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Abstract

We study higher statistical moments of Distortion
for randomized social choice in a metric implicit
utilitarian model. The Distortion of a social choice
mechanism is the expected approximation factor
with respect to the optimal utilitarian social cost
(OPT). The k" moment of Distortion is the ex-
pected approximation factor with respect to the k*"
power of OPT. We consider mechanisms that elicit
alternatives by randomly sampling voters for their
favorite alternative. We design two families of
mechanisms that provide constant (with respect to
the number of voters and alternatives) k*"* moment
of Distortion using just k samples if all voters can
then participate in a vote among the proposed alter-
natives, or 2k—1 samples if only the sampled voters
can participate. We also show that these numbers of
samples are tight. Such mechanisms deviate from
a constant approximation to OPT with probability
that drops exponentially in the number of samples,
independent of the total number of voters and al-
ternatives. We conclude with simulations on real-
world Participatory Budgeting data to qualitatively
complement our theoretical insights.

1 Introduction

For many problems in social choice, the number of alterna-
tives is very large. For example, consider the problem of vot-
ing over possible budgets in a given municipality, where the
number of alternatives is infinite (for a divisible budget) or
exponential (for funding integral projects). In such settings,
it may be impractical to elicit full rankings over alternatives
from every voter. Instead, we may want to design mecha-
nisms that only require voters to rank at most a constant num-
ber of alternatives. In this paper, we study such mechanisms.

We consider the standard problem in social choice wherein
there is a set IV of n voters and a set M of alternatives
from which we must select a single winner. However,
we assume that |M| is large enough to prohibit eliciting
full rankings over the alternatives. We also allow n to be
large. We adopt the implicit utilitarian perspective with met-
ric constraints [Boutilier er al., 2015; Cheng et al., 2017,
Anshelevich and Postl, 2017; Goel et al., 2017; Anshelevich
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et al., 2018; Feldman et al., 2016]. That is, we assume that
voters have cardinal costs over alternatives, and these costs
are constrained to be metric, but voters cannot directly report
cardinal costs. We want to design social choice mechanisms
to minimize the total social cost by only asking voters to rank
at most a constant number of alternatives. We measure the
efficiency of a mechanism as its Distortion (see Section 2),
the worst case approximation to the total social cost.

It is easy to see that randomization is necessary to achieve
constant Distortion if we cannot elicit the ordinal preferences
of voters over all alternatives. One natural form of random-
ization is to elicit alternatives by randomly sampling voters
and querying them for their favorite alternatives. More gen-
erally, in this paper we consider mechanisms of the following
type: The set of alternatives will be the favorite alternatives
expressed by a subset of the voters. Subsequently, these al-
ternatives are ranked either (i) by the entire population of the
voters or (ii) by a small subset of the voters. We refer to these
as the full and limited participation models respectively.

These assumptions are not merely of theoretical interest,
but model social choice in emergent domains. Assumption
(i) is natural in contexts where all voters are entitled to partic-
ipate in the final election. For instance, in real-world Partic-
ipatory Budgeting applications (see Section 5), a small sub-
set of individuals propose projects, but a much larger number
participate in the subsequent vote. Assumption (ii) models
situations where we want a lightweight social choice mecha-
nism that only involves a small number of voters overall such
as the many department level decisions made at universities
by committees representing samples of the faculty.

Prior work [Anshelevich and Postl, 2017; Gross et al.,
2017; Fain et al., 2019] analyzed simple social choice mech-
anisms for achieving constant Distortion. However, focusing
on the expected Distortion can yield randomized mechanisms
that can deviate significantly from their expectation ex-post,
and hence may be risky to implement in practice.

We address this problem by considering higher moments
of Distortion. The k** moment of Distortion is the expected
approximation factor with respect to the k" power of the op-
timal utilitarian social cost. The goal of bounding higher mo-
ments of Distortion is directly analogous to providing high
probability bounds on approximation guarantees with respect
to the total social cost. We note that obtaining such a bound
does not follow in a trivial manner from standard sampling
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Participation Model Lower bound Upper bound
Full k (Thm. 1) k (Thm. 2)
Limited 2k — 1 (Thm. 3) | 2k — 1 (Thm. 4)

Table 1: The number of samples of favorite alternatives of voters for
achieving constant normalized k" moment of Distortion.

arguments: The higher moments depend on the entire distri-
bution of the Distortion obtained by the mechanism, and if
this distribution has unbounded variance, then it is not pos-
sible to bound the second moment by a constant with any
number of samples, let alone higher moments. Moreover, it is
initially unclear how to take the “best” result out of many ran-
domly sampled alternatives. Our key insight is that the metric
assumption enables us to derive tight bounds on higher mo-
ments with only a few samples by using existing determinis-
tic social choice rules to take the “best” from many randomly
sampled alternatives.

