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Abstract

We present a formal framework that allows indi-
vidual and group of agents to reason about their
trust toward other agents. In particular, we pro-
pose a branching time temporal logic BT which in-
cludes operators that express the concepts of every-
one trust, distributed trust and propagated trust. We
analyze the satisfiability and model checking prob-
lems of this logic using a reduction technique.

1

Trust is a crucial basis for the development of effective
Multi-Agent System (MAS) applications. It has been ex-
tensively addressed in many research contexts (e.g., peer-
to-peer networks and grid computing). These researches
are mainly placed under two major streams: trust compu-
tational models and logical trust formalization. The former
measures the value of trust to compute the strength level in
which an agent trusts other agents in order to establish fu-
ture interactions [Wahab et al., 2018; Sardana et al., 2018;
Nayak et al., 2019]. In this stream, trust was first formalized
as a measurable concept in [Marsh, 1994]. Following this
work, a number of trust models have been put forward and
several proposals investigated trust propagation [Jamali and
Ester, 2010; Chakraborty and Karform, 2012]. On the other
hand, the latter deals with how one agent in the system can
trust that another agent behaves and will perform an action
in a certain way [Singh, 2011; Primiero and Raimondi, 2014;
Primiero, 2016; Liu and Lorini, 2017; Drawel et al., 2020].
Trust is a complex concept that is hard to be precisely de-
fined. Different meanings of trust have been given in var-
ious domains. In the context of MASs, [Castelfranchi and
Falcone, 1998] defined trust as mental attitudes of the truster
who believes that the trustee is capable to act and achieve a
given goal. From logical point of view, modal logics have
been used to reason about cognitive aspects of trust by many
researchers. For instance, in [Herzig er al., 2012], the au-
thors proposed a logical framework for the concept of trust
where trust is basically expressed as a combination of differ-
ent modalities based on the logic of action and time [Harel et
al., 2000] and the BDI logic [Cohen and Levesque, 1990]. In
[Liu and Lorini, 20171, the authors presented a new dynamic
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logic called DL-BET for reasoning about the interaction be-
tween belief, evidence and trust. Huang et al. [Huang et al.,
2019] considered the setting of stochastic multi-agent sys-
tems, where an automated verification framework for quanti-
fying and reasoning about cognitive trust is proposed. More-
over, some proposals have abstracted from the cognitive
stance and presented trust as a direct modality. In [Drawel et
al., 20201, a new branching temporal logic of preconditional
trust, which extends the Computation Tree Logic (CTL) is
introduced along with its model checking technique. [Singh,
2011] provided a formal semantics for trust with various logi-
cal postulates used to reason about trust from an architectural
perspective. However, most of these approaches focus solely
on individual trust that defines trust as a relationship that only
involves two agents and is not propagated to other agents.

In this paper, we are interested in trust that goes beyond
individuals where one individual agent trusts another agent,
toward a group trust where a group of agents trusts a partic-
ular agent. We aim to capture the concepts of everyone trust
and distributed trust toward a particular agent. Everyone trust
is when all the members of the group agree on trusting an-
other agent. Distributed trust is when the trust is distributed
among the members of the group. We are also interested in
trust that can propagate through the MAS from one agent to
another. We are considering these two concepts from the log-
ical perspective, in particular formalization, model checking
and satisfiability problems.

A branching temporal logic extending CTL has been in-
troduced to reason about trust and time in MASs [Drawel
et al., 2017; Drawel er al., 2020]. This logic, called TCTL
provides an interesting framework to reason about individual
trust. However, we will show in this paper that this logic can-
not be extended to accommodate group and propagated trust
because of its limited expressive power. The logic fails to ap-
propriately represent nested trust formulae. We will present a
branching time temporal logic named BT that refines TCTL
while being expressive enough to go beyond individual trust
and include operators that express the concepts of everyone
trust, distributed trust and propagated trust. Moreover, we
will analyze the model checking and satisfiability problems
of this logic using a sound reduction technique.

