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Abstract
In the multidimensional stable roommate problem,
agents have to be allocated to rooms and have
preferences over sets of potential roommates. We
study the complexity of finding good allocations of
agents to rooms under the assumption that agents
have diversity preferences [Bredereck et al., 2019]:
each agent belongs to one of the two types (e.g.,
juniors and seniors, artists and engineers), and
agents’ preferences over rooms depend solely on
the fraction of agents of their own type among their
potential roommates. We consider various solution
concepts for this setting, such as core and exchange
stability, Pareto optimality and envy-freeness. On
the negative side, we prove that envy-free, core sta-
ble or (strongly) exchange stable outcomes may fail
to exist and that the associated decision problems
are NP-complete. On the positive side, we show
that these problems are in FPT with respect to the
room size, which is not the case for the general sta-
ble roommate problem.

1 Introduction
Alice and Bob are planning their wedding. They have agreed
on the gift registry and the music to be played, but they still
need to decide on the seating plan for the wedding reception.
They expect 120 guests, and the reception venue has 20 ta-
bles, with each table seating 6 guests. However, this task is far
from being easy: e.g., Alice’s great-aunt does not get along
with Bob’s family and prefers not to share the table with any
of them; on the contrary, Bob’s younger brother is keen to
meet Alice’s family and would be upset if he were stuck with
his relatives. After spending an evening trying to find a seat-
ing plan that would keep everyone happy, Alice and Bob are
on the brink of canceling the wedding altogether.

Bob’s friend Charlie wonders if the hapless couple may
benefit from consulting the literature on the stable roommate
problem. In this problem, the goal is to find a stable assign-
ment of 2n agents into n rooms of size 2, where every agent
∗An extended abstract of this paper appears in the proceedings

of AAMAS’20.
†Most of this research was done when the first author was an

MSc student at the University of Oxford.

has a preference relation over her possible roommates. The
most popular notion of stability in this context is core stabil-
ity: no two agents should strictly prefer each other to their
current roommate. Another relevant notion is exchange sta-
bility: no two agents should want to swap their places. How-
ever, for the stable roommate problem, neither core stable
nor exchange stable outcomes are guaranteed to exist. Fur-
ther, while Irving [1985] proved that it is possible to decide
in time linear in the size of the input if an instance of the
roommate problem with strict preferences admits a core sta-
ble outcome, many other algorithmic problems for core and
exchange stability are computationally hard [Cechlárová and
Manlove, 2005; Ronn, 1990]. For the s-dimensional stable
roommate problem, where each room has size s and agents
have preferences over all s− 1-subsets of agents as their po-
tential roommates, even the core non-emptiness problem for
strict preferences is NP-complete for s ≥ 3 [Huang, 2007;
Ng and Hirschberg, 1991].

However, Charlie then notes that Alice and Bob’s prob-
lem has additional structure: the invitees can be classified as
bride’s family or groom’s family, and it appears that all con-
straints on seating arrangements can be expressed in terms
of this classification: each person only has preferences over
the ratio of groom’s relatives and bride’s relatives at her table.
Thus, the problem in question is closely related to hedonic di-
versity games, recently introduced by Bredereck et al. [2019].
These are coalition formation games where agents have diver-
sity preferences, i.e., they are partitioned into two groups (say,
red and blue), and every agent is indifferent among coalitions
with the same ratio of red and blue agents. However, positive
results for hedonic diversity games are not directly applica-
ble to the roommate setting: in hedonic games, agents form
groups of varying sizes, while the wedding guests have to be
split into groups of six.

In this paper, we investigate the multidimensional stable
roommate problem (for arbitrary room size s) with diversity
preferences; we refer to the resulting problem as the room-
mate diversity problem. This model captures important as-
pects of several real-world group formation scenarios, such
as flat-sharing, splitting students into teams for group projects
and seating arrangements at important events. We consider
common solution concepts from the literature on the stable
roommate problem; for each solution concept, we analyze the
complexity of checking if a given outcome is a valid solution,
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whether the set of solutions is guaranteed to be non-empty,
and, if not, how hard it is to check if an instance admits a
solution as well as to compute a solution if it exists.