1.1 Summary of Results

Our primary contribution is the development and analysis of
randomized social choice mechanisms that achieve constant
kth moment of Distortion in the metric implicit utilitarian
model while requiring each voter to rank at most O(k) sam-
pled alternatives, regardless of the total number of voters and
alternatives. The normalized k*" moment of Distortion is de-
fined formally in Section 2, and our results are summarized in
Table 1. In particular, we design two families of mechanisms
that have constant £*” moment of Distortion. The first asks
just k£ randomly chosen voters for their favorite alternatives,
assuming all n voters can subsequently participate in a vote
among these alternatives. The second asks 2k — 1 voters for
their favorite alternatives, and only these sampled voters par-
ticipate in a vote among their favorite alternatives. To the best
of our knowledge, these are the first results in implicit utili-
tarian social choice providing guarantees for arbitrarily high
moments of Distortion and approximating the optimal social
cost with high probability.

Additionally, we show that our upper bounds on the num-
ber of samples needed are tight. We show that the £** mo-
ment of Distortion is unbounded in the following two set-
tings: First, when we only sample k£ — 1 favorite alternatives
and all n voters can subsequently compare these alternatives,
and secondly, when we only sample 2k — 2 voters and the en-
tire mechanism uses only their favorite alternatives and their
comparisons between these alternatives. From a practical per-
spective, we demonstrate the value of using additional voters
and alternatives: At most two additional samples guarantee
that another higher moment of Distortion can be bounded.
Finally, in Section 5, we present simulations on real-world
Participatory Budgeting data to qualitatively complement our
theoretical insights.

1.2 Related Work

Metric Distortion

The Distortion of randomized social choice mechanisms in
metrics is well studied [Boutilier et al., 2015; Anshelevich
and Postl, 2017; Goel et al., 2017; Gross et al., 2017]. The
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Random Dictatorship mechanism samples the favorite alter-
native of a single voter, and the 2-Agree mechanism [Gross et
al., 2017] samples at most min(n+ 1, m—+ 1) favorite alterna-
tives of voters. Random Dictatorship has Distortion at most
3 [Anshelevich and Postl, 2017], and 2-Agree improves this
when m is small. Nothing better than Random Dictatorship
is known if the goal is to minimize the Distortion. However,
it is easy to show that such mechanisms do not have constant
second (or higher) moment of Distortion [Fain ez al., 2019].

Using the second moment of Distortion as a proxy for risk
was introduced in [Fain et al., 2017; Fain et al., 2019], where
it was shown that making one sampled voter compare the fa-
vorite alternatives of two randomly sampled voters bounds
the second moment of Distortion. In this paper, we consider
the natural question: What is the value of each additional
voter in how well the Distortion concentrates? We provide
a tight characterization by bounding not just the second mo-
ment, but any higher moment of Distortion.

The extreme case where k n is the deterministic
setting, where it is known that the Copeland mechanism,
or any mechanism based on choosing from the uncovered
set [Miller, 19771, yields Distortion of 5 [Anshelevich et al.,
2018]. This bound was improved to 4.236 in [Munagala and
Wang, 2019] via a weighted generalization of the uncovered
set. However, both of these methods require eliciting full or-
dinal preferences from voters.

Communication and Sample Complexity

For a more thorough survey on the complexity of eliciting or-
dinal preferences to implement social choice rules, we refer
the interested reader to [Brandt ez al., 2016]. [Conitzer and
Sandholm, 2005] comprehensively characterizes the commu-
nication complexity (in terms of the number of bits commu-
nicated) of common deterministic voting rules. [Bouveret et
al., 2017] and [Caragiannis and Procaccia, 2010] design so-
cial choice mechanisms with low communication complexity
when there are a small number of voters, but potentially a
large number of alternatives.

