
Reagent: Converting Ordinary Webpages into Interactive Software Agents

Matthew Peveler1∗ , Jeffrey O. Kephart2 and Hui Su1,2

1Rensselaer Polytechnic Institute, Troy, NY 12180, USA
2IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

{pevelm}@rpi.edu, {kephart, huisuibmres}@us.ibm.com

Abstract

We introduce Reagent, a technology that can be
used in conjunction with automated speech recog-
nition to allow users to query and manipulate ordi-
nary webpages via speech and pointing. Reagent
can be used out-of-the-box with third-party web-
sites, as it requires neither special instrumentation
from website developers nor special domain knowl-
edge to capture semantically-meaningful mouse in-
teractions with structured elements such as tables
and plots. When it is unable to infer mappings be-
tween domain vocabulary and visible webpage con-
tent on its own, Reagent proactively seeks help by
engaging in a voice-based interaction with the user.

1 Introduction
Increasingly sophisticated technologies are being developed
to enable scientists, business users, and students to interact
with AI much as they would with a fellow human. Whether
intended for tasks such as decision making [Farrell et al.,
2016], data exploration and analysis [Kephart et al., 2018],
or learning a language [Allen et al., 2019], these technologies
rely upon a mixture of input modalities, including voice, text,
gestures, and pointing. To collect semantically-meaningful
pointing events resulting from the user’s interaction with the
display, the common practice has been to build the user in-
terface as a collection of bespoke webpages, each including
special instrumentation that responds to mouse events. Multi-
modal cognitive agents will never become as pervasive as
today’s less-sophisticated bots unless a less laborious, more
scalable approach is developed.

In this paper, we introduce Reagent, a technology that
solves this scalability problem by capturing semantically-
meaningful mouse events from non-instrumented webpages.
When used in conjunction with a speech engine that tran-
scribes verbal commands to text, Reagent effectively converts
ordinary webpages into software agents with which one can
interact naturally; in other words, one can query, analyze and
manipulate the webpage’s content through a combination of
speech and pointing (e.g. at a cell in a data table).

∗Contact Author

Figure 1: Electron environment containing ESPN page, transcript
window, and ontology being built by the human and Reagent.

To support the user’s desire to issue commands in a familiar
domain vocabulary that may not necessarily match the termi-
nology used on the webpage, Reagent uses salient structured
content on the page to automatically infer mappings between
the domain vocabulary and the webpage terminology. When
the system fails to find such a mapping, it is able to elicit help
from the user to fill these gaps.

The next section overviews some technical details regard-
ing how Reagent is implemented and how it is situated
within a larger multi-modal AI assistant framework. Then,
we briefly describe two aspects of Reagent that are illus-
trated more fully in the accompanying demo video, avail-
able at https://youtu.be/qVmY3YmNzGE. First, we demon-
strate how — with no prior training or knowledge — one
can query and manipulate a table contained within a third-
party webpage (SkySports) via speech and pointing. Second,
we demonstrate an interaction with an ESPN page, whereby
Reagent proactively asks the user to help fill in gaps in its on-
tology, allowing the system to subsequently understand more
elaborate queries in the domain vernacular.

2 Technical Details
Reagent, along with the multi-modal AI assistant system in
which it is embedded [Kephart et al., 2018], is built upon
Electron, a Node.js framework for developing desktop appli-
cations from web technologies. As illustrated in Fig. 1, the

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6560



Figure 2: Flow of Reagent system and its integration within Electron
and webpages.

system displays on a computer screen a collection of web-
pages (termed webviews in Electron).

When a user opens a webpage, Reagent inserts a transpar-
ent layer on top of that page’s webview. This layer scans
the page, looking for meaningful semantic structures (e.g.
table, plot). Upon detecting them, it further injects specific
JavaScript code to parse the structure and create listeners for
meaningful user interactions. In the case of a table, this en-
tails detecting the headers of the table (marking them with a
unique ID) and adding a listener to detect whenever a user’s
cursor enters, leaves, or clicks on any cell in the table. Finally,
Reagent creates a MutationObserver on the page to detect any
potential DOM changes so that it can re-start the page analy-
sis and re-bind itself to any changed or inserted content. This
sequence is shown in detail in Figure 2. Interaction between
Reagent and the webviews happens via a WebSocket; inter-
action with the rest of the system is via HTTP GET/POST.

Users interact with a web page by pointing to elements (via
mouse or other pointing device) and either typing into a chat
window or speaking. The system calls Watson Assistant 1 to
obtain from the text (or text transcription) an “intent” classi-
fication plus a set of entities. Then, it checks whether it can
construct from the intent and entities a fully-specified JSON
command. If not, the system retrieves from the user interac-
tion event log maintained by Reagent the most recent events
that could possibly be mapped to the missing parameter(s).
The resulting command is then executed, and the result is dis-
played on the Electron display canvas, possibly accompanied
by synthesized speech [Divekar et al., 2018].

