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Abstract
A key problem in Belief-Desire-Intention agents is
how an agent progresses its intentions, i.e., which
plans should be selected and how the execution of
these plans should be interleaved so as to achieve
the agent’s goals. Previous approaches to the in-
tention progression problem assume the agent has
perfect information about the state of the environ-
ment. However, in many real-world applications an
agent may be uncertain about whether an environ-
ment condition holds, and hence whether a partic-
ular plan is applicable or an action is executable.
In this paper, we propose SAU , a Monte-Carlo Tree
Search (MCTS)-based solver for intention progres-
sion problems where the agent’s beliefs are uncer-
tain. We evaluate the performance of our approach
experimentally by varying the degree of uncertainty
in the agent’s beliefs. The results suggest that SAU
is able to successfully achieve the agent’s goals
even in settings where there is significant uncer-
tainty in the agent’s beliefs.

1 Introduction
The Belief-Desire-Intention (BDI) architecture [Rao and
Georgeff, 1992] is the foundation for numerous deployed
agent systems [Pěchouček and Mařı́k, 2008]. In these sys-
tems, beliefs represent the agent’s information about the en-
vironment and itself, goals are states of the environment the
agents want to bring about, and plans are the recipes by which
the agents can achieve their goals. Plans consist of primitive
actions that directly change the state of the environment, and
subgoals which are in turn achieved by subplans. An agent
typically pursues multiple goals in parallel. When the agent
commits to a particular plan to achieve a goal, an intention is
formed. At each deliberation cycle, the agent chooses which
of its multiple intentions it should progress (i.e., intention se-
lection) and for the subgoals within an intention choose the
best plan to achieve it (i.e., plan selection). In this work, we
consider these two choices together as the intention progres-
sion problem.

A number of approaches have been proposed in the lit-
erature that address various aspects of intention progres-
sion, including, summary-information-based (SI) [Thangara-

jah et al., 2003; Thangarajah and Padgham, 2011], coverage-
based (CB) [Waters et al., 2014; 2015] and Monte-Carlo
Tree Search-based [Yao et al., 2014; Yao and Logan, 2016;
Yao et al., 2016] approaches. However all of these existing
approaches assume the agent has perfect information about
its environment, i.e., if the agent believes p is true, then p
is in fact true. In reality though, the agent may be only cer-
tain of some of its environment, and be unsure about the rest.
For example, suppose an automated taxi is travelling to a taxi
rank. It may have a certain belief that there is a taxi rank
at a particular location but may not know for certain if there
are passengers waiting at that rank but have some degree of
certainty (for example, 75% based on prior experience).

There has been considerable work on modelling uncer-
tain beliefs in agent systems. Casali et al. [2011] proposed
a graded BDI agent model which allows the agent to rea-
son about uncertain beliefs; Kwisthout et al. [2005] used
Dempster-Shafer theory to model uncertainty in an agent’s
beliefs; Bauters et al. [2014] extended the operational seman-
tics for the agent programming language CAN to deal with
uncertain information; and Schut et al. [2001] implemented
an intention reconsideration policy as a POMDP. However,
these approaches do not address intention progression under
uncertainty. The only work on intention progression for BDI
agents with uncertain beliefs are the plan selection principles
proposed by Ma et al. [2014] and the SP scheduler proposed
by Yao et al. [2016]. However, Ma et al. only considered plan
selection, while SP focussed on scheduling non-deterministic
actions rather than uncertain beliefs.

In this paper we introduce SAU , a novel approach to pro-
gressing the intentions for BDI agents with uncertain beliefs.
SAU extends the MCTS-based scheduler SA [Yao and Logan,
2016]. We choose to extend SA, as it is a domain-independent
approach compatible with most existing BDI languages, and
was shown to outperform other approaches [Yao and Logan,
2016]. In order to extend SA to support uncertain beliefs, we
revise the structure of the MCTS search tree, including the
definition of MCTS nodes and edges, and modify all of the
phases of the process in building a search tree. We evaluate
the performance of our approach and compare it with first-in-
first-out, round-robin and SA in synthetic domains with vary-
ing levels uncertainty and in both static and dynamic envi-
ronments. The experimental results suggests SAU is able to
achieve the agent’s goals even in settings where there is sig-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

10



nificant uncertainty in the agent’s beliefs.
In Section 2 we present preliminaries, including the defi-

nitions of beliefs, goals, plans and actions and the intention
progression problem. We describe our approach, SAU , in Sec-
tion 3. In Section 4 we present an experimental evaluation of
SAU . We discuss related work in Section 5 and conclude with
some future directions in Section 6.