The paper is organized as follows. We first present the syn-
tax and semantics of TCTL and discuss its limitation in Sec-
tion 2. In Section 3, we introduce the Branching Trust Logic



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

(BT). The model checking and satisfiability problems of BT
are addressed using a transformation procedure in Section 4.
The complexity of these problems is analyzed in Section 5.
In Section 6, we present the experimental results. We end by
concluding the paper in Section 7.

2 Trust Computational Temporal Logic

2.1 Preliminaries

The semantics of TCTL formulae is interpreted using a model
generated from the extended Interpreted System formalism
introduced in [Drawel et al., 2017]. This formalism includes
the notion of agents’ vector v to account for the interaction
that occurs during the execution of MAS. That is, for all states
s,s’ € Sandi,j € Agt, a vector of size n is associated
with each local state [; € L; of the n agents. The vector
v is used to define the trust accessibility relation ~; ;. The
idea is, the relation ~; ; relates the states that are considered
to be trustful from the vision of agent ¢ with regard to agent
7 Speciﬁcally, this is obtained by comparing the element
v%(4) in the local state [; at the global state s (denoted by
1i(s)(v*(j))) with " () in the local state [; at the global state
s’ (denoted by 1;(s")(¢*(5))). Thus, the trust accessibility of
agent ¢ toward agent j does exist between two global states
only if the element value that we have for agent j in the vector
of the local states of agent ¢ for both global states is the same.

Definition 1 (Model of TCTL). A model of trust is a tuple
M, = (S, IR, {Ni,j |(’L,]) S Ath}, V)

where: S is a non-empty set of reachable global states for the
system; I C S is a set of initial global states for the system;
R C S x S is the transition relation; ~;; C S x S is the
direct trust accessibility relation for each truster-trustee pair
of agents (i, j) € Agt2 defined by ~; ; iff: (1) Li(s)(V'(j)) =
1;(s")(v'"(4)) and (2) s’ is reachable from s using transitions
from the transition relation R; V : S — 247 is a labeling
Sfunction, where AP is a set of propositional variables.

Definition 2 (Syntax of TCTL). The syntax of TCTL is de-
fined recursively as follows:

pu=plopleVel| EXe|EGe| E(eUy) [ T(ij, ¢)
The CTL fragment formulae are defined as usual (see

[Emerson, 1990]). The formula T'(i, j, ) called trust for-
mula is read as “agent ¢ trusts agent j to bring about ¢”.

Definition 3 (Semantics of TCTL). Given the model My, the
satisfaction of a TCTL formula o in a global state s, denoted
as (M, s) = ¢, is recursively defined. The semantics of the
CTL fragment is as usual [Emerson, 1990]. The semantics of
the operator T is as follows:

(M, s) = T(,j,p) iff s E —p and Vs’ # s such that
s~ s we have (My,s") = .

The state formula 7'(i, j, ) is satisfied in the model M; at
s iff ¢ does not hold in s and all the trust accessible states s’
that are different from the current state satisfy the content .

2.2 Discussion

Although TCTL has been presented with interesting reason-
ing postulates [Drawel et al., 2017; Drawel et al., 2020], a

deep analysis of this logic reveals a major paradox resulted
from the underlying assumption that complies with the first
postulate in [Singh, 2011] stating that “when the content
holds, the trust in this content is completed and is, therefore,
no longer active”. Indeed, enforcing the condition - to be
satisfied in the current state s for the trust to take place yields
the following paradoxical postulate:
T(i, g, ) = T, 5, T (i, 5, ¢))

which means if ¢ trusts j about ¢, then ¢ trusts this agent
that the first trust does not hold. The proof is straightforward
since all accessible states satisfy —7'(4, j, ¢) because of the
satisfaction of ¢ and the current state satisfies T'(4, j, ).

