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Abstract
Our increasingly interconnected urban environ-
ments provide several opportunities to deploy in-
telligent agents—from self-driving cars, ships to
aerial drones—that promise to radically improve
productivity and safety. Achieving coordination
among agents in such urban settings presents sev-
eral algorithmic challenges—ability to scale to
thousands of agents, addressing uncertainty, and
partial observability in the environment. In addi-
tion, accurate domain models need to be learned
from data that is often noisy and available only at
an aggregate level. In this paper, I will overview
some of our recent contributions towards develop-
ing planning and reinforcement learning strategies
to address several such challenges present in large-
scale urban multiagent systems.

1 Introduction
Our society and urban environments are rapidly getting inter-
connected by the internet of things (IoT). A number of smart
devices embedded in everyday objects are capable of sensing
their environment, and taking decisions to increase our pro-
ductivity, safety and efficiency. As an example, autonomous
self-driving cars are able to perceive their environment, and
interact with each other to create future applications such as
smart traffic light intersections [Au et al., 2016]. Similarly,
for maritime traffic, e-navigation aims to improve the man-
agement of the sea traffic by digitizing both on-board ma-
rine information and the communication between vessels and
maritime traffic control authorities1. Such e-navigation would
pave the way for autonomous vessels, and has tremendous po-
tential to improve coordination among vessels to reduce con-
gestion and improve safety of navigation in busy ports of the
world [Agussurja et al., 2018]. There is no lack of such inter-
connected urban environments where learning and modeling
interactions among agents (which may represent self-driving
cars and trucks, autonomous vessels, drones) is the key to en-
able the overall productivity and safety of the resulting large
multiagent system.

1http://www.imo.org/en/OurWork/Safety/Navigation/Pages/
eNavigation.aspx

Our recent work is directed towards modeling such large
urban systems, and developing scalable planning and rein-
forcement learning (RL) based approaches that enable effec-
tive coordination among agents. Decentralized partially ob-
servable MDP (Dec-POMDPs) have emerged as a popular
framework for modeling such multiagent sequential decision
making problems under uncertainty [Bernstein et al., 2002;
Kumar and Zilberstein, 2009; Amato et al., 2010; Kumar
et al., 2015; Kumar et al., 2016]. However, it is known to
be challenging (NEXP-Hard complexity) even for the small-
est two-agent systems [Bernstein et al., 2002]. To address
the complexity, various models are explored where agent in-
teractions are limited by design by enforcing various condi-
tional and contextual independencies such as transition and
observation independence among agents [Nair et al., 2005]
where agents are coupled primarily via joint-rewards, event
driven interactions [Becker et al., 2004], and weakly coupled
agents [Spaan and Melo, 2008].

Our contributions. Previous such models and algorithms
in multiagent decision making have been either relatively
general but not very scalable, or relatively scalable but with
limited applicability. Our recent and ongoing work chal-
lenges this current state of affairs by proposing new mod-
els and algorithms that (a) are applicable to a wide range of
problems of practical importance, particularly in urban sys-
tem optimization, (b) lead to scalable algorithms for coordi-
nating thousands of agents in settings where agents partially
observe their environment, and there is uncertainty present,
and (c) constructing faithful domain simulators for different
urban settings (e.g., taxi fleet optimization, maritime traf-
fic management) learned from real world historical data. A
key part of our innovation involves using graphical models
and probabilistic inference to learn models of urban systems,
and the development of new reinforcement learning strate-
gies, that allow agents to rapidly discover more efficient de-
cisions through feedback on past behavioral outcomes using
a domain simulator.

2 The Dec-POMDP Model
A Dec-POMDP generalizes single agent Markov decision
process to account for multiple agents operating in the en-
vironment. A distinguishing feature is that agents observe
their environment and other agents only partially. Based on
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the local information agents receive (which may be different
for different agents), each agent chooses the next action to
take (in parallel) operating in a sequential manner over a fi-
nite or an infinite horizon. At each time step, the agent-team
also obtains a joint-reward. The goal is to compute policies
(mapping from local observation history to actions for each
agent) to maximize the total reward over the planning hori-
zon. The joint-reward makes the problem cooperative, and
action selection based on local observations makes the prob-
lem decentralized.

