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Abstract
We derive conditions under which a peer-
consistency mechanism can be used to elicit truth-
ful data from non-trusted rational agents when an
aggregate statistic of the collected data affects the
amount of their incentives to lie. Furthermore, we
discuss the relative saving that can be achieved by
the mechanism, compared to the rational outcome,
if no such mechanism was implemented. Our work
is motivated by distributed platforms, where decen-
tralized data oracles collect information about real-
world events, based on the aggregate information
provided by often self-interested participants. We
compare our theoretical observations with numeri-
cal simulations on two public real datasets.

1 Introduction
The task of eliciting reliable information from the participants
of a system or a platform is rather fundamental and quite chal-
lenging: How can we incentivize the participating agents to
provide the information they observe, truthfully? For exam-
ple, imagine that we are trying to determine the quality of a
service (e.g., a streaming service or an internet service) based
on the feedback provided by the users. How can we trust
that the users will spend the effort to come up with informa-
tive feedback, that actually reflect the quality of the service,
rather than random numbers?

With access to a ground truth, i.e., a known measure of
quality, a set of proper scoring rules are known to be capable
of inducing truthful behavior from the users. But what about
settings like the one of the example above, where we do not
have an objective measure of the quality of the service, or that
information is too costly to obtain? Peer-prediction [Miller
et al., 2005; Prelec, 2004] (and in general, peer consis-
tency [Faltings and Radanovic, 2017]) mechanisms deal with
precisely this issue: the broad idea is to match the report of
an agent with that of a randomly chosen peer, and provide a
payment as a function of the two reports.

The literature on peer-consistency [Faltings and
Radanovic, 2017]) is quite rich. This literature includes
solutions that are guaranteed to incentivize truth-telling
even when there is a cost of effort for forming an informed
report [Radanovic et al., 2016], but it does not address

settings in which agents have other incentives dependent
on the aggregate feedback. Such cases arise frequently, for
example, in decentralized QoS monitoring, environmental
data collection and surveys that inform policy-making.
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Figure 1: QoS Monitoring: A Motivating Example of Outcome De-
pendent Lying Incentives. Replacing trusted third party with the
users themselves creates lying incentives for the users to misreport
the true QoS received from the service provider. A game-theoretic
mechanism incentivizes the users to report truthfully. As shown
by [Goel et al., 2020], the game-theoretic mechanism itself can be
implemented by a regulatory authority in a completely decentral-
ized, trustless and transparent manner by using the blockchain tech-
nology. A smart contract can automatically process refunds based
on the crowdsourced outcome and the conditions of the SLA.

As a concrete example, consider the case of a web service
which is typically dictated by a service level agreement (SLA)
between the service provider and the clients, where the agree-
ment dictates that the client will be compensated if there is
a violation. Traditionally, a trusted third party monitors the
quality of service (QoS) and sends the reports to a regulatory
authority (or the service provider itself for self-regulation).
Depending on the collected reports from the trusted party and
the conditions of the SLA, users are issued refund. Not only
this traditional approach is costly due to the high cost of hir-
ing a commercial third party but it is also not a transparent
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and decentralized approach from the users’ perspective. On
the other hand, if we were to decide whether such a violation
actually took place based on the feedback from the clients
themselves, it is clear that the clients would have incentives
to report a violation regardless, in order to be compensated.
To get truthful reports from the users, their incentives must
be aligned with truthful behavior by using a game-theoretic
mechanism. The main question here is, can we still use a
peer-consistency mechanisms to counter-act this type of out-
side incentives?

1.1 Our Contributions
In this paper, we consider settings with outside incentives and
binary observations, and we employ the PTSC mechanism
of [Radanovic et al., 2016] as a side-payment scheme. We
prove that, with an appropriate choice of the scaling constant,
the mechanism can be used to ensure that truth-telling is a
strict equilibrium of the induced game. This is the first result
of this nature, that shows that a peer-consistency mechanism
can be applied to the case of outcome-dependent incentives
in a general information elicitation scenario.

Furthermore, we show that if there is any positive fraction
f of honest agents (i.e., agents that always report truthfully),
the strategy profile in which the agents exercise their outside
incentives, or denial strategies (e.g., reporting “bad” service)
is no longer an equilibrium. Assuming the existence of honest
agents is very different from using trusted authorities since
our method does not depend on knowing who these honest
agents are. This is a rather common scenario, as in a large
platform, one would normally expect at least a few agents
to behave honestly but we would not expect to know their
identities. These properties of the PTSC mechanism were
already known in the absence of the outside lying incentives
[Radanovic et al., 2016]; our paper extends the analysis of
PTSC in the presence of the outside incentives.

