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Abstract
Spammer detection in social media has recently
received increasing attention due to the rocketing
growth of user-generated data. Despite the em-
pirical success of existing systems, spammers may
continuously evolve over time to impersonate nor-
mal users while new types of spammers may also
emerge to combat with the current detection sys-
tem, leading to the fact that a built system will grad-
ually lose its efficacy in spotting spammers. To ad-
dress this issue, grounded on the contextual bandit
model, we present a novel system for conducting
interactive spammer detection. We demonstrate our
system by showcasing the interactive learning pro-
cess, which allows the detection model to keep op-
timizing its detection strategy through incorporat-
ing the feedback information from human experts.

1 Introduction
Social media services (e.g., Facebook, Youtube) have
emerged as popular platforms for content sharing and infor-
mation dissemination. The rapid growth of social media also
provides malicious users a new and convenient medium to
spread spamming contents for their noxious intentions. Those
malicious users, also known as social spammers [Lee et al.,
2010; Webb et al., 2008; Hu et al., 2014], are able to per-
form various attacks such as spreading fake news [Shu et al.,
2017], disseminating phishing links [Hu et al., 2014], and
promoting or even sabotaging the reputation of targeted prod-
ucts [Mukherjee et al., 2012]. The massive spamming con-
tents generated by social spammers may have an adverse ef-
fect on the user experience on these social media platforms.
Therefore, detecting social spammers is a vital research prob-
lem that has significant implications on keeping social media
users from unwanted information that is generated by mali-
cious attacks.

To counter these severe threats, extensive research efforts
have been devoted to detecting social spammers with disrup-
tive behaviors. Generally, a vast majority of existing methods
can be classified into two categories. One family of methods
are based on supervised learning techniques [Lee et al., 2010;
Benevenuto et al., 2010; Hu et al., 2013]. For instance,
[Benevenuto et al., 2010] proposed to adopt both content

and behaviors of each user as its attributes and apply SVM
to train a social spammer classifier. [Lee et al., 2010]
proposed to deploy honeypots in social networks for col-
lecting training data, and learn a spam detector using ex-
tracted feature vectors. The training of spammer detection
classifiers heavily relies on the assumption that a sufficient
amount of labeled samples are available. Nevertheless, due
to the prohibitive cost for accessing the ground truth social
spammers, it is unrealistic to collect a large amount of an-
notated data. As alternative solutions, unsupervised meth-
ods [Uemura et al., 2008; Bouguessa, 2011; Tan et al., 2013;
Ding et al., 2019a] have received a surge of research in-
terests and achieved extensive success by characterizing the
difference between legitimate users and social spammers.
However, as spammers can quickly evolve and new types
of spammers may also arise, a trained model will lose its
power owing to the inability of capturing such environment
changes. Fortunately, advanced research in human-in-the-
loop machine learning [Holzinger, 2016; Huang et al., 2018;
Ding et al., 2019b] show that by interactively incorporating
expert knowledge in the learning process, the model is able
to sense the environment changes and the performance can
be remarkably improved. As such, there is an urgent need
for developing a system that supports us to spot spammers in
social media in an interactive fashion.
Contribution. In this study, on the basis of the contextual
multi-armed bandit algorithm, we present a novel system: In-
terSpot1, which facilitates the detection of social spammer in
an interactive manner. By continuously incorporating the ex-
pert knowledge about social spammers into the learning pro-
cess, our system is able to constantly optimize the detection
strategy for tracing the environment changes and thus achieve
superior detection performance in practical usage.

2 System Overview
In this section, we carefully illustrate the overview of our pro-
posed system on three aspects: (1) studied dataset; (2) the
proposed algorithm; and (3) system interface.