[Dey and Bhattacharyya, 2015; Dey and Narahari, 2015]
study the sample complexity of predicting the outcome of de-
terministic social choice rules. However, a “sample” in this
work is the entire ordinal preference list for a single voter,
whereas a sample for us is only the top alternative for a given
voter. Even then, they show that predicting the outcome of
rules with small Distortion (such as Copeland) requires a
number of samples that grows with the total number of al-
ternatives. We show that a smaller number of more limited
samples suffice to bound higher moments of Distortion.

Recently, [Mandal et al., 2019] studied a different notion
of communication complexity in a non-metric implicit utili-
tarian model where voters can communicate bits of informa-
tion about their cardinal preferences. In this case, the base-
line is ordinal voting, and the other extreme is communicating
the entire set of cardinal utilities. They show tight results for
how Distortion trades off with the communication complex-
ity in terms of bits of information communicated per voter.
In our setting, voters only convey ordinal information and we
study the sample complexity to bound not just the Distortion
but also how well it concentrates.
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2 Preliminaries

We have a set N of n voters and a set M of alternatives,
from which we must choose a single outcome. For each agent
1 € N and alternative a € M, there is some underlying dis-
utility d(i,a) > 0. Let p; = argmin,,,d(i,a), that is, p;
is the favorite alternative for voter ¢. Ordinal preferences are
specified by a total order o; consistent with these dis-utilities
(i.e., an alternative is ranked above another only if it has lower
dis-utility). A preference profile o specifies the ordinal pref-
erences of all agents, and we denote o € p(d) to mean that o;
is consistent with the dis-utilities for every ¢. A deterministic
social choice rule is a function f that maps a preference pro-
file o to an alternative a € M. A randomized social choice
rule maps a preference profile o to a distribution over M.

2.1 Metric Implicit Utilitarian Model

We measure the quality of an alternative a € S by its social
cost, given by SC(a,d) = L+ 3. d(i,a). Where d is obvi-
ous from context, we will simply write SC(a). Let a* € M
be the minimizer of social cost. The Distortion [Procaccia
and Rosenschein, 2006] measures the worst case approxima-
tion to the optimal social cost of a given mechanism, in ex-

pectation for randomized mechanisms.

Definition 1. The Distortion of a social choice rule f is
]Ef(a) [SC’(a, d)]

Distortion(f) = SCla,d)

sup
d,ocep(d)

We assume that M U N is a set of points in a met-
ric space. Specifically, we assume the disutility function
d is the distance function over this metric space. This as-
sumption models social choice scenarios where there is an
objective notion of the distance between alternatives. The
metric assumption is common in the implicit utilitarian lit-
erature [Anshelevich and Postl, 2017; Goel et al., 2017;
Fain et al., 2017; Gross et al., 2017; Cheng et al., 2017;
Anshelevich et al., 2018; Feldman et al., 2016; Fain et al.,
20191, and we consider an example from participatory bud-
geting in Section 5 where the metric assumption is plausible.

2.2 Sampling and Higher Moments of Distortion

We consider mechanisms that implement a randomized social
choice rule by first eliciting favorite alternatives from a ran-
dom sample of voters and then uses only these alternatives for
the rest of the mechanism. The size of this random sample is
the sample complexity of our mechanism. We are interested
in mechanisms with constant sample complexity with respect
to n and m. A mechanism with sample complexity s only re-
quires voters to rank at most s alternatives, so constant sam-
ple complexity implies that the number of alternatives voters
must rank is constant with respect to n and m.

We consider two models that differ in how voters partici-
pate after we elicit these alternatives. In the full participation
model of Section 3 we allow all voters to rank the alternatives
from the first step and we aggregate these votes to output the
winner. While this requires two distinct rounds, it is close
to how real Participatory Budgeting processes work, where
proposals are constructed by a subset of the population in the
first stage, and these are put to vote in the second stage. In
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the limited participation model of Section 4, only the sample
of voters from the first step vote over the alternatives. Thus,
mechanisms in the limited participation model do not require
a second distinct round involving different voters. It is worth
noting that while the sample complexity of our results are
lower in the full participation model, the total communica-
tion complexity is higher because all voters participate in the
second round.