A Dec-POMDP can be defined by a tuple
〈I, S, {Ai}, P,R, {Y i}, O, γ〉, where I denotes a finite
set of n agents; S denotes a finite set of states with des-
ignated initial state distribution η0; Ai denotes a finite
set of actions for each agent i; P denotes state transition
probabilities: P (s′|s,~a), the probability of transitioning from
state s to s′ when the joint-action ~a is taken by the agents; R
denotes the reward function: R(s,~a) is the immediate reward
for being in state s and joint-action taken as ~a; Y i denotes
a finite set of observations for each agent i; O denotes the
observation probabilities: O(~y|s′,~a) is the probability of
receiving the joint-observation ~y when the last joint-action
taken was ~a that resulted in the environment state being s′; γ
denotes the reward discounting factor. An agent i’s policy,
θi : Ȳ i → Ai, maps the set of all possible observation
histories Ȳ i to actions. Solving a Dec-POMDP entails
finding the joint-policy θ = 〈θ1, . . . , θn〉 that maximizes the
total expected reward:

E
[ ∞∑

t=0

γtR
(
st,~at;θ

)]
(1)

where θ denotes the joint-policy and subscript t denotes the
dependence on time. There are several representations possi-
ble for local policies θi such as policy trees, finite-state con-
trollers [Amato et al., 2010; Kumar et al., 2015], and deep
neural networks [Nguyen et al., 2018].

3 Modeling Urban Environments
Several urban environments can be modeled as a diffusion,
cascade or flow of entities (e.g., vehicles, vessels, humans)
over an underlying geographical network [Kumar et al.,
2013]. For example, traffic flow can be modeled as diffusion
of vehicles over the network [Kumar et al., 2013], maritime
traffic as vessel movement between sea zones [Singh et al.,
2019], and people flow over a geographical area [Iwata and
Shimizu, 2019]. However, in many such domains, individual
data tracking the movement of each entity is either not avail-
able (e.g., to protect privacy of individuals) or too expensive
to collect. Only the aggregate or collective data (which may
be noisy or missing) is observed. For example, consider a
road traffic network. A key learning problem in such traffic
networks is estimating the turn probabilites for each road seg-
ment of this network [Kumar et al., 2013]. Several popular
analytical models of traffic flow such as the cell transmission
model [Daganzo, 1994] are based on the assumption that turn
probabilities are known a priori for each location. In several
urban traffic networks, aggregate data in the form of vehi-
cle count is already collected for each road segment using
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Figure 1: Electronic navigation chart (ENC) of straits near a large
asian city with color-coded features

inductive-loop traffic detectors, and we show that such aggre-
gate level information is sufficient to learn turn probabilities
for traffic networks and model the traffic flow [Kumar et al.,
2013].

As another example, figure 1 shows the e-navigation chart
(ENC) of a strait [Singh et al., 2019]. The ENC is composed
of several features such as anchorages where vessels anchor
and wait for services, berths, pilot boarding grounds, and the
traffic separation scheme or TSS. The TSS (figure 1) is the
set of mandatory unidirectional routes designed to carry bulk
of the maritime traffic to reduce collision risk among vessels
transitioning through or entering the Straits. Based on geo-
graphical features, the TSS can be further divided into smaller
zones, and maritime traffic can be thought of as flow of ves-
sels over zones. In the maritime case, although individual
vessel trajectories are available, modeling the precise move-
ment of each vessel is intractable (it requires modeling inter-
action with other vessels, effects of weather on the movement
among other factors). Therefore, modeling the traffic at the
aggregate level of zones (where we observe how many vessels
are present in which zone at each time step) is significantly
more tractable, and in our empirical tests, we show such an
aggregate modeling is accurate enough to replicate historical
patterns [Singh et al., 2019].

3.1 Collective Graphical Models and Learning
Domain Simulators

We use the framework of collective graphical models (CGMs)
to model several types of urban environments [Sheldon and
Dietterich, 2011] where we fit a model of the behavior of in-
dividuals but our data consist only of aggregate information
or counts. CGMs compactly describe the distribution of the
aggregate statistics of a population sampled independently
from a discrete graphical model. Let G = (V,E) denote an
undirected graph. Consider the following pairwise graphical
model over the discrete random vectorX = (X1, . . . , X|V |):

p(x;θ) = Pr(X=x;θ)=
1

Z(θ)

∏
(i,j)∈E

φij(xi, xj ;θ). (2)