1.1 Our Contribution
We show that for room size two, every instance admits an
outcome that is core stable, exchange stable and Pareto opti-
mal. For s > 2, we provide counterexamples showing that
core stable, exchange stable or envy-free outcomes may fail
to exist. We also prove that for core stability, strong exchange
stability and envy-freeness the existence questions are com-
putationally hard; for Pareto optimality, we show that it is not
only hard to find a Pareto optimal outcome, but also to verify
whether a given outcome is Pareto optimal. We provide an
overview of our results in Table 1.

On the positive side, we show that all existence questions
we consider are in FPT with respect to the room size. To the
best of our knowledge, apart from some work on the multidi-
mensional stable roommate problem with cyclic preferences
[Hofbauer, 2016], this is one of the first positive results for
the multidimensional stable roommate problem. Thus, the
roommate diversity problem offers an attractive combination
of expressive power and computational tractability.

1.2 Related Work
The stable roommate problem was proposed by Gale and
Shapley [1962]. While Irving [1985] proved that it is pos-
sible to check in time linear in the input whether a room-
mate problem admits a core stable outcome if the preferences
are restricted to be strict, Ronn [1990] showed that this prob-
lem becomes NP-complete if ties in the preference relations
are allowed. As in practice a group deviation usually re-
quires some regrouping, Alcalde [1994] initiated the study
of local stability notions that do not require reallocating non-
deviating agents, by introducing the notion of exchange sta-
bility. Subsequently, Cechlárová and Manlove [2005] proved
that it is NP-complete to decide whether an instance of the
stable roommate problem with strict preferences admits an
exchange stable outcome. Another concept that is relevant
for the roommate problem is Pareto optimality [Abraham
et al., 2005; Cseh et al., 2019; Sotomayor, 2011]. Mor-
rill [2010] proved that for room size two it is possible to
check if a given outcome is Pareto optimal, and to find
a Pareto improvement if it exists, in time quadratic in the
number of agents. This implies that a Pareto optimal out-
come can be found in polynomial time. Researchers have
also considered various notions of fairness in the context of
the roommate problem [Abdulkadiroğlu and Sönmez, 2003;
Aziz and Klaus, 2019]. One such notion is envy-freeness: an
outcome is said to be envy-free if no agent wants to take the
place of another agent.

While much of the work on the stable roommate prob-
lem focuses on the case s = 2, there are a few papers
that consider the three-dimensional stable roommate problem
[Huang, 2007; Ng and Hirschberg, 1991]. For different pos-
sible definitions of the agents’ preferences, it is NP-complete
to decide whether an instance with strict preferences admits
a core stable outcome [Huang, 2007; Iwama et al., 2007;
Ng and Hirschberg, 1991]. For this reason, despite its

great practical relevance, the multidimensional version of the
roommate problem has not attracted much attention yet.

One possibility to circumvent these negative results is
to search for reasonable subclasses of the stable roommate
problem, i.e., to identify realistic restrictions on the agents’
preferences for which the associated computational prob-
lems become tractable. This approach has been successful
in the study of the two-dimensional stable roommate prob-
lem [Abraham et al., 2007; Bartholdi III and Trick, 1986;
Bredereck et al., 2017; Chung, 2000; Cseh and Juhos, 2019],
as well as in the context of hedonic games [Aziz et al., 2019;
Banerjee et al., 2001; Bogomolnaia and Jackson, 2002].
In particular, Bredereck et al. [2019] and Boehmer and
Elkind [2020a] analyzed the complexity of finding stable out-
comes in hedonic diversity games for several notions of sta-
bility, such as Nash stability, individual stability and core sta-
bility. However, these results do not directly translate to our
model: first, with the exception of core stability, the solution
concepts we consider are different from those considered in
hedonic diversity games, and second, the hard constraint on
the room sizes in the roommate problem changes both the set
of feasible allocations and the set of possible deviations.