Therefore, this logic is not suitable to reason about trust
properties that need nested trust formulae to hold. We present
then a refined logic that does not have this postulate, so it can
express nested formulae needed for propagated trust, every-
one trust and distributed trust. In this logic, tautologies are
trusted, but this is less important in practical scenarios.

3 Branching Trust Logic (BT)

Definition 4 (Syntax of BT). Ler G C Agt be a group of
agents and p a propositional variable from the set AP,. The
syntax of BT is defined recursively as follows:
pu=p|pleVe| EXe | EGp| E(pUp) | T
T = T(Z7j7 ()0) ‘ ET(ija (,0) | DT(Gaj7 @)l
PT(ia j7 90)

The formula T represents trust and three notions of group
and propagated trust: Ep, Dp, and Pp. The formula Ep
refers to “Everyone trusts” and means that everyone in the
group G trusts agent j to bring about ¢. Technically, “Every-
one trusts” can be seen as the conjunction of the individual
trust of each agent in the group. Moreover, D denotes "Dis-
tributed trust”. That is, a group has its trust distributed among
its member agents. Propagated trust Pr indicates that a
new trust relationship can be derived from preexisting agent’s
trust. BT formulae are evaluated over an extended Interpreted
System My, = (S, Iy, Ry, {~i; (i, j) € Agt?}, V}), which
is the same as M;.

The semantics of group and propagated trust is defined us-
ing new accessibility relations derived from the trust accessi-
bility relation as follows.

Definition 5 (Group/Propagation Accessibility Relations).
The group and propagation accessibility relations are:

— Ng Uicg ~i,j» i-e., the union of the trust accessibil-
ity relatlons between every agent of the group G and the
agent j.

— Ngj: Nice ~ij » i-e., is the intersection of the trust
accessibility relations between every agent in the group

G and the agent j.
- s ~F j s’ iff  there are  agents
. . ’
Tlyeveybn_1 and states S1y+vvySn_1 s.t.
/
S i 815,811,952y« + +y Sn—1" i, 1,55 -

Definition 6 (Satisfaction). Given the model My, the seman-
tics of trust and group trust operators is recursively defined
as follows:
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(My, s) = T(i,j,¢) iff Vs' # s such that s ~; ; s, we
have (My, s') = .

(My,s) = E7(G, j, ) iff Vs’ # s such that s Ng}j s, we
have (My, ') = .

(My, s) = D1 (G, j, ) iff Vs' # s such that s ~§ ; &', we
have (My, s') = .

(My, s) E Pr(i,j, @) iff Vs’ # s such that s ij s, we
have (My, ') = .

The following reasoning postulates hold in BT:
(i, 31, T(jr, g2, ) = Pr(i, j2, )
Pr(i,j1,T(j1, j2, ) = Pr(i, j2, ¢)

T'(i, j1, Pr(ji, j2. 0)) = Pr(i, j2, ¢)

Pr(i, ji, Pr(j1, j2,¢)) = Pr(i, j2, )

T'(ir, J,0) NT(i2, j, 0 = ¥) = Dr({i1, iz}, j, ¥)

\/GT(Z7J’ SD) = DT(Gaj7 SO)
1€

Er(G,j,¢) & 4/\(; T(i, j, ¢)
1€

AN

7.

The first four postulates capture the trust propagation
among agents in one step (1st postulate) or many steps. The
5th and 6th postulates capture the properties of the distributed
trust among the group members. The 7th postulate shows the
everyone trust property.