Additionally, for the first time, we compute a bound on
the scaling required for ensuring a truth-telling equilibrium
of the side-payment scheme, as a function of the outside in-
centives. We also provide conditions under which the side-
payment scheme gives positive saving compared to the ratio-
nal outcome (i.e., the denial strategy outcome) and we prove
a lower bound on this saving. We show that as the number
of agents grows large, the saving approaches the best possi-
ble saving, attainable when all agents are honest, without any
side-payments. We also provide bounds (on the same quanti-
ties) when one has to not only ensure a truthful equilibrium,
but also eliminate the denial strategy equilibrium. Interest-
ingly, in the process of doing this, we find an upper bound on
the fraction of honest agents that should be present, in order
for the side-payment scheme to still be profitable.

Finally, the scaling constant, as well as the savings of
PTSC depend on a quantity δ∗, which we refer to as the self-
predictor value and is essentially a measure of correlation
strength between prior and posterior signals. The assumption
that δ∗ > 0 is a standard assumption in the literature of peer-
consistency (e.g. see [Jurca and Faltings, 2005], [Witkowski
and Parkes, 2012]) and translates to positive correlation be-
tween the observations of the agents. We quantify the re-
quired scaling constant as well as the saving in terms of this

quantity. Moreover, we do not need to know this quantity;
an estimate is sufficient for the results to either hold exactly
or approximately, where the approximation error goes to 0 as
the number of agents grows large.

1.2 Related Work
Our work draws on the recent ideas in the peer-consistency
literature [Radanovic and Faltings, 2013; Dasgupta and
Ghosh, 2013; Waggoner and Chen, 2014; Radanovic and
Faltings, 2015; Kamble et al., 2015; Shnayder et al., 2016;
Radanovic et al., 2016; Gao et al., 2016; Agarwal et al., 2017;
Liu and Chen, 2017; Kong and Schoenebeck, 2018; Goel and
Faltings, 2019a; Goel and Faltings, 2019b]; here we focus on
the results related to settings with outside incentives. A sur-
vey of the techniques in this area can be found in [Faltings
and Radanovic, 2017].

The topic of outside incentives in decentralized platforms
has been recently explored in the context of prediction mar-
kets, drawing motivation from applications like Augur and
Gnosis. [Chakraborty and Das, 2016] perform equilibrium
analysis when the market participants may significantly influ-
ence the actual realization of the outcome, in a game which
is played in two stages; first the agents trade in the market
and then they vote on the outcome. Their model captures
the empirical observations in prior work [Chakraborty et al.,
2013]. These works however only analyze the effects of ra-
tional behavior, rather than aim to counteract it, by imple-
menting appropriate mechanisms. [Chen et al., 2011] con-
sider similar two-stage models of prediction markets, where
the agents strategize only in the first stage to manipulate the
market prices used for the predictions. The authors analyze
information aggregation properties of the market and don’t
consider outcome manipulation, and their setting is thus quite
different from ours.

[Freeman et al., 2017] study a related setting, where they
assume that agents trade honestly in the first stage and
only behave strategically in the second. They use a peer-
consistency mechanism to elicit truthful votes in the equilib-
rium of the second stage, and show that under certain con-
ditions, the fees charged by the market are enough to cover
the side payments. Interestingly, they also use a similar mea-
sure of signal correlation, which they refer to as the “update
strength”, and they express some of their results using this
quantity.

Our work differs from [Freeman et al., 2017] in two key
aspects. First, our informational assumptions are weaker. In
particular, we only require access to a measure of signal cor-
relation (the self-predictor value) and actually, only an esti-
mate of that measure is sufficient. In contrast, [Freeman et al.,
2017] use the prior distribution of the agents’ beliefs, which
they obtain from the closing price of the market, enabled by
the assumption that the agents are honest in the trading stage.
While this may be meaningful in a prediction market domain,
such assumptions are far less realistic in the more general set-
tings that we consider. Secondly, [Freeman et al., 2017] do
not address the issue of non-truthful equilibria in their work.
In settings other than prediction markets, [Jurca et al., 2007]
consider QoS feedback elicitation but assume full knowledge
of agents’ beliefs and only constant lying incentives.
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Finally, we remark that, as we mentioned earlier,
[Radanovic et al., 2016] have already shown that the PTSC
mechanism can be tuned to overcome the cost of effort that
the agents might have for coming up with their observations,
which is a constant quantity. This is therefore markedly dif-
ferent from the case of outside incentives, where the “cost”
that needs to be overcome crucially depends on the reports of
the other agents.