Finally, we note that Bredereck et al. [2019] and Boehmer
and Elkind [2020a] related hedonic games with diversity
preferences to anonymous hedonic games [Bogomolnaia and
Jackson, 2002], where the agents’ preferences over coalitions
only depend on coalition sizes. This connection proves use-
ful in our setting as well: e.g., in our hardness reductions
we use the fact that it is NP-complete to decide whether an
anonymous hedonic game admits a Nash or core stable out-
come [Ballester, 2004].

Diversity-related questions have also been studied in the
context of stable matching problems [Huang, 2010; Kamada
and Kojima, 2015]. However, our approach is fundamentally
different: in our model, types are used to define agents’ pref-
erences rather than distributional constraints on the outcome.

Full version. The full version of the paper is available on
arXiv [Boehmer and Elkind, 2020b]. It contains all miss-
ing proofs and some preliminary results on extensions of our
model, such as non-uniform room sizes and more than two
types of agents.

2 Preliminaries
For every positive integer t, we denote the set {1, . . . , t} by
[t], and we write [0, t] to denote {0} ∪ [t].

Definition 1. A roommate diversity problem with room size
s is a quadrupleG = (R,B, s, (%i)i∈R∪B) with N = R∪· B
and |N | = k · s for some k ∈ N. The preference relation %i
of each agent i ∈ N is a weak order over the set D = { js :
j ∈ [0, s]}.

In the following, we call all agents in R red agents and all
agents in B blue agents, and write r = |R|, b = |B| and
n = |R ∪· B| . We refer to size-s subsets of N as coalitions
or rooms; the quantity k = |N |

s is then the number of rooms.
For each i ∈ N , let Ni = {S ⊆ N : |S| = s, i ∈ S} denote
all size-s subsets of N containing i, i.e., all possible rooms
that i can be part of.
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unrestricted strict dichotomous

Gu. Ex. Co. Gu. Ex. Co. Gu. Ex. Co.

Core 7 (2) NPc (3) NPh (3) 7 (2) NPc (3) NPh (3) 3 (4) - P (4)
Strong Core 7 (2) NPc (5) NPh (5) 7 (2) NPc (5) NPh (5) 7 (5) NPc (5) NPh (5)

Same Ex. 3 (6) - P (6) 3 (6) - P (6) 3 (6) - P (6)
Exch. 7 (7) ? ? 7 (7) ? ? ? ? ?

Strong Ex. 7 (7) NPc (8) NPh (8) 7 (7) ? ? 7 (7) NPc (8) NPh (8)
Pareto 3 - NPh (9) 3 - ? 3 - NPh (9)

Envy-free 7 (10) NPc (12) NPh (12) 7 (10) NPc (12) NPh (12) 7 (10) NPc (12) NPh (12)

Table 1: Overview of complexity results for different solution concepts and restrictions on the preference relations. For each solution concept
and restriction, we indicate whether every instance satisfying this restriction is guaranteed to admit an outcome with the respective property
(Gu.), the complexity of deciding if an instance admits such an outcome (Ex.) and of finding one if it exists (Co.). The number in brackets is
the number of the respective theorem. For all solution concepts, the problem of verifying whether a given outcome has the desired property
is in P except for Pareto optimality, for which this problem is coNP-complete. We prove that all existence problems in this table are in FPT
with respect to the room size.

An outcome of G is a partition of all agents into k rooms
π = {C1, . . . , Ck} such that |Ci| = s for all i ∈ [k]. Let π(i)
denote i’s coalition in π. Given a coalition C ⊆ N , let θ(C)
denote the fraction of red agents inC, i.e., θ(C) = |C∩R|

|C| : we
say that C is of fraction θ(C). A coalition C ⊆ N is called
pure if C ⊆ R or C ⊆ B and mixed otherwise.