4 Transformation Procedure

To address the model checking and satisfiability problems of
BT, we introduce a transformation procedure [El-Menshawy
et al., 2010] that allows us to leverage the model check-
ing and satisfiability procedures of CTL [Emerson, 1990;
Emerson and Halpern, 1985]. A transformation from TCTL
model checking to CTL model checking has been attempted
in [Drawel et al., 2018]. However, this approach does not
capture the alignments between source and target models,
which results in unsound transformations. Technically, the
transformation algorithms for both the model and formulae
overlook some critical cases. More precisely, the technique
provided for the model consists of adding transitions to repre-
sent the accessibility relations, and so, it does not distinguish
between original transitions in the original TCTL model and
the transitions added in the CTL model. It turns out that
some formulae with temporal operators £X and U become
true in the transformed CTL model while they are false in
the original TCTL model. Our procedure avoids these prob-
lems by capturing accessibility relations through distinguish-
able states and transitions using atomic propositions added in
the transformed CTL formulae.

4.1 From BT Model to CTL Model

In this section, we start by recalling the definition of the CTL
model needed for the transformation algorithm.
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Definition 7 (Model of CTL). A CTL formula is interpreted
over a Kripke structure M. = (S¢, Re, I, V.), where: S, is
a non-empty set of states for the system; R, C S, X S, is the
transition relation; I, C S, is a set of possible initial global
states for the system; and V, : S. — 2% is a labeling
function that maps each state to the set of CTL propositional
variables AP, holding in it.

Having presented the CTL model, the next step is to es-
tablish our transformation procedure. Given a BT model
My = (Sp, Ry, I, {~i; |(i,§) € Agt®},V4), Algorithm 1
shows how this model, taken as input, is transformed into a
CTL model M, = (S¢, R, I.,V.) as output. Initially, the
output model M, has the same set of system states, initial
states, transitions and valuation function as M, (i.e., S. = Sp;
I. = I; R, = Rp; and V, = V}). Thus, at the beginning, the
states of M, are labeled with the same propositional variables
as the states in M},. We define a new set of fresh propositional
variables Prop for the CTL logic needed to represent the trust
accessibility relations to capture the semantics of trust oper-
ators. Moreover, we define a new atomic proposition  for
CTL that will be used to preserve the actual temporal transi-
tion relation by distinguishing the added states and transitions
from the original ones in Mj,. The set AP, is then defined as
the set AP, augmented with x and the propositional variables
a', afi oPi and of7 for the individual, group, and prop-
agated trust accessibility relations for all the agents 7, j and
groups G. The algorithm proceeds to transform the trust ac-
cessibility relations for all the agents. First, it checks if there
is an accessibility relation between each pair of distinct states
s and s’. Based on the type of all the possible accessibility
relations, it assigns a specific propositional variable to the set
Prop. A new state s” is added to the set of system states
S. along with new transitions from s to s” and from s” to
s’ in R.. Further, the new state s” is labeled with x and the
atomic propositions in the set Prop in order to distinguish
the states that are accessible from any other next state that
satisfies the trust formulae without having accessibility to the
current state. However, to avoid adding many states for dif-
ferent accessibility relations between the same two states, the
algorithm checks if s” is already added for another accessibil-
ity relation. If s” already exists, the algorithm will only add
the atomic propositions Prop to mark the accessible state for
any other interacting agents. Finally, the algorithm returns the
transformed model M, after iterating over all the transitions.

Proposition 1 (Boundedness of Model Transformation).
Let M, be the model obtained from My, using Algorithm I
and |M.| and |My| be the size of M. and M, respectively.
| M| < 3| M|

Proof. Let |Ap| be the number of accessibility relations in
My, ie., |Ap] = |{~; |(i,5) € Agt®}|. We have: |M.| =
|Sc| + |R.| and |Mp| = |Sp| + |Rs| + |Ap|. In the worst
case, each pair of distinct states (s,s’) € Ry is connected
by exactly one accessibility relation. Since each accessibility
relation is translated into one state and two transitions in M.,
we obtain: |M.| = |Sy| + |Rs| + 3| As|. In the general case,
more than one accessible state might exist between each pair
of states. Since the other accessibility relations benefit from
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Algorithm 1 Transform M, = (Sp, Ry, Iy, ~i; |(i,7) €
Agt?},Vp) into M. = (S, I, Re, Vy)
11 S = Sp; Ic :=Ip; Re = Ry; Ve := Vs
2: for each (s, s') € SZ s.t. s’ # sand all i, j, G do
3: Prop := 0;
: if s ~; ; s’ then Prop := PropU{a%};