Here, φij(·, ·;θ) is a local potential defined on the setting of
variables (Xi, Xj). The local potentials depend on the pa-
rameter vector θ, and Z(θ) is the partition function. We as-
sume that each variable Xi takes values in the same finite set
X . Now, consider an ordered sample x(1), . . . ,x(M) of ran-
dom vectors drawn independently from the graphical model.
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Figure 2: CGM representation using plate notation. (a) shows de-
pendence of count tables n on individuals; (b) shows resulting CGM
after marginalizing out all individuals

We also refer to this sample as a population (of size M ). We
define the contingency tables ni = (ni(xi) : xi ∈ X ) over
nodes of the model and nij = (nij(xi, xj) : xi, xj ∈ X ) over
edges of the model, whose entries count the number of times
particular variable settings occur in the population. Define
the vector n to be the concatenation of all edge-based con-
tingency tables nij together with all node-based contingency
tables ni. This is a random vector that depends on the entire
population and comprises sufficient statistics of the popula-
tion, which can be seen by writing the joint probability:

p(x(1), . . . ,x(M);θ) = g(n,θ) =

=
1

Z(θ)M

∏
(i,j)∈E

∏
xi,xj

φij(xi, xj ;θ)nij(xi,xj). (3)

In CGMs, one makes noisy observations y of some subset
of the sufficient statistics n and then seeks to answer queries
about the sufficient statistics given y (e.g., for the purpose
of learning the parameters θ) through the conditional dis-
tribution p(n |y;θ) ∝ p(n;θ)p(y |n). The first term in
this product, p(n;θ), is the prior distribution over the suf-
ficient statistics or the CGM distribution. Its exact form is
shown in [Sheldon et al., 2013]. The second term, p(y |n),
is the noise model. Figure 2 shows a graphical representa-
tion of a CGM over a chain structured individual model. We
have worked on developing several probabilisitic inference
based approaches to develop message-passing algorithms to
compute the maximum-a-posteriori assignment (or the most
likely n given the noisy observations y) and learning the
parameters θ using maximum likelihood estimation [Shel-
don et al., 2013; Kumar et al., 2013; Sun et al., 2015;
Nguyen et al., 2016]. CGMs are an ideal formalism to rep-
resent urban domains such as traffic. We have used mod-
els based on CGMs to represent the maritime traffic and
learned parameters of such models using historical aggregate
data [Singh et al., 2019]. We envision that constructing do-
main simulators based on such aggregate modeling of data
would be crucial for scaling up learning and decision mak-
ing in large scale urban environments as CGMs provide a
tractable representation to model a large number of agents.

3.2 Collective Multiagent Decision Making
Our recent work focuses towards developing general decision
theoretic frameworks for collective multiagent decision mak-
ing that allow to control the behavior of a population of nearly
identical agents operating collaboratively in an uncertain and
partially observable environment. Our key enabling insight
and related assumption is that in several urban environments
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Figure 3: The CDec-POMDP model

(such as transportation, supply-demand matching) agent in-
teractions are governed by the aggregate count and types of
agents, and do not depend on the specific identities of individ-
ual agents. This insight makes it possible to construct scal-
able and general approaches to multiagent modeling, simula-
tion and optimization that are capable of addressing a range
of practical problems in urban systems. Such modeling also
addresses shortcomings of previous multiagent planning ap-
proaches which are either general but not scalable or scalable
but with very limited applicability.

To formalize such collective decision making problems,
we have recently developed the framework of CDec-
POMDP [Nguyen et al., 2017a; Nguyen et al., 2017b;
Nguyen et al., 2018] or collective decentralized POMDPs.
The CDec-POMDP model is based on the idea of par-
tial exchangeability [Diaconis and Freedman, 1980; Niepert
and Van den Broeck, 2014], and collective graphical mod-
els [Sheldon and Dietterich, 2011; Sun et al., 2015]. Partial
exchangeability in probabilistic inference is complementary
to the notion of conditional and contextual independence, and
combining all of them leads to a larger class of tractable mod-
els and inference algorithms [Niepert and Van den Broeck,
2014]. Previous works in multiagent planning have mostly
explored only conditional and contextual independences in
multiagent models [Nair et al., 2005; Witwicki and Durfee,
2010]. CDec-POMDPs combine both conditional indepen-
dences and partial exchangeability to solve much larger in-
stances of multiagent decision making.