2 Model and Objectives
We consider settings in which questions are to be resolved
on a decentralized platform through acquiring feedback from
agents. No agent, however, is required to answer more than
one question. The questions can be, for example, of the fol-
lowing form : “Is the responseTime of web service W
less than 10 seconds?”. An agent i makes a private binary
observation Xi ∈ {0, 1} about a question and submits her
feedback report Yi ∈ {0, 1} to the platform. For any ques-
tion, n agents are asked to submit their feedback, and based
on this feedback, the questions are said to be resolved by an-
nouncing their outcomes. The outcome ow for a question w
is defined as the fraction of agents who reported 0 as their
feedback. In the web service example, this corresponds to
the fraction of agents who report that the responseTime
of the service was not less than 10 seconds.

Note that we define the outcome ow to be a continuous
variable, whereas the feedback is elicited as a discrete vari-
able. This is because of the noisy (and in some cases sub-
jective) nature of the feedback. In the web-service case,
responseTime is a noisy measurement and no service can
promise a certain response time 100% of the time. Thus, it
is important to define the outcome as a continuous variable
measuring the fraction of time that the service did provide a
good response time. We remark here that more generally, the
outcome can be defined as any non-negative, non-decreasing
function of the fraction of agents who report 0 (e.g., a thresh-
old function that becomes 1 if, say, 70% of the agents re-
port 0). We choose the fraction of dissatisfied agents as our
outcome function, for the reasons mentioned above, and also
following the related literature [Freeman et al., 2017].

The main novelty of our setting is that the agents receive
an outside incentive that is dependent on this aggregate out-
come. More precisely, the payment given to an agent isR·ow,
where where R is a positive constant. In the web service ex-
ample, such payments might arise through the service level
agreements between the web service provider and the agents.
The focus of this paper is how to adapt the incentives given
for the reports to overcome such lying incentives.

After making her private observation, agent i uses a strat-
egy σi to submit a report Yi based on observationXi, in order
to maximize her expected payment. The agents are assumed
to be rational and therefore they may not report their true ob-
servations, if not properly incentivized to do so. We follow
the common assumptions that agents are risk-neutral and that
the utilities are non-transferable.

Definition 1 (Agent Strategy σi). An agent i’s strategy, de-
noted by σi(Yi = y|Xi = x), ∀ x, y ∈ {0, 1}, is the proba-
bility of the agent’s report for the question being y given that

her observation is x.
The strategy models a variety of possibilities that are avail-

able to the agent for mapping her observation to report. Some
examples are as follows:s
Definition 2 (Truth-telling Strategy). An agent’s strategy is
called truth-telling if and only if σi(Yi = y|Xi = x) =
1, ∀ x = y and σi(Yi = y|Xi = x) = 0, ∀ x 6= y.
In heuristic strategies, the report of the agents are indepen-
dent of their observations. One heuristic strategy of particular
importance is always reporting 0, formally defined below.
Definition 3 (Denial Strategy). An agent’s strategy is called
the denial strategy if and only if σi(Yi = 0|Xi = x) = 1 and
σi(Yi = 1|Xi = x) = 0.
The denial strategy is an interesting strategy in our setting be-
cause the payment that agents receive depends on how many
of them report 0 as their feedback. The following observation
is fairly easy to see.
Observation 1. In the settings described above, the denial
strategy is the (strictly) dominant strategy for all agents and
gives the maximum paymentR.
A strategy σi is called (strictly) dominant if it gives agent i
her highest possible payment, given any strategies of the re-
maining agents. Observation 1 implies that in the presence of
rational agents, the outcome determined by the decentralized
platform is bound to be 1.00, since every such agent will re-
port 0 irrespective of their true observation. Such an outcome
determination is not useful for any practical purposes; on one
hand, it is not informative and hence provides no utility in
terms of the information acquired, and on the other hand, if
such an outcome is used to issue the payments to the agents,
it can incur a huge loss on the platform.
Peer-consistency. To counteract this phenomenon, the
agents need to be properly incentivized by the platform to
provide their feedback truthfully. We propose to do this,
by issuing them a side-payment in addition to the payment
that they receive based on the outcome resolution. Clearly,
any constant amount of such side-payment does not achieve
this objective; the side-payments have to be contingent on
the truthfulness of the agents’ reports. However, since there
is no way to directly establish the truthfulness of the feed-
back, we will appeal to the power of peer-consistency mech-
anisms [Faltings and Radanovic, 2017] to align the incentives
of the agents with their feedback. The most important con-
stituents of the peer-consistency framework are the agents’
beliefs about the observations of their peers. We will let
Pi(Xp = x′), for x′ ∈ {0, 1}, denote agent i’s (prior) belief
about a randomly selected peer p’s observationXp on a ques-
tion being x′. We will assume that all questions are a priori
similar so the prior belief of the agent is same for all ques-
tions.1 After the agent makes a private observation Xi for a
question, she updates her belief (posterior) about her peer’s
observation on that question only, to Pi(Xp = x′|Xi = x).