2 Preliminaries
In this section, we introduce and define the basic elements of
our approach to intention progression under uncertainty, in-
cluding the model of the agent’s beliefs, goals, actions and
plans. We also formally define the intention progression
problem.
Beliefs. As noted in the Introduction, a wide range of ap-
proaches to representing uncertain beliefs in BDI agents have
been proposed in the literature [Schut et al., 2001; Kwisthout
and Dastani, 2005; Fagundes et al., 2009; Silva and Gluz,
2011; Casali et al., 2011; Ma et al., 2014; Bauters et al., 2014;
Coelho and Nogueira, 2015]. In the interests of generality,
we assume here a very simple model in which the agent’s be-
lief base is a finite set of pairs of the form (l, c) where l is a
ground literal (proposition p or its negation ¬p) and c ∈ [0, 1]
is a degree of belief or certainty (subjective probability). We
assume that at least all the preconditions of actions the agent
can perform appear in the belief base with some degree of
belief (if the agent is totally uncertain about l, it appears as
(l, 0.5)). The agent’s belief base B is given by:

B = {(l1, c1), . . . , (ln, cn)}
If (l, c) is in the agent’s state, then the certainty of l is c,
and the certainty of its opposite signed literal ∼ l is 1 − c
(we represent beliefs in literals rather than only in atoms for
convenience). For example, a belief (Sunny, 0.9) means the
agent has certainty 0.9 that it is sunny and certainty 0.1 that it
is not sunny. A belief (l, 1) indicates that the agent is certain
that l is true, and (l, 0) that l is false. For convenience, we
overload notation and denote by c(l) the agent’s degree of
belief in l, i.e., c(l) = c if (l, c) ∈ B.

The degree of belief in a literal may be updated when the
agent receives percepts. We assume the agent’s belief up-
date function is of the form B′ = buf (B, percepts), where
precepts are the percepts at this cycle. Again, in the interests
of generality, we make no assumptions about how the agent’s
beliefs are updated. For example, it may be determined by
the readings and reliability of the agent’s sensors using Bayes
rule: Pr(l | percepts) = Pr(l)·Pr(precepts|l)

Pr(percepts) . This would re-
quire the belief update function to have access to a Bayesian
network [Pearl, 1988] with conditional probabilities of per-
cepts given literals in the agent’s belief state. However we
stress that the availability of conditional or prior probabilities
is not necessary for our approach; all we require is an ability
to update probabilities in response to receiving percepts.
Goals. The agent’s top-level goals represent states of affairs
that the agent wants to bring about. The agent’s goal base G
is a finite set of literals:

G = {g1, . . . , gm}

G does not need to be consistent, e.g., conflicting goals
may be achieved at different times. A goal gi is consid-
ered achieved (and any intention with gi as top-level goal
is dropped) if the agent’s degree of belief in gi exceeds an
achievement threshold γ, i.e., (gi, γ′) ∈ B, where γ′ ≥ γ.
For simplicity, we assume that γ is the same for all goals, but
nothing hangs on this.

Actions and Plans. An agent can perform a set of basic ac-
tions in the environment. The preconditions of an action a
are a set of literals φ which must be true before the execu-
tion of the action, and the postconditions of the action are a
set of literals ψ that are true after the execution of the action.
We assume that actions are deterministic: if the preconditions
of an action hold, then the postconditions of the action hold
after executing the action and the agent knows this (i.e., the
postconditions of the action have certainty 1 after the action
has been successfully executed). An action is (believed to be)
executable given the agent’s beliefs B if all literals in φ have
degree of belief > 0 in B. If the agent attempts to execute
an action whose preconditions do not hold, the action fails
(cannot be executed). We assume that the agent receives a
distinguished ‘percept’, (¬) done(a), at the cycle following
execution of the action representing whether the action suc-
ceeded or failed. If the action failed, in addition to perceiving
¬ done(a), the agent may also perceive some subset of the
false preconditions as percepts, i.e., as a result of attempting
to perform an action, the agent may discover the true value of
some preconditions of the action. In the special case when the
failed action has a single precondition, we assume its degree
of belief is revised to 0.

