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Abstract
We investigate the following many-to-one
stable matching problem with diversity con-
straints (SMTI-DIVERSE): Given a set of students
and a set of colleges which have preferences over
each other, where the students have overlapping
types, and the colleges each have a total capacity
as well as quotas for individual types (the diversity
constraints), is there a matching satisfying all
diversity constraints such that no unmatched
student-college pair has an incentive to deviate?
SMTI-DIVERSE is known to be NP-hard. How-
ever, as opposed to the NP-membership claims in
the literature [Aziz et al., 2019; Huang, 2010], we
prove that it is beyond NP: it is complete for the
complexity class ΣP

2. In addition, we provide a
comprehensive analysis of the problem’s complex-
ity from the viewpoint of natural restrictions to in-
puts and obtain new algorithms for the problem.

1 Introduction
Stability is a classic and central property of assignments,
or matchings, of agents to each other, describing that no
two agents prefer each other to their respective situations
in the matching. Stability is desirable in many scenarios
and spawned numerous works in various contexts [Manlove,
2013]. In this work we investigate the notion of stabil-
ity in combination with diversity, which is key in many
real-world matching applications, ranging from education,
through health-care systems, to job and housing markets [Ab-
dulkadiroǧlu, 2005; Huang, 2010; Kamada and Kojima,
2015; Kurata et al., 2017; Ahmed et al., 2017; Benabbou et
al., 2019; Gonczarowski et al., 2019; Aziz et al., 2019].

For this we conceptually distinguish two sets—a set of stu-
dents which should be matched to a set of colleges (each
with a maximum capacity to accommodate students) with the
additional constraint that the set of students matched to any
single college has to be diverse. The diversity requirements
are modeled as types which are attributes that a student may
or may not have, and upper and lower quotas that specify
how many students of a certain type may be matched to a
given college. The terminology arises from the context of

controlled public school choice, a typical application of this
paradigm where it is desirable to match colleges to students
to ensure stability as well as demographic, socio-economic,
and ethnic diversity (see also affirmative action).

The study of stable matchings with diversity constraints
was initiated by Abdulkadiroǧlu [2005] in the context of col-
lege admissions. It has since become an ongoing and ac-
tively researched topic among economists and computer sci-
entists, covered for example by two chapters [Heo, 2019;
Kojima, 2019] in the recently published book “On the Fu-
ture of Economic Design” [Laslier et al., 2019]. One of
the fundamental questions in this area is whether there is a
diverse and stable matching between students and colleges;
the corresponding computational problem is called SMTI-
DIVERSE (see Section 2 for formal definitions).

As has already been observed in the work of Aziz et
al. [2019] and hinted at in Huang’s earlier work on a closely
related problem [2010], SMTI-DIVERSE is NP-hard. The
authors further claimed that the problem(s) under considera-
tion belong to NP (see also [Manlove, 2013, Chapter 5.2.5]).
We disprove this claim by presenting an involved reduction
showing that the problem is complete for the complexity
class ΣP

2, even under severe restrictions to the input instances.
Hence, the problem is substantially more difficult than all NP
problems, unless a widely believed complexity-theoretical as-
sumption collapses. In particular, this implies that the prob-
lem is not easily amenable to SAT or ILP solvers.

Complementing this hardness finding, we systematically
analyze the complexity of the problem by considering nat-
ural relaxations (such as dropping lower quotas or dropping
stability) or restrictions (such as bounding the number n of
students, the number t of types, the number m of colleges,
and/or the maximum upper quota u∞, and the maximum ca-
pacity q∞). The outcome of our analysis is a full classifica-
tion of the complexity of SMTI-DIVERSE with respect to the
considered restrictions and relaxations, presented in Table 1.
We highlight three key technical contributions of our work:
(1) SMTI-DIVERSE is ΣP

2-complete even when the prefer-
ences do not have ties and m = 4, while two natural relax-
ations of the problem (either dropping the lower quotas or the
stability requirement) lower the complexity to NP-complete.
(2) When n,m+t, orm+q∞ is a constant, SMTI-DIVERSE
can be solved in polynomial time.
(3) SMTI-DIVERSE is NP-complete even if lower quotas are
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all zero and t+ u∞ + q∞ is a constant. This result also fixes
a technical flaw in [Aziz et al., 2019, Proposition 5.3].