In order to capture the notion of risk inherent in a random-
ized social choice mechanism, we consider higher statistical
moments of Distortion. In order to fairly compare the bounds
for different moments, we normalize by the &*" root.

Definition 2. The normalized k*" moment of Distortion of
a social choice rule f is

(Efio) [(SC(a, d)*]) "

SC(a*,d)

sup
d,c€p(d)

Distortion®(f)

Note that by Jensen’s inequality, if a mechanism f has
Distortion®(f) < ¢ then Distortion* (f) < ¢ for all
k' < k. By contrast, lower moments do not imply anything
about higher moments of Distortion.

2.3 Relationship Between Higher Moments and
High Probability Guarantees

Upper bounds on higher moments of Distortion immediately
provide high probability guarantees for approximating the op-
timal social cost via Markov’s inequality (see Corollaries 1
and 2). However, one can reasonably ask whether the high
probability bounds we achieve in this way are “tight.”

More precisely, suppose we want to approximate the opti-
mal social cost with high probability: i.e., for constant ¢ > 1,
find an alternative a such that SC(a,d) < ¢- SC(a*, d) with
probability at least 1 — §. How many samples (favorite alter-
natives of random voters) are necessary as a function of ¢ and
0? The example in Theorem 1 shows that one needs at least

% samples in the full participation model. On the other

hand, Corollary 2 shows that our PRC mechanism needs just

% samples (for ¢ > 11). So our results are tight with
respect to the dependence on the probability term 4, but the
factor of 11 in Corollary 1 is a consequence of the analysis

for Theorem 2 and may be improvable.

3 Full Participation Model

In this section, we consider mechanisms that first elicit alter-
natives by sampling a number of voters and querying them
for their most preferred alternatives and then apply a social
choice rule on the elicited alternatives with all voters. We be-
gin with the lower bound on the number of samples needed
to bound the k' moment of Distortion.

Theorem 1. Any mechanism f with sample complexity less
than k has Distortion®(f) = Q(n'/*).

Proof. Consider a metric space with two outcomes A and B
separated by distance 1. The fraction of voters located at A is
a > 1/2and at B is 1 — a. Note that the average (per-voter)
social cost of OPT is 1 — . If k — 1 voters are sampled,
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with probability (1 — a)k_l, all of them lie at B, in which
case any voting mechanism using these samples is run on only
outcome B. Therefore, the social cost in this case is «. The
k'™ moment of Distortion is therefore at least:

(-

ot W e
1—a)k (1 —a)l/k
Choosing @ = 1 — ¢/n for constant c so that all but ¢ voters

lie at A, the above expression is Q(n'/*). O

3.1 The PRC; Mechanism

On the constructive side, we consider a family of mechanisms
that achieve constant normalized k'" moment of Distortion
using the minimum possible number of samples. We call this
family Partially Random Copeland rules.

Definition 3. The Partially Random Copeland rule param-
eterized by positive integer s, denoted PRCyg, proceeds as
follows. First sample s voters N drawn independently and
uniformly at random from N with replacement. All voters in
N are queried for their favorite alternative, and the union
of all such alternatives is denoted M. Finally, PRC returns
the winning alternative under the Copeland social choice rule
with voters N and alternatives M.

In the rest of this section, we will show the following. Intu-
itively, Theorem 2 asserts that every additional sample in the
elicitation step of PRC provides a constant approximation to
the next higher moment of Distortion.

Theorem 2. For any n > 3 voters, Distortion* (PRC}) <
11+ %, which approaches 11 as n — oo.

Proof. We first present a useful lemma bounding the k£ mo-
ment of the minimum of ¢.7.d. random variables. We provide
a proof in the full version of the paper.'

Lemma 1. Let X1, X5, ..., Xy be drawn i.i.d. from distri-
bution X and let p = E[X]. Then,

1/k

(E [min(X1, Xo,..., Xp)"]) " < p

We now proceed to prove Theorem 2. Let a*
argmin, . ;,SC(a) denote the social optimum. Let 1 =

SC(a*) = L%, yd(i,a*). Suppose we sample a set S
of voters. Fori € S, let X; = d(i,a*). Note that E[X;] = u,
and the X; are i, ¢.d. random variables.