To achieve the agent’s goals, actions are organised into
plans. Each goal g is associated with a set of plans π1, . . . , πn
that achieve g. Each plan πi is of the form g : χ ←
a1; . . . ; am, where χ is a set of literals specifying the con-
text condition (or applicability condition) which must be true
for πi to begin execution, and a1; . . . ; am is a sequence of
steps which are either primitive actions or subgoals.

Intention Progression Problem. The relationships be-
tween goals, plans and plan steps naturally forms a tree struc-
ture, which is termed a goal-plan tree (GPT) [Thangarajah
et al., 2003; Thangarajah and Padgham, 2011]. The root of
a GPT is a goal node g, its children are plan nodes that can
be used to achieve g. Each plan node contains a sequence of
action nodes and (sub)goals nodes. The subgoals have their
associated plans as their children, giving rise to a tree struc-
ture representing all possible ways an agent can achieve the
top-level goal g.

The intentions of an agent at each deliberation cycle are
represented by a pair (T, S) where T = {t1, . . . , tn} is a set
of goal-plan trees and S = {s1, . . . , sn} is a set of pointers
to the current step of each ti. The root goal gi of each ti ∈ T
corresponds to a top-level goal of the agent. The current step
si of each ti is either a primitive action or a (sub-)goal, and
is initially set to the root goal of ti, gi. We define next(si)
as the action step of ti following the current step si. If si
is a primitive action, then next(si) is the primitive action or
following si in the same plan, or, if si is the last action in a
plan, next(si) is the next primitive action in the parent plan
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of the current plan. If si is a (sub-)goal, determining the next
step involves choosing a plan π for the (sub-)goal and return-
ing the first action step in π (if the first step in π is again a
subgoal, then we also need to choose a plan to achieve it and
so on). That is, next(si) is the first action that appears in π
or its subplans. A current step si is progressable if next(si)
is an action whose precondition holds.

The intention progression problem (IPP) [Logan et al.,
2017] is that of choosing a current step si ∈ S to progress
(i.e., advance to next(si)) at each deliberation cycle so as
to maximise the agent’s utility. There are many ways in
which utility may be defined, e.g., taking into account the
importance or priority of goals, the deadlines by which goals
should be achieved, the ‘fairness’ or order in which goals are
achieved, the costs or preferences of actions, etc.. For con-
creteness, in what follows we assume that the agent’s utility
is maximised by achieving the largest number of goals. In
this setting, the IPP is the problem of choosing which current
step to progress so as to maximise the total number of goals
achieved by the agent.

3 SAU

In this section, we present SAU , a solver for intention pro-
gression problems where the agent’s beliefs are uncertain.
SAU extends the SA Monte-Carlo Tree Search (MCTS)-based
solver of [Yao and Logan, 2016] in explicitly taking account
of the agent’s uncertainty about the preconditions of an action
in the search.

3.1 SAU Search Tree
At each deliberation cycle, SAU advances the current step
pointer of one of the agent’s intentions to the next step. To
choose the action to execute at the current cycle, SAU iter-
atively builds a search tree. Edges in the tree represent an
attempt to execute the next action in one of the agent’s inten-
tions. Nodes represent the possible states of the agent follow-
ing the execution of the action. More precisely, a (non-root)
node in the SAU search tree is a pair:

(qt, qf )

where qt represents the state of the agent when the action
executes successfully, and qf represents the state when the
action fails. Each state qi in a node is a five tuple:

(Bi, Si, Pi, κi, νi)

whereBi is the beliefs of the agent following the execution of
the action, Si are the current steps of each intention (since the
agent’s goals do not change within a deliberation cycle, we
omit T ), Pi is the agent’s subjective probability of reaching
this state from its parent state,1 κi is the number of times
this state has been visited in the search, and νi is the total
simulation value of the state (explained below). As each node
contains two different states, an edge connects one state in a
node (rather than the node itself) to one of its child nodes
as shown in Figure 1. For example, action am is an edge
between a parent state wt and a child node nx, meaning that

1An action either succeeds or fails, thus we have Pt + Pf = 1.

am aman

nw

ny

n0

wt wf

nx
xt xf yt yf nz

zt zf

…

q0tq
0
t

Figure 1: An example SAU search tree.

executing am in state wt may result in either of the two states
in node nx.