Figure 3(a) shows how different agents m in a population
of M agents interact with each other. We assume that differ-
ent agents share the state space S. E.g., in a transportation
network, agents move in different zones of the same city. An
agent m’s local state at time t is denoted by smt . The local
states of all the agents are aggregated to form the state count
table ns

t which simply counts how many agents are present in
each state i ∈ S. Based on its local state and the state count
table, an agent i receives its local observation omt , which it
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Figure 4: Settings for single agent and collective multiagent RL

uses to take the next action amt (using the policy π). Based on
the joint states and actions of all the agents, the state-action
count table nsa

t is generated, which simply counts how many
agents in state i took action j (for each i∈S and j∈A). As a
result of joint actions, the environment transitions to the next
state, and a reward is given per agent. This particular model
is equivalent to the individual model similar to figure 2(a).
Scalability. In urban settings, we may have thousands of
agents. Sampling individual trajectories of each agent would
be computationally intractable. Therefore, we exploit simi-
lar properties as in CGMs, and marginalize away individual
agents to arrive at the collective planning model in figure 3(b)
(analogous to figure 2(b)). This model only consists of count
tables, and similar to CGMs, we show how to define a distri-
bution p(n) over these count tables [Nguyen et al., 2017a].
Notice that sampling from p(n) is highly scalable as the di-
mensions of count tables do not depend on the population size
M . Therefore, the CDec-POMDP model is able to effectively
reason about a large population of agents.

4 Solution Approaches
Planning-as-inference. We have developed different types
of solution approaches for computing policies for agents in
the CDec-POMDP model. One direction is based on the
planning-as-inference strategy [Toussaint and Storkey, 2006]
where we cast the planning problem to that of likelihood max-
imization (LM) problem in a graphical model [Nguyen et
al., 2017a]. We have explore extensively such planning-as-
inference strategy for multiagent decision making in several
contexts [Kumar and Zilberstein, 2010; Kumar et al., 2011;
Kumar et al., 2015; Ghosh et al., 2015; Singh and Kumar,
2019]. The main benefit of this strategy is that it opens the
door to the application of machine learning approaches to
planning. We have used a popular LM approach Expectation-
Maximization (EM) for multiagent decision making. A key
benefit of EM is that its updates often take the form of
message-passing among agents, and are thus highly scalable
for large multiagent systems.
Multiagent RL. Another direction we have explored for
solving CDec-POMDPs is using multiagent RL (MARL).
The MARL approaches are useful in settings when only the
access to domain simulator is available, which is a fairly
common setting for several urban environments. There ex-
ist several previous MARL approaches such as independent
Q-learning, counterfactual multiagent policy gradients and
actor-critic methods [Foerster et al., 2018; Lowe et al., 2017],
and SARSA-based MARL for Dec-POMDPs [Dibangoye

and Buffet, 2018]. However, most of these approaches are
limited to few dozens of agents in contrast to the collective
setting with thousands of agents, which is our goal.
Lifted multiagent RL. The key idea that our MARL ap-
proaches exploit is to lift the RL algorithms to work with
count-based representations. We show how to define action-
value function and value function over count tables, and prove
that they are sufficient statistic for planning and RL for CDec-
POMDPs [Nguyen et al., 2017a; Nguyen et al., 2018]. As
shown in figure 4(b), the environment directly generates dif-
ferent count tables and the associated reward by exploiting
the CGM-like distribution defined over the graphical model
in figure 3(b). As a result, our RL methods do not have
to sample individual agent trajectories that would have been
prohibitively expensive. In addition, there are two main chal-
lenges we address for collective MARL—multiagent credit
assignment (actions of which agents were more/less impor-
tant), and computing low variance policy gradient estimates
for faster convergence to high quality solutions even with
thousands of agents. Without addressing these issues, stan-
dard policy gradient based approaches do not converge at all.

5 Conclusion
We have developed several approaches for achieving coordi-
nation in large multiagent systems that are increasingly be-
coming common in our urban environments. Our work in-
cludes representing urban domains using collective graphical
models that exploit the property that agent interactions in sev-
eral urban settings depend on their aggregate effects rather
than their identities. We have developed several domain sim-
ulators for urban transportation settings (such as maritime
traffic). We have used these simulators to develop efficient
and scalable multiagent RL approaches that exploit such ag-
gregate nature of interaction among agents. We have also ad-
dressed several challenges that arise when doing planning and
RL with thousands of agents such as multiagent credit assign-
ment and low variance gradient estimates.
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