Let m = argmin, ¢ X; be the voter closest to a*, and let
a, denote their favorite alternative. Note d(m, a,,) < X,,.

Leta=1+ ﬁ Consider a ball centered at a* of radius
p = 2au denoted B. By Markov’s inequality, we know that
a strict majority, at least % + 1, of all voters lie within the ball
B, since the average distance of a voter to a* is u.

Given S, suppose PRCy chooses alternative W, and sup-
pose d(W, a*) = Bp. We will show an upper bound on /3 us-
ing the random variable X,,. Since a Copeland winner must
be a member of the uncovered set [Miller, 19771, either a ma-
jority of voters prefer W to a,,, or a majority of voters must
prefer W to an alternative W’ such that a majority of voters

! Available at https://arxiv.org/abs/2004.13153
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also prefer W’ to a,,. The first case is easier: if a majority of
voters prefer W to a,,, then there exists a voter 5 € B that
prefers W to a,,,. This implies that
Bp=d(a”,W) < d(a”,j) + d(j,am) < 2p +d(a”, am).
Recall that X, = d(m, a*) and d(m, a,,) < X, s0
Bp <2p+2Xy,.

The second case yields a worse bound, so we continue
the analysis in that case without loss of generality. Let
d(W' a*) = fB'p. Since a majority of voters prefer W to
W', there is at least one voter j € B that prefers W to W/,
that is, d(j, W) < d(j, W'). By triangle inequality,

d(.]a W) > d(a*,W) - d(]a CL*) > (B - 1),0
d(j,W') < d(a”, W') +d(j,a”) < (8" +1)p
where the rightmost inequalities follow from the fact that j €
B = d(j,a*) < p. Combining the above inequalities and
assuming § > 1, we have 8 < '+ 2. Similarly, if a majority
of voters prefer W’ to a,,, there exists some [ € B such that
d(l,W") < d(l, ar,). Again, by triangle inequality:

d(lL,W") > d(a*,W') —d(l,a*) > (' = 1)p
d(l,am) < d(l,a*) +d(a*,m) + d(m,am) < p+2X,,
where we used that ¢ € B and d(m, X,,,) < d(a*,m) = Xpp,.
Combining the above inequalities, we have 5’ < 2 + %.

Since B < B’ + 2, we have: B < 4+ QXTM

Thus, we know that for W to win Copeland,

1
1+ ) w+2X,,
n—2

By triangle inequality, and using SC'(a*) = p, we have:

d(Wa*)=6p§4p+2Xm=8(

SC(W) <d(W,a*)+ SC(a*) < (9 + 7182> w4+ 2X,,

Setting v = (9 + %) u, we have:
k

BISCOV)H] < Bl + 2%, = 3 (V)< B
r=0

Since X, is the minimum of k i.i.d. random variables with
mean g, applying Lemma 1, we have E[X* ] < u*. Applying
Jensen’s inequality, for r < k, we have

E[X},] = E[(X%)"*] <BIXE]F = (uf)7/* = pr.
Therefore, we have
k
)

E[SC(W)H] < i (’“) = (2p)” = (11 "

Therefore , we have Distortion® (PRCy) <11+ %, com-
pleting the proof of Theorem 2.

n—2

O

As a simple consequence, using Markov’s inequality, this
yields a high probability bound on Distortion. In particular,
every additional sample in the elicitation step of PRC pro-
vides a geometric improvement in the high probability bound.
Corollary 1. As n — oo and ¢ > 11, the probability that
PRC}, outputs an alternative with social cost more than c
times that of the social optimum is at most (11/c)".
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4 Limited Participation Model

In this section, we consider mechanisms that sample some
number of voters, query the voters for their most preferred
alternatives, and then hold an election on just the sample of
voters. We first show that limiting participation in this way
necessarily increases the sample complexity.

Theorem 3. Any anonymous limited participation random-
ized mechanism with sample complexity less than 2k — 1 has
Distortion®(f) = Q(n'/*).