4
5 if s Ngyj s’ then Prop := Prop U {a®7};

6: if s Ng,j s’ then Prop := Prop U {aP7};

7 if s ~/; s then Prop := PropU{a"7};

8 if3Js” st (s,8”),(s",s') € R.and x € V.(s") then
9: Ve(s") :== V.(s") U Prop;

10:  else

11: Se =S, U{s"}; R.:= R, U{(s,5"),(s",5)};

12: Ve(s") :={x} U Prop;
13:  endif
14: end for

15: return M,

the already added states and transitions, we obtain: |M,.| <
|Ss| + |Rs| + 3| Ap|. The result then follows.

4.2 From BT Formulae to CTL Formulae

Algorithm 2 illustrates the formulae transformation function
defined over the structure of the original BT formula. The
function is recursive with the propositional variables of AP,
being the base case (AP, C AP,). For the temporal opera-
tors, we need to make sure that the transformation does not
affect the CTL semantics. That is, since a new state and new
transitions are added to the corresponding model M., we have
to make sure that the path through which a formula is satisfied
in the original model M, is still satisfied in the corresponding
path of the translated model M. Indeed, this is the main rea-
son behind the conjunction of —y for the temporal operators.
This allows us to exclude the additional state and transitions
when we consider the satisfaction of the formulae. For in-
stance, the formula £ X ¢ is transformed into a CTL formula
stating that there exist a path in the next state where the trans-
formation of ¢ and the negation of the atomic proposition
x (added to represent the temporal transition) is true in this
state. For the trust, group trust, and propagated trust modal-
ities, each formula is transformed inductively into CTL ac-
cording to the defined semantics as follows: along each path,
if the next state on that path satisfies the corresponding atomic
proposition (from the set Prop), then the next state of the
added state also satisfies the transformation of the trust con-
tent . The state that satisfies the fresh propositional variable
is the added state to capture the corresponding accessibility,
which explains the double use of AX.

Proposition 2 (Boundedness of Formula Transformation).
Let ¢ be a BT formula and f the transformation function
defined in Algorithm 2. There exists a constant k such that
|f ()| < k||, where || is the length of .

Proof. The proof is by induction on the structure of the for-
mula.

e The result holds for the base case (atomic propositions).
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Algorithm 2 Transform BT formula ¢ into CTL formula
f(e)

o) = EG(f(¢) A—x):
f(T(,j,0) = AX (2 — AXf(p));
fET(G7j7 90) = AX(aEJ, — AXf(SD))’
fD1(G, j,¢) = AX (aPT — AX f(p));
FPr(i,j,0) = AX ("7 — AX f(p));

PYRIIUN R LD

—_

o For the formula ¢ = —, we have | f(¢)| = |f(p)| + 1.
Therefore, by assumption that the proposition holds for
the formula ¢, 3k; such that |f(¢)| < k1]¢| + 1. Since

ol <|¢l, and |¢| > 1, we get [f(¢)| < (k1 + 1)[4], so
the proposition.

e For the formula ¢ = EXp, we have |f(¢)| = |f(¢)] +
4. Therefore, by assumption that the proposition holds
for the formula o, 3k; such that |f(d)| < ki|o| + 4.
Since || <|¢|, and || > 1, we get |f(@)] < (k1 +
4)|¢|, so the proposition. The proof for EG is similar.

e For the formula ¢ = E(¢ U 1), we have |f(¢)] =
|f(©)]+]f(10)| 4 7. Thus. by assumption that the propo-
sition holds for the formulae ¢ and v, 3k, ko such that
F(0)] < kil + ol +7. Because o] <I6], 4] <6,
and |¢| > 1, we obtain | f(¢)| < (k1 + k2 + 7)|¢|. The
proof for ¢ V ¢ is similar (k = k1 + ko + 1).

