era of deep learning?” The answer is yes be-
cause deep models are sample in-efficient and structure is a
compact way of representing large amounts of data [Liang et
al., 2008]. Therefore, it is beneficial to integrate the advances
in deep learning with structured prediction frameworks.
Decoupled integration. Classical deep networks allow us
to learn complex unary features over structured input vari-
ables. In decoupled integration, we can employ the unary
features learned from deep networks into existing structured
prediction methods [Huang et al., 2015].
Search-based learning with deep models. To leverage
structural dependencies, auto-regressive models including re-
current neural networks (RNNs), long short-term memory
networks (LSTMs), and attention networks [Sutskever et al.,
2014; Kim et al., 2017] order the output variables and predict
one variable at a time conditioned on the previous variables.
This ordered sequence of output variables is typically gener-
ated using a decoding procedure based on greedy search or
beam search. During the training phase, prediction of each
variable is conditioned on the ground truth values of the pre-
vious output variables. As a result, the model is never ex-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6296



posed to its own error during training. This phenomenon is
referred as exposure bias problem. To overcome this chal-
lenge, prior work has leveraged the general ideas from search-
based methods presented in Section 4.1. For example, LaSO
approach is leveraged for beam search decoding [Wiseman
and Rush, 2016] and advanced imitation learning methods are
leveraged for greedy decoding [Bengio et al., 2015]. Another
challenge with auto-regressive models is the mismatch be-
tween training loss (e.g., token-level cross entropy) and task
loss defined over complete structure (e.g., BLEU score in
translation). Reinforcement learning (RL) methods are em-
ployed with greedy decoding [Ranzato et al., 2015] to al-
leviate this challenge by training over entire structure using
the task loss as a reward function. A recent work [Tan et
al., 2018] presented a unified framework of training via both
token-level maximum likelihood principle and RL.

Cost function learning with deep models. The two above-
mentioned approaches employ a very simple form of struc-
ture among the output variables to learn representations: no
dependency structure between output variables in decoupled
integration and linear ordering among output variables in
search-based learning. Therefore, these methods impose ex-
cessively strict inductive bias. To overcome these drawbacks,
recent work explored tight integration of deep models with
cost function learning approaches that were discussed in sec-
tion 3. Due to lack of space, we only provide some repre-
sentative examples. Deep SP framework replaces clique po-
tentials with a deep network and approximates the partition
function with loopy Belief Propagation [Chen et al., 2015].
Structured prediction energy networks (SPENs) framework
allows us to learn a non-linear cost function over structured
input-output pairs in the structured SVM training regime [Be-
langer et al., 2017]. SPENs fall within the general framework
of energy-based learning [LeCun et al., 2006]. Deep value
networks (DVNs) learn a non-linear regressor to approximate
the negative loss value of a candidate structured output [Gygli
et al., 2017]. Both SPENs and DVNs employs gradient-based
inference in the relaxed continuous space. Approximate in-
ference networks (InfNet) method [Tu and Gimpel, 2018]
employs an additional trained deep neural network to directly
produce the output of inference problem with a given cost
function. A recent work [Graber et al., 2018] developed a
generalization of SPENs with improved results.

Outstanding challenges. Some important challenges for
methods that integrate deep models for structured prediction
are as follows. a) Incorporating constraints: Many SP tasks
require the structured outputs to satisfy some constraints (e.g.,
valid trees in parsing). Incorporating these constraints is a
major challenge for methods that perform gradient-based in-
ference and learning [Lee et al., 2017]. These constraints
can be classified into three main categories: relational, logi-
cal, and scientific. Relational constraints enforce simple re-
lations among entities which can be specified manually or
mined from large amounts of unstructured text available on
web. Logical constraints occur in domains where structured
output variables are related by logical propositions [Xu et al.,
2017]. Little attention has been paid to scientific constraints
which require the predicted outputs to satisfy the true dynam-

ics of our world based on physics [Stewart and Ermon, 2017].
These constraints can also be thought of as prior knowledge
for DL models and can improve their sample-efficiency. b)
Stability and Robustness: The training of DL models in SP is
prone to unstability as discussed in earlier version of SPENs.
Training of SPENs was improved [Belanger et al., 2017], but
this approach is prone to over-fitting. In our own experience,
performance of DVNs is very sensitive to the parameters of
gradient-based inference. Deep SP with non-linear output
transformations approach [Graber et al., 2018] doesn’t sup-
port variable length structured outputs yet.