1If not all questions are a priori similar but there are known
batches of a priori similar questions, our results can be extended
for each batch separately. For example, in the web-services case,
this can be done by grouping web-services with similar SLAs.
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The first objective of this paper is to ensure that the decen-
tralized platform can be used as an oracle, in the sense that
the outcome determined by the platform is correct. The next
question is, how large do the side-payments need to be? Is
it possible to implement the side-payment scheme suggested
by the peer-consistency mechanism without incurring loss to
the platform? Our benchmark here is the amount of money
that the platform would have to pay if there were no side-
payments in place, and therefore the outcome would be deter-
mined by the denial strategies of the agents. In other words,
we define the relative saving of a side-payment scheme to be

relative saving:
nR−P
nR

,

where P is the total payment (side-payment + outcome de-
pendent payment) under the scheme to the agents. The rea-
son for considering relative saving in this paper and not the
actual saving in monetary units is that the absolute saving is
domain and scale dependent and not very informative in a
general sense. Before we proceed, let us see what the best
relative saving that we could hope for is.
Proposition 1. If agents were honest (i.e. they reported truth-
fully ignoring the outcome dependent payments), the platform
could make an expected relative saving of up to P (1) in the
payments, where P (1) is the actual probability of a randomly
selected report on the platform being 1.
Note that the best possible saving is not 100%, because it de-
pends on the actual quality of the service. In the web service
example, Proposition 1 states that when the response times of
the services are generally good i.e., P (1) is high, the platform
could make significant savings (up to 100% as P (1) → 1)
if the agents were honest. Also, note that we are compar-
ing against the ideal outcome, when agents would not need
to be incentivized to act truthfully; a mechanism that fares
well against this outcome, will fare well against any other
side-payment scheme, including one in which the outcome
determination is done by a costly third party.
The PTSC Mechanism. Since we are interested in relax-
ing the informational assumptions as much as possible, we
will use a detail-free mechanism (that doesn’t know agents’
beliefs) for determining the side-payments on the decentral-
ized platform. Note that it is not necessary that a given user
may be able to answer multiple questions (about different
web services). This rules out several multi-task mechanisms
like [Dasgupta and Ghosh, 2013; Shnayder et al., 2016].
Thus, we will use the PTSC mechanism [Radanovic et al.,
2016], which we describe here for completeness. To decide
the reward for an agent, the mechanism selects another agent
p who also submitted feedback for the same question. Sup-
pose that the agent submits Yi = y and the peer submits
Yp = y′. The side-payment of τ(y, y′) agent i under the
PTSC mechanism is:

τ(y, y
′) =

α ·
(1y=y′

Ri(y)
− 1
)

if Ri(y) 6= 0

0 if Ri(y) = 0

where α is a strictly positive scaling constant. The mech-
anism uses Ri(y) = numi(y)/

∑
ȳ∈{0,1}

numi(ȳ), where

numi(y) is a function that counts occurrences of y in the
feedback of all agents (except i) across all questions. The
PTSC mechanism is a special case of the PTS mechanism [Ju-
rca and Faltings, 2011] and is based on the idea of using
Ri(y) from other apriori similar questions to estimate the
prior belief of the users. It is possible to use other ways to
estimate the prior in the PTS mechanism and relax the re-
quirement of having other questions.