e For the formula ¢ = T'(4, j, ), we have f(T'(i, j,¢)) =
AX (o — AX f(p)). Thus, |f(6)] =If(p)| + 4 and
by assumption that the proposition holds for the formula
¢, Jkq such that | f(¢)| < k1]p|+4. Since |p| <|¢|, and
|p| > 1, we get |f(¢)] < (k1+4)|], so the proposition.
The proof is similar for the group and propagated trust
formulae Ep, D7, and Pyp. 0

Model Checking

Given a BT model M, representing a MAS and a BT formula
© describing the property that the model M, has to satisfy,
the problem of model checking BT is the problem of verify-
ing whether or not M} |= ¢. The introduced transformation
procedure provides a solution to this problem, by simply call-
ing the model checking procedures of CTL as stated by the
following theorem.

Theorem 1 (BT Model Checking). Let My, and p be respec-
tively a BT model and formula and let f(My) and f(p) be the
CTL model and formula obtained via Algorithms 1 and 2. We

have (My, s) = @ iff (f(My), s) = f(@).

Proof. We prove this theorem by induction on the structure
of the formula ¢.

e For the propositional variables from the set AP, the re-
sult is straightforward (notice that AP, C AP,). The re-
sult is also direct for the negation and disjunction cases.
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e For the formula ¢ = EXp, we have (M, s) = EXp
iff there exists an immediate successor to s where ¢
holds. Consequently, from the definition of f(M})
and f(¢), we obtain (My,s) = EXgp iff (M., s) E
EX(f(p) A —x). That is, we are excluding the new
added path as this path will never be considered because
next state (the added state) has x and we are forcing —.

e For the formula ¢ = E(p U 1), and from the definition
of f, (f(p) A=x) U(f(x)) A —x) captures the seman-
tics of Until in CTL which states the existence of a path
starting in the current state that satisfies (o A =) until
reaching a state in which (¢» A —x) holds, where only
original temporal transitions are considered.

e The trust formula: T'(i,4,). AX(a¥ — AXf(p))
captures the semantics of the trust formula where all ac-
cessible states (those satisfying o/ in M..) should satisfy
(. The proof is similar for the group and propagated
trust formulae.

O

Satisfiability

Given a BT formula ¢, the satisfiability of BT is the problem
of deciding if there exists a model M, such that M, = ¢. As
for model checking problem, the transformation procedure
provides also a solution for the BT satisfiability problem.

Theorem 2 (BT Satisfiability). Let ¢ be a BT formula and
f () the CTL formula obtained via Algorithm 2. We have
is satisfiable iff () is satisfiable.

Proof. The right implication is direct from Theorem 1 be-
cause if there is a model M, satisfying ¢, then f (M) that sat-
isfies f(p) does exist. For the left implication, we can prove
by induction on the structure of the formula that if there is a
model M, that satisfies f(¢), we can always find a model M,
that satisfies the same formula where states satisfying fresh
propositional variables from AP. \ AP, do not satisfy any
other non-fresh propositional variable from AP,. From M
we can construct a model M, s.t. f(M) = M. O

S Complexity Analysis

In this section, we will first analyze the time complexity of
model checking BT with regard to the size of the explicit
model M, and length of the formula to be checked. Since
we are using symbolic model checking of CTL, we will also
analyze the space complexity of model checking BT for con-
current programs [Kupferman et al., 2000] with respect to
the size of the components of these programs and length of
the formula. The complexity of the BT satisfiability problem
will end this section.