Proof. Consider the same instance as Theorem 1. Suppose
we sample 2k — 2 voters. Then the probability that we sample
an equal number of voters located at A and B is

<2k

k
where we have assumed @ > 1/2. In this event, since there
is no majority of voters in the sample that prefer either alter-
native, we assume that any anonymous mechanism outputs B
with probability at least 1/2, so that the social cost is at least
%. Therefore, the k" moment of distortion is at least:

(a/2)F

(- (2 a)k))w =i,

1—a)l/k
Choosing o« = 1 — ¢/n for constant ¢ so that all but ¢ voters
lie at A, the above expression is Q(n'/*). O

4.1 The FRCg Mechanism

Complementing the above impossibility, we show that sample
complexity of 2k — 1 is also sufficient to achieve constant k*"
moment of Distortion. In particular, we define another family
of social choice rules called Fully Random Copeland.

Definition 4. The Fully Random Copeland rule parameter-
ized by positive integer s, denoted FRCg proceeds as fol-
lows. It first samples s voters N drawn independently and
uniformly at random from N with replacement. All voters in
N are queried for their favorite alternative, and the union
of all such alternatives is denoted M. Finally, F RC returns
the winning alternative under the Copeland social choice rule
with voters N and alternatives M.

We now show Theorem 4, which says that every additional
two voters participating in FRC provide a constant approxi-
mation to the next higher moment of Distortion.

Theorem 4. Distortion*(FRCy;,_1) < 17.

Proof. As in Section 3, we first present a result on bounding
the k" moment of a function of i.i.d. random variables; this
time the function is the median instead of the minimum. We
provide a proof in the full version of the paper.”

Lemma 2. Let X1, Xo, ..., Xor_1 be drawn i.i.d. from dis-
tribution X and let p = E[X]. Let Y denote the median of

X1, Xa, ..., Xop_1 . Then, (E[Y*))"/" < 4.

2 Available at https://arxiv.org/abs/2004.13153

_12)ak1(1a)k1 > (204)1071(170[)]@71 > (170&)’67

1

114

We will also need the following straightforward property
of the Copeland Rule.

Lemma 3. Suppose there are 2k — 1 alternatives and voters.
Construct a tournament graph on the alternatives with a di-
rected edge from alternative S to alternative T' if at least k
voters strictly prefer S to T. Then the Copeland rule always
picks an alternative W with in-degree strictly less than k.

We now proceed to prove Theorem 4. As in the proof
of Theorem 2, let a* denote the optimal alternative, and let
SC(a*) =p= L3, yd(i,a*). Suppose we sample a sub-
set of voters, S of size 2k—1 Fori € S, let X; = d(i,a*). Or-
der these voters so that X; < Xp < --- < Xg;_71 and letm
be the voter that corresponds to the median of this sequence.
Let Y = d(m, a*). Note from Lemma 2 that E[Y*] < (4u)F.

Suppose the Copeland rule chooses an alternative W, and
suppose d(W, a*) = Y. We will find an upper bound for .
Consider the ball centered around a* with radius Y'; call this
B. By definition, at least k agents in .S lie within B. Note
that for any j € BN S, d(j,a;) < d(j,a*) < Y. Therefore,
for j,l € BN S, we have

d(j,a;) <d(j,a*)+d(l,a*)+d(l,a;)) <Y +Y +Y =3Y
Now, for j € BN S, we have
d(j,W) = d(a*, W) —d(j,a*) > (a = 1)Y

If & > 4, then combining the above two observations, we
have that for all j,I € B, we have d(j,a;) < 3Y < d(j, W).
This means that the set of at least k& voters in B N S strictly
prefer all of the favorite alternatives {a;,! € BN S} to W.
From Lemma 3, this means that W cannot be the Copeland
winner. Thus, for W to win in the Copeland rule, we must
have a < 4 so d(W, a*) < 4Y. By triangle inequality,

SC(W) < SC(a*)+d(a*, W) < p+4Y

Using Jensen’s inequality in a fashion similar to the proof of
Theorem 2, and using E[Y*] < (4u) we have:

so we have that Distortz’on’“(FRCzk,l) < 17. This com-
pletes the proof of Theorem 4.

E[SC(W)¥] < E[(u + 4Y)*

O

Again, as a consequence of Markov’s inequality, we have
the following high probability bound.

Corollary 2. For ¢ > 17, the probability that F RCsy,_1 out-
puts an alternative with social cost more than c times that of
the social optimum is at most (17/c)*.