The root of the search tree is a special node, n0, which
contains only a qt state representing the beliefs of the agent
at the current deliberation cycle.

3.2 SAU Algorithm
As with MCTS and SA, the SAU algorithm consists of four
main phases: selection, expansion, simulation and back-
propagation. However the introduction of uncertain beliefs
requires significant modifications to each phase which are de-
scribed in detail below. SAU is shown in Algorithm 1.

Selection. In the selection phase, a leaf node, ne is se-
lected for expansion (line 4). A node may be expanded
if it represents a non-terminal state (a state in which the
agent believes it is possible to execute the next step of an
intention). ne is selected using a modified version of Up-
per Confidence Bounds applied to Trees (UCT) [Kocsis and
Szepesvári, 2006], UCT ∗, which takes the value of both
states qt and qf in a node into account when determining the
utility or “urgency” of expanding the node. The UCT ∗ value
is given by:

UCT ∗ = νt · Pt + νf · Pf + C ·

√
lnκp
κt + κf

where νt and νf are the average simulation value for qt and
qf respectively, C is a constant that controls the balance be-
tween exploitation and exploration, and κp is the total number
of times the parent of this node has been visited. Together,
νt · Pt + νf · Pf gives the weighted average performance of

Algorithm 1 Return the best action at this cycle

1: function SAU (B,S, buf , α, β)
2: n0 ← ((B,S, 1, 0, 0))
3: for i from 1 to α do
4: ne ← MAX-UCT*-NODE(n0)
5: for each state qi in ne with Pi > 0 do
6: children(qi)← EXPAND(qi, buf )
7: ns ← RANDOM-CHILD(children(qi))
8: for j from 1 to β do
9: for each state qi in ns do

10: value(qi)← SIMULATE(qi, buf )
11: BACKUP(value(qi), qi)

12: return BEST-CHILD(n0)
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node, which favours the exploitation of the action currently
believed to be optimal, and the square-root term represents
exploration of a suboptimal action. In the case where Pt = 1
and Pf = 0 (i.e., the agent is certain that the preconditions of
the action represented by the edge to this node are true), the
UCT ∗ value is the same as the classical UCT value.

Starting from the root state (i.e., qt in the root node), we
calculate the UCT ∗ values for the children of the root state,
and select the node which has the largest UCT ∗ value. If this
is not a leaf node, MAX-UCT*-NODE randomly selects a state
qi in the node based on its probability of being reached from
the parent node, and continue from the child node of qi with
the highest UCT ∗ value. This process continues until a leaf
node (i.e., its states do not have child nodes) is reached.
Expansion. In the expansion phase, all states in the selected
node ne with Pi > 0 are expanded by adding child nodes
representing the agent’s beliefs and the current step of each
intention resulting from executing all the next action steps in
each intention the agent believes are executable (lines 5-6).
Expanding states with Pi > 0 ensures that the simulation
values of a visited node contains at least one simulation for
the state in which the action succeeds and one for the state in
which the action fails.

EXPAND generates the child nodes as follows. If the next
step of an intention in a state qi of ne is an executable action
a (i.e., sj = a for some sj ∈ Si) with preconditions φ and
postconditions ψ, then the execution of a in state qi of ne is
represented by a child node n′ of qi containing two states, q′t
and q′f , corresponding to the success and failure of a. In the
success state q′t, both the preconditions φ and postconditions
ψ of a are believed to be true, and the belief base B′t in state
q′t of n′ is given by:

B′t = {(l1, u(c1)), . . . , (ln, u(cn))}

where

u(ci) =

{
1 if li ∈ φ ∪ ψ
0 if ¬li ∈ φ or ψ
c(li) in Bi otherwise

the current step in the intention containing a is updated

S′t = St \ {si} ∪ {next(a)}

and the probability P ′t of state q′t being reached is given by:

P ′t =
∏
li∈φ

c(li)

Note that, in the case where all the preconditions of a are
certain, i.e., P ′t = 1, P ′f = 0, the failure state q′f cannot
be expanded further. In contrast, in the q′f state represent-
ing the failure of a, at least one literal in φ does not hold
in the current environment, and the belief base is given by
B′f = buf (Bi, {¬done(a)}). (We assume that SAU has no
access to the ‘false precondition’ percepts the agent receives
if the attempt to perform a fails, so Bi is updated only with
¬done(a).) In the special case where there is only one uncer-
tain literal l in φ, the degree of belief c(l) is updated to 0, and
the probability of its negation c(¬l) is set to 1 in B′f . If an
action a fails, the plan containing the action is also deemed

to have failed, and the current step sj is set to the (sub)goal
the plan was selected to achieve. The probability of q′f being
reached is given by P ′f = 1− P ′t .