Subjective Equilibrium. When referring to the “correct
outcome” for rational agents, one needs to define an appropri-
ate solution concept is which the outcome will be obtained.
The standard objective in the peer-consistency literature is to
ensure that the correct outcome is achieved in the equilib-
rium, or, in other words, that truth-telling is an equilibrium.
A strategy profile σ = (σ1, σ2, . . . , σn), which represents
a collection of strategies of agents {1, 2, . . . , n}, is a strict
equilibrium if for any agent i ∈ {1, 2, . . . , n}, the agent’s ex-
pected payment is strictly maximized when she adopts strat-
egy σi , i.e. σi is her best response to the strategies of the
other agents. A strategy profile σ = (σ1, σ2, . . . , σn), is an
ε-approximate equilibrium if for any agent i ∈ {1, 2, . . . , n},
the agent’s expected payment when she adopts strategy σi, is
smaller than the expected payment any other strategy σ′i by
at most ε. Since beliefs need not be common among agents,
i.e. they are subjective, the equilibrium concept that we adopt
is the ex-post subjective equilibrium [Witkowski and Parkes,
2012]. In this equilibrium concept, an agent’s best response
is independent of the beliefs of others. In the paper, we will
simply use the terms “equilibrium” and “ε-approximate equi-
librium” for brevity.

3 Truthful Equilibrium and Savings
We first derive the conditions under which the PTSC mecha-
nism can be used to ensure that the truth-telling strategy pro-
file is an equilibrium, in the presence of outcome-dependent
lying incentives for the agents. This is certainly a critical re-
quirement for a side-payment scheme which elicits reliable
information. In the next section, we will provide an even
stronger guarantee, ensuring that truth-telling is also a “good”
equilibrium, under some reasonable assumptions. In our anal-
ysis, we will use the following quantity.
Definition 4 (Self-Predictor Value).

δ∗ = min
i

(Pi(Xp = 1|Xi = 1)

Pi(Xp = 1)
− Pi(Xp = 0|Xi = 1)

Pi(Xp = 0)

)
We note that δ∗ > 0, whenever the observations of agents
are positively correlated; this means that conditional on ob-
serving 1, the posterior belief of the agent about her peer
also observing 1 strictly increases compared to her prior be-
lief about the same. This positive correlation of signals is a
standard assumption in the literature of peer-consistency for
binary answer spaces, e.g. see [Jurca and Faltings, 2005;
Witkowski and Parkes, 2012] and it is under this condition
that PTSC guarantees that truth-telling is an equilibrium.2 We
will make the same assumption throughout this paper, and we

2In the original settings for which it was proposed [Radanovic et
al., 2016], outcome-dependent lying incentives were not present.
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will quantify the required scaling constant of PTSC as well
as the relative savings of the mechanism in terms of δ∗. In-
tuitively, δ∗ is a measure of correlation strength, and captures
the relative increase in the posterior compared to the prior be-
lief, as described above. A very similar quantity was defined
in [Radanovic et al., 2016] capturing similar concept, differ-
ing on the fact that it was a multiplicative parameter rather
than an additive one. The parameter is also closely related to
the update strength in [Freeman et al., 2017].

We emphasize here that the mechanism does not need to
know the exact value of δ∗, but we assume that an estimate of
this value (δ = δ∗ + β, for some β ∈ R) is known.

Theorem 1. Given δ and a scaling constant α > R
n·δ , the

truth-telling strategy profile is a strict equilibrium if β ≤ 0,
and is a (β·Rn·δ )-approximate equilibrium if β > 0.
Note that the theorem is stated in terms of ε-approximate
equilibria. This is because if the value of δ∗ is overestimated
(i.e., β > 0), then the agents might have incentive to actually
deviate from their truth-telling strategy, but that incentive is
bounded by a typically small quantity. In fact, when the over-
estimation imprecision tends to be negligible (i.e., β → 0) or
when the number of agents grows large (i.e., n→∞), then ε
goes to 0 and we obtain exact equilibrium. On the other hand,
if we only underestimate δ∗ (i.e., β < 0), then we obtain ex-
act equilibrium, regardless of the imprecision parameter or
the number of agents.

Any overestimation of δ∗ does not hurt the saving com-
pared to the case of a precise estimation; in fact, it actually
improves it. In contrast, underestimating δ∗ can diminish the
saving, but the loss again vanishes as the number of agents
grows large. The relative savings of the mechanism are cap-
tured in the following theorem.
Theorem 2. The expected relative saving in payments made
in the truth-telling equilibrium is at least P (1) − 1

n·δ , where
P (1) is the actual probability of a randomly selected report
being 1 in the truth-telling equilibrium.

Note that as long as the condition n > 1
P (1)·δ is satisfied,

the lower bound on saving is actually a positive number. Fi-
nally, notice that as n → ∞, the relative saving reaches the
maximum achievable value P (1) discussed in Proposition 1.
In a more favorable setting, when the beliefs of the work-
ers are not arbitrary but are aligned with the real observation
probabilities and the mechanism has access to δ∗, it can be
shown that for any n ≥ 2, the platform makes strictly posi-
tive relative savings given by P (1)

(
1− 1

n

)
.