For each agent i ∈ N , we interpret her preference relation
%i overD as her preferences over the fraction of red agents in
her coalition; for instance, 2

5 %i 3
5 means that agent i prefers

a room where two out of five agents are red to a room where
three out of five agents are red.1 Thereby, %i induces agent
i’s preferences over all possible rooms she can be part of.2
Given two rooms S, T ∈ Ni, overloading notation, we write
S �i T and say that i strictly prefers S to T if θ(S) %i θ(T )
and θ(T ) 6%i θ(S). Further, we write S %i T and say that i
weakly prefers S to T if θ(T ) = θ(S) or θ(T ) %i θ(S). If i
weakly prefers S to T and T to S, we write S ∼i T and say
that i is indifferent between S and T .

The preference relation of agent i is said to be single-
peaked if there exists a peak pi ∈ D such that for all α, β ∈ D
such that pi ≤ α < β or β < α ≤ pi it holds that α %i β.
The preference relation of i is said to be dichotomous if it is
possible to partitionD into two setsD+ andD− so that for all
d ∈ D+, d′ ∈ D− it holds that d �i d′, for all d, d′ ∈ D− it
holds that d ∼i d′ and for all d, d′ ∈ D+ it holds that d ∼i d′.
We say that i approves all fractions inD+ and disapproves all
fractions in D−.

Generalizing the definition of Gale and Shapley [1962], we
say that a coalition S ⊆ N with |S| = s blocks an outcome

1We could equivalently define the agents’ preferences over the
number of red agents in each room; we chose the ratio-based defini-
tion for consistency with the hedonic diversity games literature and
to emphasize the room size.

2For succinctness and consistency with prior work, we assume
that each agent has preferences over the entire set D, including 0
and 1, even though a red agent cannot be part of a room with ratio
0 and a blue agent cannot be part of a room with ratio 1. Allowing
agents to have preferences over ‘impossible’ ratios has no impact
on our results: even if, say, a blue agent ranks 1 highly, she cannot
deviate to a coalition with this ratio. In all of our examples, the
impossible ratios are ranked at the bottom of agent’s preferences.

π if for all i ∈ S it holds that θ(S) �i θ(π(i)); we say
that S weakly blocks an outcome π if for all i ∈ S it holds
that θ(S) %i θ(π(i)) and there exists an i ∈ S such that
θ(S) �i θ(π(i)). An outcome π is called (strongly) core
stable if no coalition (weakly) blocks it.

In an outcome π, a pair of agents i, j ∈ N with π(i) 6=
π(j) has an exchange deviation if they would like to exchange
places, i.e., θ

(
(π(j) \ {j}) ∪ {i}

)
�i θ

(
π(i)

)
and θ

(
(π(i) \

{i}) ∪ {j}
)
�j θ

(
π(j)

)
. Further, a pair of agents i, j ∈ N

with π(i) 6= π(j) has a weak exchange deviation if θ
(
(π(j) \

{j})∪{i}
)
�i θ

(
π(i)

)
and θ

(
(π(i)\{i})∪{j}

)
%j θ

(
π(j)

)
.

An outcome is called (strongly) exchange stable if no pair of
agents has a (weak) exchange deviation [Alcalde, 1994].

An outcome π is called Pareto optimal if there is no other
outcome that makes all agents weakly better off and some
agents strictly better off, i.e., there is no outcome π′ such that
θ(π′(i)) %i θ(π(i)) for all i ∈ N and θ(π′(i)) �i θ(π(i))
for some i ∈ N .

An outcome π is called envy-free if there does not exist a
pair of agents i, j ∈ N with π(i) 6= π(j) such that i envies
j’s place, i.e., θ

(
(π(j) \ {j}) ∪ {i}

)
�i θ

(
π(i)

)
.

Due to space constraints, we defer several proofs to the full
version of the paper.

3 Roommate Diversity Problem With Room
Size Two

For s = 2, the roommate diversity problem becomes a spe-
cial case of the classical stable roommate problem. Our first
observation is that diversity preferences make the classical
problem significantly easier: we can efficiently find an out-
come that is Pareto optimal, core stable and exchange stable.
This result motivates us to focus on the case s > 2 in the
remainder of the paper.