6 Future Directions
In this section, we briefly discuss three important future di-
rections in structured prediction research.

Structured learning with weak supervision. Since ac-
quiring large amount of labeled data is resource-expensive
for many real-world SP tasks, there is a great need to study
SP algorithms with indirect and weak supervision [Chang et
al., 2010; Roth, 2017]. Prior work has studied algorithms for
leveraging some forms of weak supervision. Posterior Regu-
larization (PR) [Ganchev et al., 2010] is a general framework
to leverage side-information (e.g., constraints) and has shown
to be successful in multiple domains. The key idea behind
this approach is to restrict the posterior distribution within a
space of distributions which satisfies the constraints in expec-
tation. The PR framework also provides a unifying perspec-
tive and shows the connections to closely related approaches
like constraint-driven learning, generalized expectation cri-
teria, and bayesian measurements. However, the most gen-
eral paradigm to deal with the difficulty of obtaining labeled
structures for training is to consider a simple derivative of the
structured representation, one that is easy to supervise, and
that depends on the quality of the structured representation.
For example, a derivative for the aforementioned POS tag-
ging task could be the question of whether a given sequence
of words has a corresponding sequence of POS tags that is
“legitimate”, which is easy to supervise. A derivative for a se-
mantic parsing problem could be the correctness of response
from a database where the semantic parse is used to convert
a natural language query into a database query [Clarke et al.,
2010]. Many open problem exist within this formulation, and
addressing these is likely to facilitate more scalable and real-
istic structured prediction.

Active learning for structured prediction. Active learn-
ing allows the learner to ask labeling queries to improve the
sample-efficiency of learning. Prior work has studied ac-
tive learning algorithms for structured prediction [Culotta and
McCallum, 2005; Roth and Small, 2006; Tosh and Dasgupta,
2018]. They differ in the SP framework (e.g., CRFs, Struc-
tured SVM); query form (e.g., labeling complete structured
outputs, single output variable); and query selection strate-
gies (e.g., uncertainty reduction, margin-based). Recent work
[Ning et al., 2019] has shown that querying labels for partial
structures and learning from them allows us to use the avail-
able query budget better. Co-active learning [Shivaswamy
and Joachims, 2012] allows the human to observe the pre-
dicted output and provide a slightly corrected output (better

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6297



than prediction but not optimal) as feedback to improve the
model. Future work should explore alternate query forms that
are easy for humans to answer and still provide useful training
signal for SP models; and good human-computer interfaces to
improve the usability of interactive learning systems.
Multi-Task structured prediction. Prior work on struc-
tured prediction mostly considers single tasks. However,
interpreting unstructured data (e.g., text, images, videos,
speech, and sensor data) requires solving multiple SP tasks
jointly. For example, entity analysis in natural language
processing involves solving multiple structured prediction
problems such as mention detection, coreference resolution,
and entity linking. The most common approach is to em-
ploy a “pipeline” architecture, where the different tasks are
solved one after another in sequence. While it has the ad-
vantages of simplicity and scalability, the pipeline architec-
ture is too sensitive to the task order and is prone to er-
ror propagation. There is some recent work on explor-
ing scalable joint modeling approaches to solve multi-task
SP problems [Durrett and Klein, 2014; Ma et al., 2017;
Sanh et al., 2018], but this is a very rich and fertile problem
space with many challenges.

Acknowledgements
This work was supported in part by NSF grants #1910213 and
#1845922, and in part by Contracts W911NF15-1-0461 and
HR0011-17-S-0048 with the US Defense Advanced Research
Projects Agency (DARPA). The views expressed are those of
the authors and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

References
[Belanger et al., 2017] David Belanger, Bishan Yang, and Andrew

McCallum. End-to-End Learning for Structured Prediction En-
ergy Networks. In ICML, pages 429–439, 2017.

[Bengio et al., 2015] Samy Bengio, Oriol Vinyals, Navdeep Jaitly,
and Noam Shazeer. Scheduled Sampling for Sequence Prediction
with Recurrent Neural Networks. In NIPS, 2015.

[Beygelzimer et al., 2016] Alina Beygelzimer, Hal Daumé III, John
Langford, and Paul Mineiro. Learning Reductions That Really
Work. Proceedings of the IEEE, 104(1), 2016.