We conclude the section with the following observation.
While the employment of the PTSC mechanism with an ap-
propriate scaling constant can guarantee that truth-telling is
an equilibrium strategy, it is not hard to see that if no further
assumption are made about agents’ beliefs, the denial strategy
is still an equilibrium strategy in addition to the truth-telling
strategy. [Radanovic et al., 2016] have shown that when out-
come dependent lying incentives are not present, while this
uninformed equilibria does exist in PTSC, it is not profitable
(pays zero expected reward). Unfortunately, in the presence
of outcome dependent lying incentives, this undesired equi-
librium becomes more profitable than the truth-telling equi-

librium because every agent can now get the maximum value
of the refund R by playing the denial strategy. Any attempts
of making the truth-telling equilibrium more profitable in this
setting are impaired by the following result.

Proposition 2. If the denial strategy equilibrium exists in any
mechanism in the presence of outcome dependent lying incen-
tives, it is not possible to make the truth-telling equilibrium
more profitable without causing loss to the platform.

Here loss means that the total payment will be higher than the
maximum refundR. While this negative result is reminiscent
of the known negative result about uninformative equilibria
in the peer prediction mechanism of [Miller et al., 2005] re-
ported in [Jurca and Faltings, 2005; Jurca and Faltings, 2009],
in our result focal uninformative equilibria arise because of
outside incentives and not due to a weakness of the incentive
mechanism.

4 Honest Agents
In many real-life platforms with many participants, it is nat-
ural to assume that at least a few of them will behave hon-
estly, regardless of the monetary incentives that the platform
provides. This can be attributed to several reasons; for ex-
ample, to rational choices that are not explicitly captured by
the payments, e.g., an interest in the well-being of society or
some intrinsic utility from “doing the right thing”, or even
to some form of bounded-rationality [Rubinstein, 1998] or
risk-aversion. We show that the undesirable equilibrium high-
lighted in the previous section can be eliminated in our set-
ting if it is known that there exists an arbitrary small non-
zero fraction f of honest agents on the platform. In fact, it
is only necessary that the agents believe that there is such a
fraction of honest agents, which is a reasonable assumption
in most real-world platforms. As it will be evident later, nei-
ther the rational agents nor the platform know the identity
of the honest agents. Only assuming the existence of honest
agents (without known identities) is fundamentally different
from using identified trusted authorities for obtaining obser-
vations (as proposed in [Jurca and Faltings, 2005]), since the
latter violates the decentralization of the platform, while the
former does not.

For the analysis, we will use an alternative definition of the
self-predictor value that we defined in Section 3. This def-
inition adapts the self-predictor value to the situation when
agents believe that only a f -fraction of other agents are honest
and the remaining (1 − f)-fraction always report 0 irrespec-
tive of their observations, i.e. they follow the denial strategy.

Definition 5 (Self-Predictor Value with Colluding Agents).
Let Qi(Xp = 0|Xi = 1) = (1−f)+f ·Pi(Xp = 0|Xi = 1)
and Qi(Xp = 0) = (1 − f) + f · Pi(Xp = 0). The self-
predictor value with colluding agents is defined as

δ∗c = min
i

(
Pi(Xp = 1|Xi = 1)

Pi(Xp = 1)
− Qi(Xp = 0|Xi = 1)

Qi(Xp = 0)

)
Note that when f = 1, we obtain exactly the same quantity
as in Definition 4.

Lemma 1. If δ∗ > 0, then δ∗c > 0, for any 0 < f < 1.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

128



We will exploit this property of δ∗c to show that it is possible
to eliminate the denial strategy equilibrium for any non-zero
value of f . Similar to the previous section, we assume that
the mechanism knows only an estimate δc = δ∗c + βc.
Theorem 3. Given that for f > 0, (a) an f -fraction of agents
are honest, (b) the remaining (1 − f)-fraction adopt the de-
nial strategy and (c) it holds that α > R

n·δc , the truth-telling
strategy is a strict best response if βc ≤ 0 and is an (βc·R

n·δc )-
approximate best response if βc > 0.
The theorem implies that the collusion of the (1−f)-fraction
who adopt the denial strategy becomes unstable and the ratio-
nal choice for them will be to break the collusion and deviate
to the truth-telling strategy. In other words, the denial equilib-
rium is eliminated and the truthful equilibrium prevails. Thus,
we get the following proposition.
Proposition 3. Under the conditions derived in Theorem 3,
the denial strategy is no longer an equilibrium strategy.
Given that δ∗c ≤ δ∗ by definition (and strictly smaller when
f > 0), the scaling constant α of PTSC in this case is ac-
tually larger than before. The reason is that we are now not
only requiring that truth-telling is an equilibrium, but also that
the denial strategy equilibrium is eliminated. Note that δ∗c is
strictly decreasing in f and achieves its maximum, which is
δ∗, at f = 1.