Related work. For one type, SMTI-DIVERSE is equivalent
to the Hospitals/Residents with Lower Quotas problem where
no hospital is allowed to be closed (HR-LQ-2), as studied
by Hamada et al. [2016]. This problem is polynomial-time
solvable when no ties are allowed [Manlove, 2013, Chap-
ter 5.2.3]. We show that SMTI-DIVERSE becomes NP-hard
even for only two types.

Huang [2010] introduced the closely related CLASSI-
FIED STABLE MATCHING (CSM) problem, which asks for
a matching that fulfills the diversity constraints and does not
admit blocking coalitions. We show that our ΣP

2-hardness re-
duction can be adapted to show ΣP

2-completeness for CSM.
Aziz et al. [2019] studied school choice with diversity con-

straints, but with a slightly different stability condition: an
unmatched student-college pair {u,w} is d-blocking if it is
a blocking pair (in our sense) and the new solution fulfills
the diversity constraints for all colleges instead of only for w.
This means that a d-blocking pair is also a blocking pair, but
the converse is not true. However, dropping the lower quotas
requirements renders both concepts equivalent. Our model
of blocking pairs is a direct extension of HR-LQ-2, where a
student and a college already form a blocking pair once the
new solution is better for them, regardless of the other col-
leges’ lower quotas. Such a model assumes that the block-
ing condition is tested based on local information of whether
the deviating college’s diversity constraints are fulfilled af-
ter the rematching. This is a standard assumption in many
controlled school choice articles [Abdulkadiroǧlu, 2005; Ku-
rata et al., 2017; Hamada et al., 2016]. Nevertheless, our
ΣP

2-hardness reduction establishes the same hardness for their
variant. Other related work includes recent papers by Nguyen
and Vohra [2019], Kurata et al. [2017], Ismaili et al. [2019].

2 Preliminaries
Given an integer z, let [z] denote the set {1, . . . , z}. Given
two integer vectors x,y of the same dimension, i.e., x,y ∈
Zz for a non-negative integer z, we write x ≤ y if for each in-
dex i ∈ [z] it holds that x[i] ≤ y[i]; otherwise, we write x 6≤
y. A preference list � over a set A is a complete and transi-
tive binary relation on A. We use� to denote the asymmetric
part (i.e., x � y and ¬(y � x)) and ∼ the symmetric part of
� (i.e., x � y and y � x). We say that x is (strictly) preferred
(resp. weakly preferred) to y if x � y (resp. x � y), and that
x and y are tied in � if x ∼ y; � is said to contain ties in
this case. We write [A] to denote an arbitrary but fixed linear
order on A. The expression “x � Y ” (resp. “x � Y ”) means
that x is strictly (resp. weakly) preferred to every one in Y .

Problem-specific terminology. The problem we study has
as input a set T := [t] of types, a setU := {u1, u2, . . . , un} of
n students and a set W := {w1, w2, . . . , wm} of m colleges
together with the following information. Each student u∈U
has (i) a preference list �u over a subset A(u) ⊆ W of the
colleges, and (ii) a type vector τu ∈ {0, 1}t, where τu[z] = 1
means that u has type z. Each college w ∈ W has (i) a
preference list �w over a subset A(w) ⊆ U of the students,

Problems FI-DIVERSE SMTI-DIVERSE

Constraints (`∞ ≥ 0) (`∞ ≥ 0) (`∞ = 0)