As our approach is transformation-based, we start by an-
alyzing the time complexity of transforming the BT model
and formula with respect to explicit models, where all states
and transitions are enumerated. Specifically, we prove that
these two transformations are linear with respect to both the
input BT model and the formula. The linear complexity of
these two transformations entails the P-completeness of the
BT model checking problem in explicit models. Given that,
we proceed to analyze the space complexity of the BT model
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checking problem and prove its PSPACE-completeness with
respect to concurrent programs where the model has the form
of a synchronized product of agent programs. Indeed, our
motivation behind considering the complexity of our model
checking procedure for concurrent programs that provide
compact representations of the systems to be checked is that
in practice, existing model checking tools (e.g., MCMAS and
NuSMYV) do not support explicit representations where states
and transitions are listed explicitly (as Kripke-like structures).
In fact, only local states and transitions of each component
are represented. Therefore, the actual system can still be rep-
resented by combining local states and transitions to build
reachable states.

51

In this subsection, we will prove that model checking BT in
explicit models is P-complete, so it can be done in a polyno-
mial running time with respect to the size of the model and
length of the formula.

Theorem 3 (Explicit BT Model Checking: Upper Bound).
The BT model checking problem can be solved in time
O(|My] x |¢])-

Model Checking Time Complexity

Proof. BT can be reduced to CTL, and it is known from
[Clarke erf al., 1999] that CTL model checking can be done
in a linear time with respect to the size of the CTL model
and formula, i.e., O(| f(My)| % | f(¢)]). From Proposition 1,
|f(Mp)] < 3|Mp|, i.e., the size of f(Mp) is linear with the
size of My,. Moreover, from Proposition 2, the length of f ()
is linear with the length of (. Indeed, Algorithm 2 takes the
BT formula ¢ as input and writes in a recursion manner the
corresponding CTL formula according to the structure of ¢.
The time complexity of transforming the BT formula is linear
with respect to the length of the input formula . This follows
from the fact that (1) the length of the recursion is bounded
by the size of the input formula ¢, and (2) the size of f(¢p) is
bounded by the size of ¢, so the theorem. O

Theorem 4 (Explicit BT Model Checking: Completeness).
The problem of BT model checking is P-complete.

Proof. Membership (i.e., upper bound) in P follows from
Theorem 3. Hardness (i.e., lower bound) in P is a result of
the polynomial reduction from model checking CTL proved
to be P-complete [Schnoebelen, 2002]. O

5.2 Model Checking Space Complexity

In this subsection, we will prove that the complexity of
BT model checking for concurrent programs is PSPACE-
complete. This result means that there is an algorithm solving
the problem in polynomial space in the size of the compo-
nents constituting concurrent programs and the length of the
formula being model checked.

Theorem 5 (Polynomial Reduction of BT Model Check-
ing: Upper Bound). Let T, denote the polynomial-space
reduction. The problem of model checking BT can be re-
duced into the problem of model checking CTL in a polyno-
mial space, i.e., MC(BT) C,s MC(CTL).



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Proof. The transformation of the BT model and BT formula
into the corresponding CTL model and formula could be
computed by a deterministic Turing Machine (7'M ) in space
O(log n) where n is the size of the input BT model, and poly-
nomial space w.r.t. the length of the BT formula. For the
model, 7'M reads in the input tape a model of BT and pro-
duces in the output tape, one-by-one, the same states includ-
ing the initial ones and the same valuations. Then, for the
transitions (s, s’) in the input model, it writes one-by-one,
the transitions in the set R.. It also reads the accessibility re-
lations ~; ; between two given states in the input model one-
by-one and for each one, it adds an intermediate state to the
set S, labeled with two fresh propositional variables: 1) o/
that depends on the accessibility relation, and 2) x, along with
two transitions if such a state does not already exist; other-
wise, only the propositional variable o/ is added. The group
and propagated accessibility relations are done in the same
way. All these writing operations are clearly logarithmic in
space because this transformation is done on-the-fly, step-by-
step. Moreover, we showed in Proposition 2 that any BT for-
mula is transformable into a CTL formula whose length is
linearly bounded by the length of the input formula. All these
recursive transformations are clearly polynomial space in the
length of the input formula, so the theorem. O

Theorem 6 (BT Model Checking for Concurrent Pro-
grams: Completeness). The space complexity of the
BT model checking for concurrent programs is PSPACE-
complete with respect to the size of the components of these
programs and the length of the formula.