For the saving, we first remark that the benchmark against
which we compare now naturally becomes the rational out-
come in which the honest agents report the truth and the re-
maining agents play according to their denial strategies. Con-
cretely, the saving of a side-payment scheme, under which a
total payment of P are made to the agents, now becomes:

relative saving:
nR′ − P
nR′

,

where R′ = R ·
[
(1 − f) + f · (1 − P (1))

]
. Note that[

(1−f)+f ·(1−P (1))
]

is the expected value of the outcome
when (1 − f)-fraction of the agents play the denial strategy
(always report 0) and the honest f -fraction report 0 only when
they actually observe 0.

Theorem 4. If 0 < f < 1, the expected relative saving made
by the platform in the truth-telling equilibrium is at least[

(1− f)P (1)− 1

nδc

]
· 1

(1− fP (1))

We remark that the baseline for computing relative saving
now naturally becomes the rational outcome in which the
honest agents report the truth and the remaining agents play
according to their denial strategies and the above theorem has
been derived accounting for this fact. In theorem 4, the lower
bound on n needed for the saving to be positive is given by
n > 1

P (1)·δc·(1−f) . Note that this lower bound depends in-
versely on (1−f). If n is fixed, then one gets an upper bound
on f given by

f < 1− 1

P (1) · δc · n
An upper bound on f , or the direct dependence of n on f
may seem counter-intuitive at first; why would one want to

put a cap on the number of agents that always behave hon-
estly? This is explained by the fact that these are merely the
conditions required for a relative saving to be strictly posi-
tive. When there is a big enough fraction of honest agents,
the effect of the colluding agents on the outcome decreases
and so does the relative saving that can be made by incen-
tivizing these colluding agents to deviate to the truth-telling
strategy. This means that if there are more honest agents than
what the bound suggests (which tends to 1 for large n), then
the platform will not actually save any money by implement-
ing a side-payment mechanism. It should be noted however
that Theorem 3 holds no matter how large f is, meaning that
if the platform desires, at the expense of a negative saving,
it can still implement the side-payment scheme in order to
enforce that all agents are actually truth-telling in the equilib-
rium. The reason for wanting to do that could be to obtain
correct information from the rational agents too, who would
otherwise play denial strategy and introduce noise. It is fur-
ther shown in the proof that the relative saving in this case too
approaches the optimal relative saving as n→∞.

5 Experimental Evaluation
In this section, we evaluate the savings of PTSC experimen-
tally on two real-world datasets, described below.

Dataset. We conducted experiments on the dataset3
of [Zheng et al., 2014], which contains real-world Quality of
Service evaluation results from 339 trusted agents on 5,825
web services. The agents observe the response time (in sec-
onds) and throughput (in kbps) of the web-services and there-
fore, the observations can be used as two different datasets
for our purposes. The dataset exhibits some missing obser-
vations but still has an overall density of 94.8% for response
time and 92.74% for throughput. The observations are real
values which we placed into two categories, corresponding to
“good” and “bad” performance, in order to fit them to our
binary observation setting. We treated a response time of
at most 1 second as a “good” response time and the rest as
“bad”. This resulted in 83.71% good response time observa-
tions, on average across all services. Similarly, we treated a
throughput above 5 kbps as a good throughput and anything
below that as a bad. This resulted in 78.18% good through-
put observations, on average across all services. Thus, in the
context of our model, P (1) ≈ 0.8371 for response time and
P (1) ≈ 0.7818 for throughput.

Simulation Parameters. We are interested in simulating
settings in which the observations in the dataset would have
been made by self-interested agents (rather than trusted ones)
who have an incentive to play the denial strategy. There-
fore, the dataset acts as the true private observations of the
agents, which they may or may not reveal truthfully to the
platform depending on their incentives. We fix a constant re-
fund amountR in our simulations; since we will only discuss
the relative saving, the actual choice of R is not important
here. We vary the number of agents that are asked to report
their observations for a service, by randomly selecting a sub-
set of the agents from the dataset for every web-service.