Complexity NP-c♦ ΣP
2-c [Th 1] NP-c [Th 2]

m+ u∞ NP-c♦ ΣP
2-c [Th 1] NP-c [Th 3]

t+u∞+q∞ NP-c [Pr 2] NP-c♣ [Th 2,Ob 1] NP-c [Th 2]

n P [Th 4] P [Th 4] P [Th 4]

m+ t P [Th 5] P [Th 5] P [Th 5]

m+ q∞ P [Pr 3] P [Pr 3] P [Pr 3]

Table 1: A complete picture of the complexity results for FI-
DIVERSE and SMTI-DIVERSE (see Section 2 for the definitions).
Results marked with ♦ are due to [Aziz et al., 2019, Prop 5.1] while
the remaining ones are new. All hardness results hold even for pref-
erences with no ties, even if the corresponding measures are upper-
bounded by a constant. The NP-containment result marked with ♣

holds already when either t or q∞ is a constant (see Observation 1).

and (ii) a lower-quota and upper-quota for each type which
is described, respectively, via the vectors `w and uw ∈ [n]t,
where `w ≤ uw, and (iii) a capacity qw ∈ [n] which is the
maximum number of students allowed to be admitted to w.
Note that while the capacity can be modeled by introducing
an extra type, separating it from the types allows for a more
refined analysis of the problem’s complexity.

For each x ∈ U ∪ W , we call A(x) the acceptable set
of x, which contains all students or colleges that are accept-
able to x. Throughout the paper, we assume that no student
or college has an empty acceptable set, and for each student u
and each college w it holds that u ∈ A(w) iff. w ∈ A(u).

A matching M is a set of student-college pairs of the
form {u,w}, where each student u is involved in at most one
pair in M and w ∈ A(u). If {u,w} ∈ M , then we say that u
and w are assigned to each other by M . Slightly abusing the
notation, given a student u ∈ U if there exists a college w ∈
W with {u,w} ∈ M , then define M(u) := w; otherwise
define M(u) := ⊥. We assume that each student u prefers
every acceptable college w ∈ A(u) to ⊥. Similarly, given a
college w ∈ W , we write M(w) := {u | {u,w} ∈ M} to
denote the set consisting of all students assigned to w by M .

Feasible and stable matchings. A matching M is fea-
sible for an instance (U,W, T, (τu,�u)u∈U , (�w, `w, uw,
qw)w∈W ) if it is feasible for each college w ∈ W , i.e., col-
lege w (i) is assigned at most qw students, i.e., |M(w)| ≤ qw,
and (ii) meets the lower and upper quotas for each type, i.e.,
`w ≤

∑
u∈M(w) τu ≤ uw.

A student u and a college w form a blocking pair in a
matching M if: (i) u ∈ A(w) and {u,w} /∈ M , (ii) w �u

M(u), (iii) there exists a (possibly empty) subset U ′ ⊆
M(w) such that u �w U ′, and (iv)M∪{{u,w}}\{{u′, w} |
u′ ∈ U ′} is feasible for w. Accordingly, we say that U ′ is a
witness for {u,w} to block M . A matching M is stable if it
has no blocking pairs.

Problem variants. Now, we formally state our main prob-
lem of interest—the natural generalization of the classical
MANY-TO-ONE STABLE MATCHING WITH TIES AND IN-
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COMPLETE PREFERENCES (SMTI) [Manlove, 2013] to in-
corporate diversity constraints:

SMTI-DIVERSE
Input: A setU of n students, a setW ofm colleges, a set T
of types, the type vectors and preference lists (τu,�u)u∈U
for the students, the preference lists, lower-quota vectors,
upper-quota vectors, and capacities (�w, `w, uw, qw)w∈W
for the colleges.
Question: Is there a feasible and stable matching?

We use SMI-DIVERSE to denote the restriction of SMTI-
DIVERSE to the case with no ties. Moreover, we use FI-
DIVERSE to denote the problem of deciding whether there is
a feasible matching (representing a generalization for FEASI-
BLE MATCHING WITH INCOMPLETE PREFERENCES).