[Chang et al., 2010] M. Chang, V. Srikumar, D. Goldwasser, and
D. Roth. Structured Output Learning with Indirect Supervision.
In ICML, pages 199–206, 2010.

[Chang et al., 2012] Ming-Wei Chang, Lev-Arie Ratinov, and Dan
Roth. Structured Learning with Constrained Conditional Models.
MLJ, 88(3), 2012.

[Chang et al., 2015a] Kai-Wei Chang, Akshay Krishnamurthy,
Alekh Agarwal, Hal Daumé III, and John Langford. Learning
to Search Better than Your Teacher. In ICML, 2015.

[Chang et al., 2015b] Kai-Wei Chang, Shyam Upadhyay, Gourab
Kundu, and Dan Roth. Structural Learning with Amortized In-
ference. In AAAI, 2015.

[Chen et al., 2015] Liang-Chieh Chen, Alexander G. Schwing,
Alan L. Yuille, and Raquel Urtasun. Learning Deep Structured
Models. In ICML, pages 1785–1794, 2015.

[Clarke et al., 2010] J. Clarke, D. Goldwasser, M. Chang, and
D. Roth. Driving Semantic Parsing from the World’s Response.
In CoNLL, pages 18–27, 2010.

[Collins and Roark, 2004] Michael Collins and Brian Roark. Incre-
mental Parsing with the Perceptron Algorithm. In ACL, 2004.

[Collins, 2002] Michael Collins. Ranking Algorithms for Named
Entity Extraction: Boosting and the Voted Perceptron. In ACL,
2002.

[Cortes et al., 2016] Corinna Cortes, Vitaly Kuznetsov, Mehryar
Mohri, and Scott Yang. Structured Prediction Theory Based on
Factor Graph Complexity. In NIPS, pages 2514–2522, 2016.

[Culotta and McCallum, 2005] Aron Culotta and Andrew McCal-
lum. Reducing Labeling Effort for Structured Prediction Tasks.
In AAAI, 2005.

[Daumé III and Marcu, 2005] Hal Daumé III and Daniel Marcu.
Learning as Search Optimization: Approximate Large Margin
methods for Structured Prediction. In ICML, 2005.

[Daumé III et al., 2009] Hal Daumé III, John Langford, and Daniel
Marcu. Search-based Structured Prediction. MLJ, 75(3), 2009.

[Doppa et al., 2014a] Janardhan Rao Doppa, Alan Fern, and Prasad
Tadepalli. HC-Search: A Learning Framework for Search-based
Structured Prediction. JAIR, 50:369–407, 2014.

[Doppa et al., 2014b] Janardhan Rao Doppa, Alan Fern, and Prasad
Tadepalli. Structured Prediction via Output Space Search. JMLR,
15(1):1317–1350, 2014.

[Doppa et al., 2014c] Janardhan Rao Doppa, Jun Yu, Chao Ma,
Alan Fern, and Prasad Tadepalli. HC-Search for Multi-Label Pre-
diction: An Empirical Study. In AAAI, 2014.

[Durrett and Klein, 2014] Greg Durrett and Dan Klein. A Joint
Model for Entity Analysis: Coreference, Typing, and Linking.
In TACL, volume 2, pages 477–490, 2014.

[Felzenszwalb and McAllester, 2007] Pedro F. Felzenszwalb and
David A. McAllester. The Generalized A* Architecture. JAIR,
29:153–190, 2007.

[Fern, 2010] Alan Fern. Speedup learning. In Encyclopedia of Ma-
chine Learning, pages 907–911. 2010.

[Finley and Joachims, 2008] Thomas Finley and Thorsten
Joachims. Training Structural SVMs when Exact Inference
is Intractable. In ICML, pages 304–311, 2008.

[Ganchev et al., 2010] Kuzman Ganchev, Jennifer Gillenwater,
Ben Taskar, et al. Posterior Regularization for Structured Latent
Variable Models. JMLR, 11(Jul):2001–2049, 2010.

[Goldberg and Elhadad, 2010] Yoav Goldberg and Michael El-
hadad. An Efficient Algorithm for Easy-first Non-directional De-
pendency Parsing. In NAACL, pages 742–750, 2010.