3Dataset is available at http://wsdream.github.io.
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(a) Response Time Data (b) Throughput Data (c) Response Time Data (d) Throughput Data

Figure 2: Relative saving made by PTSC.

We approximate the self-predictor value δ∗ using the fol-
lowing process. We randomly sample, for each web service,
two true observations. We use this sample to get an empir-
ical estimate of the joint distribution of the observations of
the agents and the prior distribution, and these two empirical
estimates are used in the expression for δ∗. The result of this
process can be thought of as a way to produce δ = δ∗+β, i.e.,
the value δ that appears in the statements of our theorems. As
we mentioned in Section 3, since the value of δ∗ is calculated
as a minimum over all the agents, overestimating this value
might cause some agents to have incentives to deviate, and
in particular switch to their denial strategies. To examine the
robustness of our scheme against this phenomenon, we quan-
tify the savings of the mechanism when a fraction of agents,
even with PTSC implemented, play the denial strategy.

5.1 Experimental Results
In Figures 2a and 2b, we compare the saving achieved by
PTSC against the optimal saving, which is obtained when all
the agents are honest. Specifically, the optimal saving is given
by (Pd − Pα)/Pd, whereas the saving of PTSC is given by
(Pd − Peq)/Pd, where Pd is the refund payment of the de-
nial strategy equilibrium, Pα is the refund payment when all
agents are honest and Peq is the total payment of PTSC, in-
cluding the refund and side-payments. In line with our the-
oretical observation in Theorem 2, the saving achieved by
PTSC converges the optimal saving, which is approximately
P (1), as the number of agents increases. In fact, the saving
approaches the optimal levels quite quickly, for reasonable
numbers of agents (i.e., approximately 40 agents). To quan-
tify the robustness of PTSC with respect to the estimation of
δ∗, the figure also depicts the relative saving made when only
a 90%, 67% and 50% fraction of the agents receive the PTSC
side-payments and report truthfully, and the rest receive the
PTSC side-payment but still use the denial strategy. While
the saving naturally declines, we observe that even with 90%
of the agents being truthful, we achieve a significant saving.

We also consider the relative saving of PTSC when the
side-payments are large enough to not only make truth-telling
an equilibrium, but to also eliminate the denial strategy equi-
librium, as discussed in Section 4, assuming that there ex-
ists an f -fraction of honest agents who always report truth-
fully. We set the value of f to either 0.1 or 0.2, and observe
how quickly the relative savings made by PTSC can reach the
maximum achievable relative saving as the number of agents
increase; this is shown in Figures 2c and 2d. Note that unlike
Figures 2a and 2b, here the relative saving starts at a lower

value; this is because the scaling constant and hence the pay-
ment made by PTSC are required to be larger as discussed
after Theorem 3. Also, note that we have a different maxi-
mum possible saving bound for each f . This is in agreement
with our discussion following Theorem 4 i.e., larger values of
f lower the maximum achievable relative saving.

6 Conclusions
In this paper, we studied settings motivated by polls and other
crowdsourced data where the agents reporting the data have a
conflict of interest with the aggregate statistic of the reported
data. Such scenarios occur for example in reporting environ-
mental data, where some reports might downplay pollution,
in polls such as the LIBOR, where reporting agents have di-
rect financial interest in the poll result, or our running exam-
ple of self-reported Quality of Service measurements, where
reporters may hope for refunds. We showed

(i) how a detail-free peer-consistency mechanism, the
PTSC mechanism, can be implemented to guarantee that
truth-telling is an equilibrium of the induced game, in
spite of the outside incentives to the contrary,

(ii) how the presence of honest agents, which can remain
anonymous, eliminates the undesired equilibrium where
all agents report the outcome that benefits their outside
incentive; and

(iii) lower bounds on the relative saving in the net payments
achieved by the mechanism, which approach optimality
as the number of agents grows large.

We only considered a scenario where the outside incentives
favor the same misreport for all agents, and do so with a par-
ticular dependence on the outcome. In ongoing work, we are
considering different forms of outcome dependence, in par-
ticular threshold functions that require that the outcome ex-
ceeds a given threshold for the users to get refunds, and it
turns out that these lead to different results. In the future, it
would also be interesting to consider cases where agents have
different and possibly opposing interests, such as in polls
where different populations want different outcomes to win.
Given that PTSC provides guarantees for non-binary signal
spaces too, it would also be interesting to study similar prob-
lem beyond the binary answer setting. However, that seems
to require somewhat different formalization for the correct
determination of the outcome and the compensation schemes.
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