2.1 Studied Dataset
We showcase our system on a real-world spammer detection
dataset: YelpCHI. This dataset is collected from Yelp.com and

1A demo video can be found at https://youtu.be/oW1pOD6zc1g
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Figure 1: An illustrative example of the interactive social spammer detection framework (InterSpot).

has been widely used in previous research [Mukherjee et al.,
2013; Rayana and Akoglu, 2015]. The dataset includes re-
views by 38,063 reviewers on 201 different hotels and restau-
rants. According to the results from Yelp anti-fraud filter, we
are able to divide the reviewers into two classes: authors of
fake reviews (social spammers), and authors of real reviews
(legitimate users). We create a reviewer-reviewer network
following the way of [Kaghazgaran et al., 2018]. Addition-
ally, we apply the bag-of-words model on the whole reviews
to extract the feature vector of each user for model learning.

2.2 Algorithm Description
Our system possesses a contextual multi-armed bandit
(CMAB) backbone which attempts to address the problem
of spammer detection in an interactive manner. In many
real-world applications (e.g., recommender systems [Li et al.,
2010a; Bouneffouf et al., 2012] and display advertising [Li
et al., 2010b; Chapelle and Li, 2011]), we often need to
tackle the so-called exploration-exploitation dilemma where
it is important to make a trade-off between exploiting the
current accumulated knowledge and exploring new knowl-
edge by trying out the unknown space. In our scenario, we
also need to address the dilemma between exploiting existing
known types of spammers and exploring new types of spam-
mers, to achieve superior detection performance. Therefore,
contextual multi-armed bandit algorithm [Chu et al., 2011;
Li et al., 2010a; Lu et al., 2010] is a principled tool that we
can resort to for conducting interactive learning.

To formulate our social spammer detection problem within
the K-armed contextual bandit framework, we first partition
the N users into K different clusters. The reason is that the
users in one cluster can be considered as samples drawn from
the distribution behind a bandit arm. Thus for each user, we
can regard the cluster it belongs to as an arm to pull, and
when we pull that particular arm, we consider its features as
the contextual feature vector. With the contextual feature vec-
tors of all the users {xi}i=N

i=1 , at each trail t ∈ {1, . . . , T}, our
system selects one suspicious user it and queries the human
expert if it is considered as social spammer or not. In order

to model both user features and network structure informa-
tion, follow the framework of LinUCB [Li et al., 2010a], the
expected payoff of selecting user i can be defined as:

ri = xT
i θa(i) + αyT

i φa(i)

s.t. yi = AGGR({xj , ∀j ∈ N (i)}), (1)

where α is a controlling parameter to balance the impact be-
tween two information modalities and a(i) represents the arm
that user i belongs to. θ and φ are the coefficient vectors for
modeling user features and network structure, respectively.
AGGR() is a predefined aggregator function which aggregates
the features from neighbors, and one prevalent choice is to
use the mean operator [Xu et al., 2018]. Once the human
expert provides his feedback information, our system will in-
corporate the feedback and can update its selection strategy
according to the observed reward rit ∈ {0, 1}. We repeat the
whole process until we run out of the T queries budget.

2.3 System Demonstration
As visually depicted in Figure 1, once the input dataset is
uploaded, the system will enter into the interactive detection
process. In each round, the system will present one candidate
spammer along with its auxiliary information to the human
expert. To facilitate the human expert to assess the abnor-
mality of each candidate, in our demo system, we provide
four classes of auxiliary information. Part (a) shows some
statistics (e.g., top words) about the reviews of the spammer
candidate (up) and its neighbors (down). Part (b) shows the
original reviews of the spammer candidate. Additionally, the
ego-network of the spammer candidate is shown in Part (c).
When the human expert clicks one of the neighboring nodes,
the original reviews of this neighbor will be displayed in Part
(d). Note that other auxiliary information can also be ex-
ploited for further extension. After the human expert clicks
the button according to his domain knowledge, the feedback
information will be integrated back into the spammer detec-
tion model to update its selection strategy at the next iteration.
This interactive process will iterate until the human expert
stops the algorithm or the budget is used up.
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