If the current step of an intention in a state qi of ne is a
(sub-)goal g, then for each applicable plan πi for g, a child
node representing the selection of πi is generated. The sub-
jective probability P ′t of πi being applicable in the current
environment is given by P ′t =

∏
lj∈χi

c(lj) where χi is the
context condition of πi, and S′t is set to the first step in πi.

One of the newly created child nodes, ns = (qt, qf ), is
then selected at random for simulation (line 7).

Simulation. In the simulation phase, the value of both
states qt and qf are estimated (lines 9–11). For each state
qi in ns with Pi > 0 β simulations are performed. Starting
in qi, an executable next step of an intention is randomly se-
lected and executed, and the agent’s beliefs and the current
step of the selected intention updated. In each simulation, the
result of executing an action is randomly selected based on
the agent’s subjective probability of reaching the success and
failure states. As in the expansion phase, if an action suc-
ceeds, all its preconditions and postconditions are believed to
be true, and the current step is updated accordingly. In the
case of execution failure, the agent’s belief base is updated
by the belief update function buf and the current step of the
corresponding intention is set to the (sub)goal the plan was
selected to achieve. This process is repeated until a terminal
state is reached in which no next steps can be executed or
all top-level goals are achieved. The value of the simulation
is taken to be the number of top-level goals achieved in the
terminal state.

Back-propagation. Finally, all the simulation values for
each state generated in the simulation are back-propagated
from the simulated state on the path to the initial state in the
root node (line 11).

After α iterations, the action that leads to the child of the
root node with the greatest κi value is returned, and the cur-
rent step pointer of the selected intention is updated for use at
the next deliberation cycle.

4 Evaluating SAU

In this section, we evaluate the performance of SAU under
varying degrees of uncertainty in the agent’s beliefs in both
static and dynamic environments. We compare the the num-
ber of goals achieved by SAU , SA [Yao and Logan, 2016]
and two approaches to intention progression commonly used
in practical agent programming languages: first-in-first-out
(FIFO) and round-robin (RR). First-in-first-out executes each
of the agent’s intentions to completion (the goal is achieved
or the next step in the intention cannot be executed) before
starting to execute the next intention. FIFO minimises inter-
actions between intentions, however it has the disadvantage
that the achievement of some goals may be significantly de-
layed compared to other goals. RR attempts to ensure ‘fair-
ness’ between intentions by executing a fixed number of steps
(typically one) of each intention in turn. However RR in-
creases the number of possible conflicts between intentions:
the interleaving of steps in different intentions may destroy a
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precondition established by a step in another intention before
the action that requires the precondition is executed.

4.1 Experimental Setup
In the interests of generality, we evaluate SAU using sets of
randomly-generated, synthetic goal-plan trees representing
the current intentions of an agent in a simple environment.
The synthetic trees are similar to those used in the Intention
Progression Competition2 [Logan et al., 2017] and in [Yao
and Logan, 2016], except that each action has two literals in
its pre-condition. Each goal-plan tree is of depth 5, each goal
has two relevant plans, and each plan contains a subgoal and
3 actions.3

The agent’s environment is built from 60 propositions (cor-
responding to 120 literals). For each goal-plan tree, we select
30 propositions at random and choose from the correspond-
ing literals pre- and postconditions of the actions in the tree.
The values of the literals can change when an action has been
successfully executed and its postcondition is applied, or the
environment itself changes. Each proposition is modelled as a
Poisson process with a specified mean value, allowing the fre-
quency of environmental changes to be controlled. For sim-
plicity, we assume environmental changes always occur after
the execution of actions. As a result, the postcondition of an
action might be undone by the changes of the environment.