Theorem 1. Every instance of the roommate diversity prob-
lem with room size two admits an outcome that is Pareto op-
timal, core stable and exchange stable, even if we allow for
indifferences in the preferences.

Proof sketch. We say that a mixed pair is happy if both agents
in the pair weakly prefer a mixed pair to a pure pair. The
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general idea of the algorithm is to first create as many happy
mixed pairs as possible. The algorithm then attempts to put
the remaining agents in pure pairs. If at this point the number
of blue agents is odd, this is not possible. In this case, de-
pending on the preferences of agents in mixed pairs, it either
inserts an additional mixed pair or breaks up one of the mixed
pairs to create two pure pairs: one red and one blue.

4 (Strong) Core Stability
We have seen that for the roommate diversity problem with
s = 2 a core stable outcome is guaranteed to exist. However,
for larger values of s this is not the case.
Theorem 2. An instance of the roommate diversity problem
may fail to have a core stable outcome, even if no indiffer-
ences in the preferences are allowed.

Proof. Let G = ({r1, r2, r3, r4}, {b1, b2, b3, b4}, 4,
(%i)i∈N ) with

r1, r2, r3 :
2

4
� 4

4
�3

4
� 1

4
� 0

4
; r4 :

4

4
� 1

4
� 2

4
� 3

4
� 0

4

b1, b2, b3, b4 :
1

4
� 2

4
� 3

4
� 0

4
� 4

4
.

Assume for the sake of contradiction that G has a core sta-
ble outcome π. If π consists of two coalitions of fraction 2

4 ,
{r4, b1, b2, b3} is blocking. If π consists of one coalition of
fraction 3

4 and one coalition of fraction 1
4 , {r1, r2, r3, r4} is

blocking. If π consists of a purely blue and a purely red coali-
tion, {r1, r2, b1, b2} is blocking.

Further, if we assume that the room size is flexible and part
of the input, the associated existence question becomes NP-
complete.
Theorem 3. It is NP-complete to decide whether a given in-
stance of the roommate diversity problem admits a core stable
outcome. The hardness result holds even if no indifferences
in the preferences are allowed.

Proof sketch. To check whether an outcome is core stable, we
iterate over all j ∈ [0, s] and check if there are j red agents
and s− j blue agents preferring j

s to the fraction of their cur-
rent coalition. To prove hardness, we reduce from the prob-
lem of deciding whether an anonymous hedonic game admits
a core stable outcome [Ballester, 2004]. Given an anonymous
hedonic game G′ with n agents, we build an n-dimensional
instance G of the roommate diversity problem. To this end,
for each agent i inG′, we introduce a red agent ri whose pref-
erence relation is constructed by replacing each size ` ∈ [n] in
the preferences of iwith fraction `

n . Moreover, for all ` ∈ [n],
we introduce n2 blue agents preferring `

n to every other frac-
tion, while they rank all other fractions arbitrarily. To con-
struct an outcome of G from an outcome π′ of G′, for each
coalition S ∈ π′, we insert a coalition consisting of the cor-
responding red agents {ri : i ∈ S} and n − |S| blue agents
with |S|n as their top fraction. If a coalition T blocks π′ in
G′, the coalition consisting of red agents {ri : i ∈ T} and
n−|T | blue agents with |T |n as their top fraction is a blocking
coalition for the respective outcome ofG. The other direction
works analogously.

Using the construction in the proof of Theorem 3, we can
map the single-peaked anonymous hedonic game with empty
core constructed by Banerjee et al. [2001] to a single-peaked
instance of the roommate diversity problem with an empty
core. We obtain the following corollary.

Corollary 1. An instance of the roommate diversity problem
may fail to have a core stable outcome, even if all agents’
preferences are single-peaked.

In contrast, if agents’ preferences are dichotomous, the
core is non-empty, and an outcome in the core can be com-
puted efficiently: following the approach of Peters [2016], to
construct a core stable outcome, we iterate over all fractions
`
s for ` ∈ [0, s] and add the maximum possible number of
rooms consisting of ` red agents and s−` blue agents who all
approve `

s . The rest of the agents are split into the remaining
rooms. We obtain the following result.