For an illustration, let there be four students u1, . . . , u4,
two colleges w1, w2, with the following type vectors (T.) and
the preference lists (Pref.) of the students (S.) as well as the
preference lists (Pref.), the lower quotas (LQ.), the upper
quotas (UQ.), and the capacities (C.) of the colleges depicted
as follows; preferences always ordered by �:
S. Pref. T. S. Pref. T. C. Pref. LQ. UQ. C.

u1 : w1 w2 01 u2 : w1 w2 01 w1 : u3 u2 u1 11 22 2
u3 : w2 w1 11 u4 : w2 10 w2 : u1 u3 u4 u2 11 11 2

There are two feasible matchings M1 and M2 with
M1(w1)={u1, u3}, M1(w2)={u2, u4}, M2(w1)= {u2, u3},
M2(w2)={u1, u4}. But M1 is blocked by {u3, w2} while
M2 is stable. If u1 does not accept w2, then no feasible and
stable matching exists.

3 How Hard is Diversity?
General complexity. Aziz et al. [2019, Proposition 5.1]
proved that FI-DIVERSE is NP-complete; the hardness re-
sult holds even for a single college. They also claimed that
determining a matching without any d-blocking pairs is NP-
complete [2019, Proposition 5.3]. However, the proof used
to show NP-membership is technically flawed—in particular,
while the proof claims that “Deciding whether a stable out-
come exists is in NP, since we can guess an outcome X and
check whether X admits blocking pair in polynomial time”,
by adapting the reduction in [Aziz et al., 2019, Proposition
5.1] we can show that this is impossible unless coNP ⊆ P.

Proposition 1. Deciding whether a given feasible matching
has no blocking pairs or no d-blocking pairs is coNP-hard.

Note that Proposition 1 itself does not rule out that SMI-
DIVERSE is in NP. It just suggests the given proof is incor-
rect. There could in principle be a different non-deterministic
algorithm to place the problem in NP. We show that this is
not the case in our main result (Theorem 1), by showing ΣP

2 -
hardness. For this we introduce a crucial gadget which is used
in several of our reductions throughout this section.

Lemma 1. Let T = {1, 2}, and let U ] {r1, r2, r3} be a set
of students with three distinguished students r1, r2, r3, and
let W ] {a, b} be a set of colleges with two distinguished
colleges a and b. Similar to the format given in Section 2, the
preference lists and type vectors of students r1, r2, and r3,

and the preference lists, the upper quotas, and the capacities
of the colleges are depicted as follows:

S. Pref. T. C. Pref. UQ. C.

r1 : b a 10 ∀w ∈W : [U ] r2 11 qw
r2 : b [W ] a 11 a : r1 r2 r3 11 1
r3 : a b 01 b : r3 r2 r1 11 2

All students in U have zero types and arbitrary but fixed pref-
erences. All lower quotas are zero. The following holds for
every matching M . (1) If M(a)={r2}, M(b)={r1, r3},
and |M(w) ∩ U |=qw for all w ∈ W , then no pair {u,w}
with “u∈{r1, r2, r3} and w∈{a, b}” or with “u = r2 and
w ∈ W” is blocking M . (2) If |M(w) ∩ U |<qw for
some w∈W , then M is not stable.

It is straightforward to verify the correctness of Lemma 1
by case analysis. With Lemma 1 in hand, we can prove that
the problem is not NP-complete but instead lies on the second
level of the polynomial hierarchy.

Theorem 1. SMTI-DIVERSE is ΣP
2-complete, and remains

ΣP
2-hard even if feasible matchings always exist, there are no

ties, m = 4, and u∞ = 3.