We assume the FIFO, RR and SA agents have perfect
knowledge of the environment, i.e., their beliefs correspond
to the true values of all the literals in the environment and all
percepts. In contrast, the SAU agent has varying degrees of
uncertainty about the environment and its percepts. The SAU
agent maintains a set of beliefs which may be more or less at
variance with the actual value of the corresponding literals in
the environment. We define the ‘error’ in a belief (li, ci) as:

ε(li, ci) =

{
1− ci if li holds,
ci otherwise

For example, if a literal l is true in the current environment,
but the agent’s degree of belief in l is 0.6, i.e., (l, 0.6), then the
error in this belief is 1 − 0.6 = 0.4. For the experiments re-
ported below, the error in each belief in the SAU agent’s initial
belief base and percept received from the environment during
a trial is sampled from a normal distribution with mean µ and
a standard deviation σ. For each trial, we vary the mean ‘er-
ror’ in the agent’s degree of belief, holding σ constant at 0.2.
The SAU agent uses a goal achievement threshold γ = 1, i.e.,
a goal g is only considered believed when the corresponding
belief in g is certain. The only percepts the agent receives
are action success and failure. If an action succeeds, buf sets
the certainty of its pre and postconditions to 1, if it fails and
has a single precondition, its certainty is set to 0, if it has two
preconditions, their certainty is multiplied by 0.5 (imitating
Bayesian reasoning with P (¬done(a)|li)

P (¬done(a)) = 0.5).

4.2 Static Environment
Our first set of experiments evaluate the performance of
FIFO, RR, SAU and SA in a static environment by setting the

2https://www.intentionprogression.org/
3The trees are available at: https://bit.ly/35jxkt2.

mean arrival rate of Poisson process for each environment lit-
eral to 0. We generated 50 sets of 10 goal-plan trees, and
report the number of goals achieved on average for each ap-
proach. SA and SAU were configured to perform 100 itera-
tions (α = 100) and 10 simulations per iteration (β = 10)
(the values of α and β used in [Yao and Logan, 2016]).

As a ‘baseline’, we first evaluated the average number of
goals achieved by FIFO, RR, SA and SAU with perfect infor-
mation about the state of the environment and percepts. This
indicates the intrinsic difficulty of the intention progression
problem posed by the synthetic trees, and allows compari-
son with the results in previous work, e.g., [Yao and Logan,
2016].

RR FIFO SA SAU

# 1.16 6.16 9.58 9.58

Table 1: Av. # goals with perfect information

Table 1 shows the average number of goals achieved for
each approach. As can be seen, SAU and SA outperform both
FIFO and RR. The results for SA are slightly lower than those
reported in [Yao and Logan, 2016] due to the increased num-
ber of preconditions for each action in the synthetic trees.

µ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
# 9.30 9.08 8.66 8.24 7.74 7.30 6.78 6.46

Table 2: Av. # goals achieved by SAU with increasing error

We then evaluated how the performance of SAU varies with
the degree of error in the agent’s beliefs, by varying the mean
error µ of the distribution from 0 to 0.7 (σ = 0.2 in all cases).
The results are shown in Table 2. As might be expected, the
performance of SAU declines as the mean error in the agent’s
beliefs increases. With a mean of 0.7, i.e., most beliefs are in-
correct, the performance of SAU is close to the performance
of FIFO. However, as the mean error decreases, the perfor-
mance of SAU improves. When the mean is 0, i.e., most be-
liefs are fairly certain and correct (recall that σ = 0.2 so even
with µ = 0 there is some error in the agent’s degree of belief),
the performance of SAU is close to that of SA. However, even
with a very high error rate, SAU can still achieve more goals
than RR and FIFO.

4.3 Dynamic Environment
Our second set of experiments evaluated the performance of
FIFO, RR, SA and SAU in a dynamic environment. In the
dynamic case, the mean value for all Poisson processes is set
to 0.01, which gives approximately 0.5 literal changes per
cycle. For SAU we again set the standard deviation σ to 0.2
and varied the mean error µ of the distribution from 0 to 0.7.
We used the same 50 sets of 10 goal-plan trees as in the static
case, and report the number of goals achieved on average for
each approach.