[Graber et al., 2018] Colin Graber, Ofer Meshi, and Alexander
Schwing. Deep Structured Prediction with Nonlinear output
Transformations. In NIPS, pages 6320–6331, 2018.

[Gygli et al., 2017] Michael Gygli, Mohammad Norouzi, and
Anelia Angelova. Deep Value Networks Learn to Evaluate and
Iteratively Refine Structured outputs. In ICML, 2017.

[Hazan et al., 2016] Tamir Hazan, Alexander G. Schwing, and
Raquel Urtasun. Blending Learning and Inference in Conditional
Random Fields. JMLR, 17(1):8305–8329, 2016.

[Huang et al., 2012] Liang Huang, Suphan Fayong, and Yang Guo.
Structured Perceptron with Inexact Search. In NAACL, 2012.

[Huang et al., 2015] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirec-
tional LSTM-CRF Models for Sequence Tagging. arXiv preprint
arXiv:1508.01991, 2015.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6298



[Kim et al., 2017] Yoon Kim, Carl Denton, Luong Hoang, and
Alexander M. Rush. Structured Attention Networks. In ICLR,
2017.

[Kulesza and Pereira, 2007] Alex Kulesza and Fernando Pereira.
Structured Learning with Approximate Inference. In NIPS, 2007.

[Lafferty et al., 2001] John Lafferty, Andrew McCallum, and Fer-
nando Pereira. Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data. In ICML, 2001.

[Lam et al., 2015] Michael Lam, Janardhan Rao Doppa, Sinisa
Todorovic, and Thomas G. Dietterich. HC-Search for Structured
Prediction in Computer Vision. In CVPR, 2015.

[Le et al., 2017] Hoang Minh Le, Yisong Yue, Peter Carr, and
Patrick Lucey. Coordinated Multi-agent Imitation Learning. In
ICML, pages 1995–2003, 2017.

[LeCun et al., 2006] Yann LeCun, Sumit Chopra, Raia Hadsell,
M Ranzato, and F Huang. A Tutorial on Energy-based Learn-
ing. Predicting structured data, 2006.

[Lee et al., 2017] Jay Yoon Lee, Michael Wick, Sanket Vaibhav
Mehta, Jean-Baptiste Tristan, and Jaime Carbonell. Gradient-
based inference for networks with output constraints. arXiv
preprint arXiv:1707.08608, 2017.

[Liang et al., 2008] Percy Liang, Hal Daumé III, and Dan Klein.
Structure Compilation: Trading Structure for Features. In ICML,
pages 592–599, 2008.

[Ma et al., 2017] Chao Ma, Janardhan Rao Doppa, Prasad Tade-
palli, Hamed Shahbazi, and Xiaoli Z. Fern. Multi-Task Struc-
tured Prediction for Entity Analysis: Search-Based Learning Al-
gorithms. In ACML, 2017.

[Meshi et al., 2016] Ofer Meshi, Mehrdad Mahdavi, Adrian Weller,
and David Sontag. Train and Test Tightness of LP Relaxations in
Structured Prediction. 2016.

[Ning et al., 2019] Qiang Ning, Hangfeng He, Chuchu Fan, and
Dan Roth. Partial or Complete, That’s The Question. In NAACL,
2019.

[Ranzato et al., 2015] Marc’Aurelio Ranzato, Sumit Chopra,
Michael Auli, and Wojciech Zaremba. Sequence Level
Training with Recurrent Neural Networks. arXiv preprint
arXiv:1511.06732, 2015.

[Ross et al., 2011] Stéphane Ross, Geoffrey J. Gordon, and Drew
Bagnell. A Reduction of Imitation Learning and Structured Pre-
diction to No-Regret Online Learning. In AISTATS, 2011.

[Roth and Small, 2006] Dan Roth and Kevin Small. Margin-Based
Active Learning for Structured Output Spaces. In ECML, 2006.

[Roth and Yih, 2004] D. Roth and W. Yih. A Linear Programming
Formulation for Global Inference in Natural Language Tasks. In
CoNLL, 2004.

[Roth, 2017] Dan Roth. Incidental Supervision: Moving beyond
Supervised Learning. In AAAI, 2017.

[Samdani and Roth, 2012] Rajhans Samdani and Dan Roth. Effi-
cient Decomposed Learning for Structured Prediction. In ICML,
2012.