Often, webpage developers use abbreviations or synonyms
that do not correspond directly to the terms that users would
naturally use to interact with those pages. For example, on the
ESPN page shown in Fig. 1, the column for “appearances”
is labelled “APP”. In the course of processing HTML ele-
ments, Reagent identifies tags that may indicate more human-
friendly terms, such as tooltips that reveal explanatory text on

1https://www.ibm.com/cloud/watson-assistant/

hovering over the element, and uses approximate text match-
ing to infer likely associations. Reagent can also exploit a
large body of accessibility work including the W3C Standard
Web Content Accessibility Guidelines2 or a Voluntary Prod-
uct Accessibility Template3 to automatically derive mean-
ingful semantic information in “hidden” attributes. In cases
where the system is unable to understand or disambiguate the
semantic information, it solicits a definition from the user.
For example, if Reagent is unable to divine the meaning of
“APP” or other columns, the system generates a synthesized
voice asking the user to mouse over the unknown columns
and state what names they wish to use for them. Reagent
then stores this information for use during subsequent visits
to that webpage, or others with similar content.

3 Building an Ontology
To help demonstrate the capabilities of Reagent, we use the
system to help build an ontology dealing with football teams
and players. To start with, we open a page from SkySports
showing the premier league table 4. After opening it, Reagent
detects a table as well as the hidden metadata for some of
the columns. However, not all columns have human readable
metadata, so the system asks the user to supply the missing
domain-specific vocabulary for team attributes. After filling
in this information and adding the table as a team entity in
the ontology, the user opens a page for a team’s roster on
ESPN 5. On this page, there are two tables representing the
two types of players: goalkeepers and outfield players. Both
of these tables contain abbreviations for the table headers,
which Reagent is able to understand automatically by exploit-
ing human-readable labels within the HTML structure. This
allows a user to add each table directly into the ontology with-
out the system requiring any additional help. Finally, the user
verbally asks the system to add a relationship between the
added player and team entities. With this more complete on-
tology, the system is now equipped to answer more complex
questions utilizing knowledge across pages and entities.

4 Conclusions
Taking advantage of commonly-occurring structural motifs
and human-friendly tagging such as tooltips, Reagent makes
it easy for developers to create cognitive applications that
support voice-based interactions with ordinary webpages.
Moreover, Reagent readily learns vocabulary by asking ques-
tions when it cannot establish a mapping between the user’s
and webpage’s terminology. One potential avenue for fur-
ther research is to improve the knowledge acquisition pro-
cess, utilizing prior work on determining salient details and
content from less-structured webpages and content [Joshi and
Liu, 2009; Sun et al., 2011]. Another path is to automatically
determine the domain under investigation, thereby allowing
the system to bootstrap itself with knowledge from publicly
available datasets such as DBPedia [Auer et al., 2007].

2https://www.w3.org/WAI/standards-guidelines/wcag/
3https://www.section508.gov/sell/vpat
4https://www.skysports.com/premier-league-table/2018
5https://www.espn.com/soccer/team/squad/ /id/360/

manchester-united

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6561



References
[Allen et al., 2019] David Allen, Rahul Divekar, Jaimie

Drozdal, Lilit Balagyozyan, Shuyue Zheng, Ziyi Song,
Huang Zou, Jeramey Tyler, Xiangyang Mou, Rui Zhao,
Helen Zhou, Jianling Yue, Jeffrey O. Kephart, and Hui Su.
The rensselaer mandarin project — a cognitive and im-
mersive language learning environment. In Proceedings
of AAAI 2019, 2019.

[Auer et al., 2007] Sören Auer, Christian Bizer, Georgi Ko-
bilarov, Jens Lehmann, Richard Cyganiak, and Zachary
Ives. Dbpedia: A nucleus for a web of open data. In Pro-
ceedings of the 6th International The Semantic Web and
2nd Asian Conference on Asian Semantic Web Conference,
ISWC’07/ASWC’07, pages 722–735, Berlin, Heidelberg,
2007. Springer-Verlag.

[Divekar et al., 2018] Rahul R. Divekar, Matthew Peveler,
Robert Rouhani, Rui Zhao, Jeffrey O. Kephart, David
Allen, Kang Wang, Qiang Ji, and Hui Su. CIRA: An archi-
tecture for building configurable immersive smart-rooms.
In Advances in Intelligent Systems and Computing, pages
76–95. Springer International Publishing, nov 2018.

[Farrell et al., 2016] Robert G Farrell, Jonathan Lenchner,
Jeffrey O Kephart, Alan Webb, Michael Muller, Thomas
Erickson, David Melville, Rachel Bellamy, Daniel Gruen,
Jonathan Connell, Danny Soroker, Andy Aaron, Shari
Trewin, Maryam Ashoori, Jason Ellis, Brian Gaucher, and
Dario Gil. Symbiotic cognitive computing. AI Magazine,
37(3):81–93, 2016.

[Joshi and Liu, 2009] Parag Mulendra Joshi and Sam Liu.
Web document text and images extraction using dom anal-
ysis and natural language processing. In Proceedings of
the 9th ACM Symposium on Document Engineering, Do-
cEng ’09, pages 218–221, New York, NY, USA, 2009.
ACM.

[Kephart et al., 2018] Jeffrey O. Kephart, Victor Dibia, Ja-
son Ellis, Biplav Srivastava, Kartik Talamadupula, and
Mishal Dholakia. A cognitive assistant for visualizing and
analyzing exoplanets. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[Sun et al., 2011] Fei Sun, Dandan Song, and Lejian Liao.
Dom based content extraction via text density. In Pro-
ceedings of the 34th International ACM SIGIR Conference
on Research and Development in Information Retrieval,
SIGIR ’11, pages 245–254, New York, NY, USA, 2011.
ACM.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6562