Theorem 4. Every instance of the roommate diversity prob-
lem with dichotomous preferences admits a core stable out-
come; moreover, an outcome in the core can be computed in
polynomial time.

However, this positive result does not extend to the more de-
manding notion of strong core stability.

Theorem 5. It is NP-complete to decide whether a given
roommate diversity problem admits a strongly core stable
outcome, even if the preferences are restricted to be dichoto-
mous and every agent approves at most four fractions.

Proof sketch. Peters [2016] showed that the corresponding
problem for anonymous hedonic games is NP-complete. By
reducing from this problem, we can establish that our prob-
lem is NP-hard as well; the reduction is similar to the one
used in the proof of Theorem 3.

5 (Strong) Exchange Stability
As pointed out in the introduction, it is not always plausible to
assume that agents are allowed to perform group deviations.
Therefore, in this section, we focus on stability concepts that
are defined in terms of agent swaps.

5.1 Same-Type Swaps
If the set of possible deviations is limited to agent swaps,
it may be the case that only agents of the same type are al-
lowed to swap their places: we call the resulting stability no-
tion same-type-exchange stability. For example, if a professor
forms fixed-size teams for a group project, she may want to
fix the fraction of graduate students in each group (e.g., to
ensure that the experienced students are equally distributed)
but still allow for swaps between two undergraduate students
or between two graduate students. Under this weaker version
of exchange stability, the agents are guaranteed to eventually
converge to a stable outcome.

Theorem 6. Every instance of the roommate diversity prob-
lem has a (strongly) same-type-exchange stable outcome, and
some such outcome can be computed in polynomial time.

Proof. To compute a (strongly) same-type-exchange stable
outcome, we start at an arbitrary outcome π and swap pairs
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who have a (weak) same-type-exchange deviation until this is
no longer possible. To see that this procedure always termi-
nates, note that same-type exchange deviations do not change
the fraction of red agents in any coalition. Thereby, nothing
changes for agents who are not involved in the swap, while
both agents involved in the swap weakly improve and at least
one of them strictly improves. As every agent’s preference
relation is defined over s + 1 elements, the total number of
swaps is at most ns.

5.2 Unrestricted Swaps

Unfortunately, the existence guarantee for same-type swaps
does not extend to unrestricted swaps.

Theorem 7. An instance of the roommate diversity problem
may fail to have an exchange stable outcome, even if the pref-
erences are single-peaked and no indifferences in the prefer-
ences are allowed.

Proof sketch. The following single-peaked roommate diver-
sity game G = ({r1, r2, r3, r4, r5}, {b1, b2, b3, b4}, 3, (%i
)i∈N ) with:

r1, r2 :
3

3
� 2

3
� 1

3
� 0

3
; r3, r4, r5 :

2

3
� 1

3
� 3

3
� 0

3
;

b1 :
0

3
� 1

3
� 2

3
� 3

3
; b2, b3, b4 :

1

3
� 2

3
� 0

3
� 3

3
.

does not admit an exchange-stable outcome.

Further, the associated existence problem for strong exchange
stability is NP-complete.

Theorem 8. It is NP-complete to decide whether a given in-
stance of the roommate diversity problem admits a strongly
exchange stable outcome. The hardness result still holds if
the preferences are dichotomous and every agent approves at
most four fractions.

Proof sketch. To show hardness, we reduce from the prob-
lem of deciding whether an anonymous hedonic game admits
a Nash stable outcome [Ballester, 2004; Peters, 2016]; recall
that an outcome of a hedonic game is said to be Nash stable
if no agent wants to move from her current coalition to an-
other existing coalition or to form a singleton coalition. Our
reduction is similar to the one in the proof of Theorem 3: we
map an anonymous hedonic game G′ with n agents to an n-
dimensional instance of the roommate diversity problem G
so that an agent i in G′ is mapped to a red agent in G whose
preference relation is obtained from that of i by replacing `
with `

n for all ` ∈ [1, n]; however, here, we introduce n2 − n
blue agents who are indifferent among all fractions.