[Sanh et al., 2018] Victor Sanh, Thomas Wolf, and Sebastian
Ruder. A Hierarchical Multi-task Approach for Learning Em-
beddings from Semantic Tasks. CoRR, abs/1811.06031, 2018.

[Shivaswamy and Joachims, 2012] Pannaga Shivaswamy and
Thorsten Joachims. Online Structured Prediction via Coactive
Learning. In ICML, 2012.

[Sontag et al., 2010] David Sontag, Ofer Meshi, Tommi S.
Jaakkola, and Amir Globerson. More Data means Less Infer-
ence: A Pseudo-max approach to Structured Learning. In NIPS,
pages 2181–2189, 2010.

[Srikumar et al., 2012] Vivek Srikumar, Gourab Kundu, and Dan
Roth. On Amortizing Inference Cost for Structured Prediction.
In EMNLP, pages 1114–1124, 2012.

[Stewart and Ermon, 2017] Russell Stewart and Stefano Ermon.
Label-free Supervision of Neural Networks with Physics and Do-
main Knowledge. In AAAI, 2017.

[Stoyanov and Eisner, 2012] Veselin Stoyanov and Jason Eisner.
Easy-first Coreference Resolution. In COLING, 2012.

[Stoyanov et al., 2011] Veselin Stoyanov, Alexander Ropson, and
Jason Eisner. Empirical Risk Minimization of Graphical Model
Parameters Given Approximate Inference, Decoding, and Model
Structure. In AISTATS, 2011.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and Quoc V
Le. Sequence to Sequence Learning with Neural Networks. In
NIPS, pages 3104–3112, 2014.

[Tan et al., 2018] Bowen Tan, Zhiting Hu, Zichao Yang, Rus-
lan Salakhutdinov, and Eric Xing. Connecting the Dots Be-
tween MLE and RL for Sequence Generation. arXiv preprint
arXiv:1811.09740, 2018.

[Taskar et al., 2003] Benjamin Taskar, Carlos Guestrin, and
Daphne Koller. Max-Margin Markov Networks. In NIPS, 2003.

[Tosh and Dasgupta, 2018] Christopher Tosh and Sanjoy Das-
gupta. Interactive Structure Learning with Structural Query-by-
Committee. In NeurIPS, pages 1121–1131, 2018.

[Tsochantaridis et al., 2004] Ioannis Tsochantaridis, Thomas Hof-
mann, Thorsten Joachims, and Yasemin Altun. Support Vec-
tor Machine Learning for Interdependent and Structured Output
Spaces. In ICML, page 104, 2004.

[Tu and Gimpel, 2018] Lifu Tu and Kevin Gimpel. Learning Ap-
proximate Inference Networks for Structured Prediction. In
ICLR, 2018.

[Venkatraman et al., 2015] Arun Venkatraman, Martial Hebert, and
J. Andrew Bagnell. Improving Multi-Step Prediction of Learned
Time Series Models. In AAAI, 2015.

[Weiss and Taskar, 2010] David Weiss and Benjamin Taskar. Struc-
tured Prediction Cascades. In AISTATS, 2010.

[Wiseman and Rush, 2016] Sam Wiseman and Alexander M. Rush.
Sequence-to-Sequence Learning as Beam-Search Optimization.
In EMNLP, pages 1296–1306, 2016.

[Xie et al., 2015] Jun Xie, Chao Ma, Janardhan Rao Doppa,
Prashanth Mannem, Xiaoli Z. Fern, Thomas G. Dietterich, and
Prasad Tadepalli. Learning Greedy Policies for the Easy-First
Framework. In AAAI, 2015.

[Xu et al., 2009] Yuehua Xu, Alan Fern, and Sung Wook Yoon.
Learning Linear Ranking Functions for Beam Search with Ap-
plication to planning. JMLR, 10(Jul):1571–1610, 2009.

[Xu et al., 2017] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang,
and Guy Van den Broeck. A Semantic Loss Function for
Deep Learning with Symbolic Knowledge. arXiv preprint
arXiv:1711.11157, 2017.

[Yadollahpour et al., 2013] Payman Yadollahpour, Dhruv Batra,
and Gregory Shakhnarovich. Discriminative Re-ranking of Di-
verse Segmentations. In CVPR, pages 1923–1930, 2013.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6299