As in the static case, we first performed a ‘baseline’ evalu-
ation of FIFO, RR, SA and SAU with perfect information. The
results are shown in Table 3. As can be seen, SAU and SA still
outperform both FIFO and RR in the dynamic case, though
the dynamic case is significantly harder for all approaches.
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RR FIFO SA SAU

# 0.58 4.94 7.98 7.98

Table 3: Av. # goals with perfect information

µ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
# 7.52 7.22 6.96 6.66 6.38 5.94 5.50 5.10

Table 4: Av. # goals achieved by SAU with increasing error

The performance of SAU with varying mean error is shown
in Table 4. As in the static case, the performance of SAU
declines as the mean error in the agent’s beliefs increases.
However the relative number of goals achieved with µ = 0.7
is similar in both cases (approximately 70% of the goals
achieved with µ = 0). When the mean error is 0, the per-
formance of SAU is within 5% of SA. In the worst case, when
the mean error is 0.7, SAU still outperforms FIFO and RR.

Overall, SAU has the same performance as SA if perfect
information is available, but its performance degrades grace-
fully as the error in the agent’s beliefs increases, and even
with significant error, SAU still outperforms RR and FIFO in
terms of the number of goals achieved.

4.4 Computational Overhead
As with SA, the computational overhead of SAU depends on
the search configuration α and β, i.e., how many iterations are
performed and how many simulations are run from each state.
With the search configuration used for the experiments, SAU
requires approximately 300 milliseconds to return the first ac-
tion to be performed, i.e., to compute a complete interleaving
of actions in the 10 goal-plan trees used in the experiments.
(As the agent’s intentions are progressed, the time required
to select an action decreases, as there are fewer actions in the
interleaving.)

As SAU is an anytime algorithm, the computational over-
head can be reduced by reducing the value of α and β. In
addition, in a static environment, the existing search tree can
be reused to improve the efficiency of SAU , however this is
future work.

5 Related Work
There is a body of work on modelling uncertainty in BDI
languages, for example [Schut et al., 2001; Kwisthout and
Dastani, 2005; Fagundes et al., 2009; Silva and Gluz, 2011;
Casali et al., 2011; Ma et al., 2014; Bauters et al., 2014;
Coelho and Nogueira, 2015]. In some approaches, Bayesian
or Dempster-Shafer probabilities are included in the agent’s
belief base, e.g., [Kwisthout and Dastani, 2005; Silva and
Gluz, 2011], while other approaches separate the symbolic
BDI cycle from the Bayesian update of percepts (where the
update function uses HMM internally but returns the most
probable percept as a symbolic element of belief base). How-
ever none of this work has addressed the problem of intention
progression under uncertainty.

MCTS with imperfect information has been mostly ex-
plored in the context of games where imperfect information
arises from uncertainty about the opponent’s actions, e.g.,

[Bitan and Kraus, 2018; Browne et al., 2012]. This differs
from our setting, where there is no adversarial opponent and
the uncertainty arises from incomplete information about the
current state of the environment. MCTS has also been ap-
plied in domains with non-deterministic actions. In such set-
tings, determinisation and sampling possible outcomes of de-
terminised actions is often used. As in our approach, nodes
may have several children corresponding to the same move
[Bjarnason et al., 2009], however selection of child nodes
is random and does not depend on probability values. An-
other approach to dealing with uncertainty in MCTS is based
on information sets [Whitehouse et al., 2011]; however such
approaches fail to outperform approaches using determinisa-
tion [Browne et al., 2012]. Bayesian approaches to MCTS
[Tesauro et al., 2010] have also been proposed.

6 Conclusion and Future Work
In this paper we presented SAU , an MCTS-based solver for
intention progression problems where the agent’s beliefs are
uncertain. We evaluated the performance of SAU in both
static and dynamic environments using sets of randomly-
generated, synthetic goal-plan trees. Our preliminary results
suggest that the performance of SAU is close to that of per-
fect information SA if the error in beliefs is small, and perfor-
mance degrades gracefully as the error in the agent’s beliefs
increases. However, even where there is significant uncer-
tainty in the agent’s beliefs, SAU still outperforms RR and
FIFO in terms of the number of goals achieved.

One limitation of SAU is that it doesn’t consider nondeter-
ministic actions which have several possible outcomes as in
[Yao et al., 2016]. In addition to an action failing when its
preconditions do not hold, an action may fail if it achieves an
undesired postcondition. However, we believe it is straight-
forward to extend SAU to deal with nondeterministic actions
by increasing the number of states in an MCTS node. An-
other limitation of SAU is that it assumes the environment is
static, i.e., it does not consider the evolution of the environ-
ment when building the search tree. Another potential direc-
tion for future work is to incorporate a simple environment
model into the current solver to allow the prediction of likely
environment changes in the expansion and simulation phases.
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