We believe that deciding whether a roommate diversity
problem admits an exchange stable outcome is NP-complete
as well, but we were unable to extend the proof of Theorem 8
to show this.

6 Pareto Optimality
In the roommate problem, Pareto optimality emerges as a nat-
ural notion of stability. Indeed, an outcome is not Pareto
optimal if and only if we can rearrange the agents so that
all of them are weakly better off and at least some of
them are strictly better off, i.e., there is a weakly improv-
ing deviation by the grand coalition [Elkind et al., 2016;
Morrill, 2010].

While for many other stability concepts we consider sta-
ble outcomes are not guaranteed to exist, by the definition
of Pareto optimality, every instance of the roommate diver-
sity problem admits a Pareto optimal outcome. Indeed, we
can start at an arbitrary outcome and perform a sequence of
at most ns Pareto improvements, i.e., rearrangements of the
agents that make all agents weakly better off and some agents
strictly better off. However, it is still computationally hard to
compute a Pareto optimal outcome, as finding a Pareto im-
provement is difficult.

Theorem 9. For the unrestricted roommate diversity prob-
lem, it is coNP-complete to decide whether a given outcome
is Pareto optimal; moreover, we cannot compute a Pareto op-
timal outcome in polynomial time unless P=NP. These results
hold even if preferences are dichotomous.

Proof sketch. To show that an outcome is not Pareto optimal,
it suffices to guess a Pareto improvement and verify that it
indeed makes all agents weakly better off and some agents
strictly better off; this establishes that our decision problem
is in coNP. To prove hardness for the unrestricted case, we
construct reductions from the related problems for anony-
mous hedonic games, which are NP-hard, as proven by Aziz
et al. [2013]. The reductions are similar to the reduction in
the proof of Theorem 8.

7 Envy-Freeness
We can think of envy-freeness as a “one-sided” version of ex-
change stability. Thus, similarly to same-type-exchange sta-
bility, we can define same-type-envy-freeness by only con-
sidering envy among agents of the same type. Same-type-
envy-freeness is a plausible variant of envy-freeness, as peo-
ple tend to envy those who are similar to them [Salovey and
Rodin, 1984]. Moreover, same-type-envy-freeness is also an
appealing notion of fairness: if agent i and agent j are of the
same type and i envies j, swapping i and j has no effect on
other agents, so the decision which of these agents should get
a better set of roommates is essentially arbitrary. Unfortu-
nately, an outcome that is fair in this sense is not guaranteed
to exist.

Theorem 10. There exists an instance of the roommate di-
versity problem with room size two that has no same-type-
envy-free outcome and thereby also no envy-free outcome.
Moreover, in this instance the agents’ preferences are single-
peaked and dichotomous.

Proof. Let G = ({r1}, {b1, b2, b3}, 2, (%i)i∈N ) with:

r1 :
2

2
� 1

2
� 0

2
; b1, b2, b3 :

0

2
� 1

2
� 2

2
.
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This game is clearly single-peaked and can be transformed
into a dichotomous game by putting the two bottom fractions
for each agent in the same equivalence class. As every out-
come of this game consists of one mixed and one purely blue
coalition, the blue agent in the mixed coalition always envies
the two blue agents in the pure coalition.

On the positive side, there exist two special cases where the
existence of a same-type-envy-free outcome is guaranteed.

Theorem 11. A same-type-envy-free outcome is guaranteed
to exist if the number of red agents is divisible by s or by k.

Proof. If s divides r, there exists an outcome consisting of
pure coalitions only. If k divides r, there exists an outcome
where the fraction of each coalition is r

k . In either case, all
agents of the same type are in coalitions of the same fraction,
so no agent envies another agent of her type.

Nevertheless, it can be proven by a reduction from EXACT
COVER BY 3-SETS that the general existence question for
envy-freeness is NP-complete.