5 Empirical Simulation

In this section, we augment our theoretical worst case analy-
sis with a qualitative empirical demonstration of the concen-
tration achieved by the PRC and FRC mechanisms on real
world data. We use data from the Participatory Budgeting
project; see [Goel et al., 2015]. In this domain, there are a
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number of public projects (such as new sidewalks, park reno-
vations, etc.). Each project has a monetary cost, and we want
to select a set of projects subject to not exceeding a total bud-
get. In participatory budgeting, local community members
vote directly over their preferred projects, and these votes are
aggregated to decide which projects to fund.

We consider knapsack voting data [Goel et al., 2015]
where each voter reports the set of projects they most prefer
subject to the total budget constraint. This makes knapsack
voter data particularly useful for us: voters select their sin-
gle favote alternative out of a very large space, the power set
of projects. Because we also have information about the la-
tent combinatorial space (specific projects selected and their
costs), we can impose simplistic but natural notions of dis-
tance to allow us to simulate our mechanisms and study their
performance with respect to the imposed distance.

Simulation. It is important to note that this is a simulation;
actually running our mechanisms does not require specifying
a notion of distance, and we do not know how these voters
would have responded to ordinal queries in reality. We are
treating an entire budget allocation as a single outcome and
imputing preferences of voters over these outcomes. This
reduces the problem to single winner election over a large
space of alternatives in keeping with the theoretical model of
this paper. Therefore, natural baseline mechanisms are single
winner rules with small sample complexity, particularly Ran-
dom Dictatorship which is the best-known mechanism with
respect to the first moment of Distortion. Other mechanisms
for participatory budgeting are tailored to specific models of
voter preferences over the combinatorial space of projects,
and do not, in general, provide constant Distortion guaran-
tees for arbitrary metrics.

Setup. We consider two simple notions of distance: budget
distance and Jaccard distance. Suppose there are p public
projects numbered 1,...,p with costs ci,...,cp, and there
is a total budget of B. A feasible budget is a set of projects
P such that ), pc, < B. The budget distance between

budgets P and Qis 1 — % > iepnq Ci- The Jaccard distance

between P and @ is 1 — }igg} The social cost of a given

budget is the average distance to the proposed budgets of the
voters. We use knapsack voting data from the Participatory
Budgeting election held in Cambridge, MA, USA in 2015.
There were 945 voters, 23 projects (implying 222 > 8 million
possible budgets), and a total budget constraint of $600, 000.

Results. In Figure 1, we present the box plots of the dis-
tributions of social cost of PRC and FRC alongside Random
Dictatorship (RD) when simulating using budget distance and
Jaccard distance respectively. The RD mechanism samples a
single most preferred alternative uniformly at random and has
Distortion at most 3 [Anshelevich and Postl, 2017], which is
asymptotically the best known bound for any randomized so-
cial choice mechanism for arbitrary metrics. The examples
qualitatively verify that the PRC and FRC mechanisms do
provide substantial concentration in terms of the approxima-
tion to the optimal social cost. Furthermore, in practice we
observe better average performance of PRC and FRC over
that of RD, despite RD’s theoretical optimality with respect
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Figure 1: Distribution of approximation to optimal social cost for
1,000 runs of each mechanism on Cambridge 2015 knapsack voting
data using budget distance (top) and Jaccard distance (bottom).

to the first moment of Distortion. The results also show that
FRC requires more samples to achieve similar performance
as PRC. To summarize, even on real datasets, just a few addi-
tional samples provide substantially improved concentration.

6 Future Directions

There are several avenues of future research. Our mecha-
nisms first sample some alternatives and then put them to
vote. Is there a one-shot mechanism that can bound higher
moments of Distortion while only eliciting a constant (with
respect to the number of alternatives) amount of information
from each voter? Our intuition is that this should be impos-
sible. Also, though our sample complexity bounds are tight,
the exact constant in the Distortion bounds can likely be im-
proved. This improvement may be nontrivial: We do not use
the Distortion of Copeland as a black box, so results such
as [Munagala and Wang, 2019] do not directly improve our
bounds. As in [Mandal et al., 2019], it would be interesting
to analyze whether sample complexity can be decreased if
voters can express limited amounts of information about car-
dinal preferences. In a related vein, could methods that make
voters interact like [Fain et al., 2017] help reduce the sample
complexity of the process?
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