Proof. Since model checking CTL is PSPACE-complete for
concurrent programs [Schnoebelen, 2002], the lower bound
of model checking BT is PSPACE as well. In fact, BT sub-
sumes CTL as it integrates the CTL modalities and the trust
modalities. The upper bound in PSPACE follows from Theo-
rem 5, so the result. O

5.3 Satisfiability Complexity

Theorem 7 (BT Satisfiability: Completeness). The BT sat-
isfiability problem is EXPTIME-complete.

Proof. Membership. Using the result of Theorem 2, we can
imagine an EXPTIME algorithm that solves the BT satisfi-
ability problem as follows: 1) Transform the input BT for-
mula ¢ to the CTL formula f(y) using Algorithm 2. As
mentioned in the proof of Theorem 3, this can be done in a
linear time; 2) Call the algorithm to solve the satisfiability of
f () which can be done in EXPTIME [Emerson and Halpern,
1985]. Hardness. The hardness follows from the fact that BT
subsumes CTL proven to be EXPTIME-complete [Emerson
and Halpern, 1985]. O

6 Implementation and Experimental Results

To support the modeling and verification of BT logic for
MASs, we implemented the transformation procedure and de-
veloped a tool that automatically: (i) transforms a given BT
model and formulae to a valid CTL model and formulae; (ii)
interacts with the NuSMV model checker in order to perform
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Agents# States# Time (sec.) Memory (MB)

3 5 0.0105 0.22

6 25 0.0112 1.50

9 110 0.0163 3.73

12 550 0.0165 5.02

15 2750 0.0638 16.80

18 13750 0.0864 38.90

30 7.21875e+006 0.2615 640.44

33 2.44141e+008 0.4076 848.05

66 2.38419e+015  1841.0002 2,377.50

Table 1: Verification results up to 66 agents

the verification process. For testing, we used the well-known
ordering protocol that regulates the interaction between seller
and buyer agents introduced in [Desai et al., 2005]. Our mo-
tivation is to formalize the protocol requirements using BT
model M, and by expressing a set of properties in BT logic in
order to assess the scalability of our technique. We expressed
a set of group and propagated trust properties. For example,
the formula EF Er (Group, Seller, EF DeliverGoods),
checks whether or not there exists a possibility that every
member in the group trusts the seller for delivering the re-
quested goods. We measured the transformation times of
the models and formulae along with the verification time in
seconds and memory usage in megabyte when running on a
machine Intel(R) Core(TM) i7-6700 CPU - 3.40GHZ with
16 GB memory. We run our experiments with a number of
agents ranging from 3 to 66. We considered different num-
bers of agents to achieve different levels of scalability that
makes the problem complex enough to observe significant re-
sults. The verification results in Table1 reveal that the number
of reachable states reflecting the size of the model increases
exponentially with the number of agents, while the space in-
crease is only polynomial. This confirms the PSPACE com-
plexity result. Moreover, the execution time (i.e., the transfor-
mation time of both the models and formulae, and the time of
the verification process) shows a clear polynomial increase
up to 33 agents. After 33, the increase rate is much higher
but still polynomial with the number of states, which is inline
with the fact that PSPACE=APTIME.

7 Conclusion

The main contributions of the paper are: (1) a new logical lan-
guage that allows us to express individual, group and propa-
gated trust; (2) a sound transformation procedure that pro-
vides a solution of the model checking and satisfiability prob-
lems of the logic, along with their complexity analysis. The
procedure has been fully implemented and the experiments
conducted on a large case study reaching 2.38419¢el5 states
confirmed the theoretical results. For future work, we plan
to tackle the run-time verification to investigate the dynamic
changes of agents’ behavior and their impact on group trust.
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