Theorem 12. It is NP-complete to decide whether a given in-
stance of the roommate diversity problem admits an envy-free
outcome, even if no indifferences in the preference relations
are allowed. This hardness result also holds if the agents’
preferences are dichotomous and every agent is allowed to
approve at most four fractions.

We were not able to extend Theorem 12 to same-type-
envy-freeness, but conjecture that the hardness result still
holds. However, if preferences are strict, there exists a sim-
ple algorithm that solves this problem in time linear in n and
single-exponential in s, i.e., this problem is in FPT with re-
spect to s.

Theorem 13. Given an instance of the roommate diversity
problem with room size s and strict preferences, it is possi-
ble to check in time O(ns2s) whether this instance admits a
same-type-envy-free outcome and to find one if it exists.

8 Parameterized Analysis
In Section 3, we saw that fixing the size of the rooms to s = 2
has a significant impact on the complexity of finding stable
outcomes. Motivated by this result, as well as by Theorem 13,
in this section, we study the parameterized complexity of the
roommate diversity problem with respect to parameter s. This
is a promising parameter, since in most of our hardness re-
ductions we converted an anonymous hedonic game with n
agents into an instance with room size n; it is also appeal-
ing because in practice the room size can be much smaller
than the number of agents. Indeed, most of the algorithmic
problems considered in this work turn out to be in FPT with
respect to s. We start by considering (strong) core stability.

Theorem 14. The problem of determining whether an in-
stance of the roommate diversity problem admits a (strongly)
core stable outcome is fixed-parameter tractable with respect
to the room size.

Proof sketch. As every agent is fully characterized by her
preference relation and type, the number of distinct agents

can be upper-bounded by 2 ∗ 2(s+1)2 . For each such agent
class, we introduce s + 1 variables denoting the number of
agents from this class that are put into a room with i ∈ [0, s]
red agents. Using these variables, we can check whether
they induce a valid outcome and whether this outcome is
(strongly) core stable by appropriately selected linear con-
straints. Thereby, it is possible to formalize this problem as
an Integer Linear Program (ILP) and use the algorithm of
Lenstra Jr [1983] that solves an ILP with ρ variables and input
length L in time O(ρ2.5ρ+o(ρ)L).

This approach, with appropriate modifications, extends to
(strong) exchange stability and envy-freeness.
Theorem 15. The problem of determining whether an in-
stance of the roommate diversity problem admits a (strongly)
exchange stable outcome is fixed-parameter tractable with re-
spect to the room size.
Theorem 16. The problem of determining whether an in-
stance of the roommate diversity problem admits an envy-free
outcome is fixed-parameter tractable with respect to the room
size.

Theorems 14–16 highlight a fundamental difference be-
tween the classical stable roommate problem and the room-
mate problem with diversity preferences: for the former all
studied existence problems are NP-complete for s = 3 or
even for s = 2, while for the latter many of these problems
are polynomial-time solvable if the size of the rooms is fixed
or bounded. Thus, assuming diversity preferences fundamen-
tally changes the complexity of the roommate problem. We
note, however, that we were unable to extend our ILP tech-
niques to questions concerning Pareto optimality; it remains
an open problem whether these questions are also in FPT with
respect to the room size s.

9 Conclusions And Future Directions
In this paper, we have proposed the roommate diversity prob-
lem, which is an interesting special case of the multidimen-
sional stable roommate problem. We have initiated the algo-
rithmic study of this problem by considering various standard
solution concepts and analyzing the existence of stable out-
comes and the complexity of computing them (see Table 1).
While we have answered many questions that arise in this
context, the complexity of deciding whether a roommate di-
versity problem admits an exchange stable outcome remains
open. Moreover, it is unclear if every instance with dichoto-
mous preferences admits an exchange stable outcome. By
parameterizing our computational problems by the size of the
rooms, we showed that diversity preferences are a powerful
restriction, as all studied existence problems lie in FPT with
respect to this parameter. However, it would be desirable to
obtain parameterized algorithms that are combinatorial rather
than ILP-based, since ILP-based algorithms tend to be slow
in practice.
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