Proof Sketch. To show that SMTI-DIVERSE is in ΣP
2, ob-

serve that checking whether a matching is not stable can be
done by an NP-oracle (guess an unmatched pair {u,w} and a
subset S of students, and check in polynomial time whether
S witnesses that {u,w} is blockingM ). Hence, we can guess
in polynomial time a matching, ask the NP-oracle whether it
is not stable, and return yes iff. the oracle answers no. Con-
tainment follows because NPNP = ΣP

2 [Papadimitriou, 1994].
To show ΣP

2-hardness, we reduce from a problem
called NOT-1-IN-3-∃∀3SAT: Given a Boolean 3CNF for-
mula φ(X,Y ) over two equal-size variable sets X,Y such
that each clause contains at least two literals from Y ∪ Y ,
is there a truth assignment of X such that for each truth as-
signment of Y at least one clause Cj is not 1-in-3-satisfied,
i.e., Cj does not have precisely one true literal. NOT-1-IN-
3-∃∀3SAT can be shown to be ΣP

2-hard via a standard (and
complementing) reduction from ∀∃3SAT, a classic ΠP

2-hard
problem [Stockmeyer, 1976].

The idea of our main reduction is to construct, from an
instance I of NOT-1-IN-3-∃∀3SAT with |X| = |Y | = r
and s clauses, an equivalent instance I ′ of SMI-DIVERSE
with 2r “variable-types”, s “clause-types” and 2 auxiliary
types (the types are ordered in this sequence). Instance I ′
contains a special student d that has all variable-types and all
clause-types, and two distinguished colleges v, w which can
both accommodate d, but d prefers being in v. I ′ furthermore
uses Lemma 1 to construct a gadget which ensures that
a matching can only be stable if d is matched to w—in
particular, this will force a stable and feasible matching to
ensure {d, v} will not form a blocking pair.

Moreover, I ′ contains one clause-student dj for each
clause Cj (let D denote the set of all clause-students) and
one student lit for each literal in X ∪ Y ∪X ∪ Y . Student dj
only has one type: the clause-type 2r + j corresponding
to Cj . Student lit has the variable-type i ∈ [r] corresponding
to its variable as well as all the clause-types 2r + j of every
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clause Cj containing lit. All Y -literal students only want to
go to v; all positive X-literal students prefer v to b while all
negative X-literal students prefer b to v.

We can now explain the core of the reduction: the quotas
of v are set up in a way which ensures (assuming d is
matched to w) that precisely one literal-student for each
variable in X , both literal-students for each variable in Y ,
and some clause-students must be matched to v. In particular,
a clause-student dj will be matched to v if and only if the
literal-student missing from v represents a literal in Cj .
Once set up, we show that {d, v} is blocking if and only if
there is a witness set of literal-students, and this witness set
would represent an assignment which 1-in-3 satisfies I . In
other words, a feasible and stable matching M exists if and
only if there is an assignment of the X-variables (which can
be reconstructed from M ) such that no assignment of the
Y -variables 1-in-3-satisfies all clauses.

The following describes the preference lists, quotas and
capacities of the colleges, together with the preference lists
of the students from {r1, r2, r3, d}.
S. Pref. C. Pref. LQ. UQ. C.
r1:b a w: d r2 02r+s+2 12r+s+2 1

r2:bw a a: r1 r2 r3 02r+s+2 02r+s11 1

r3:a b b: r3 r2 r1 [X] [X] 1r0r+s+2 1r0s1s+2 r + 2

d: vw v: [D] d [Y ] [Y ] [X] [X] 1r2r3s00 1r2r3s00 3r+s
This completes the construction which can be verified to

fulfill the restriction stated in the theorem. It now suffices
to show that “there exists an X-assignment σX such that
for each Y -assignment σY at least one clause is not 1-in-3-
satisfied” if and only if “matching X ′ ∪ Y ∪ Y ∪ D′ to v,
({r1, r3} ∪X ∪X) \X ′ to b, r2 to a, and d to w is feasible
and stable, where X ′ corresponds to the assignment σX and
D′ = {dj | |(X ′ ∪ Y ∪ Y ) ∩ Cj | = 2}”.

To see why the reduction behind Theorem 1 can be used to
directly show ΣP

2-hardness for the problem studied by Aziz et
al. [2019] we observe that in the constructed instance, {d, v}
is a blocking pair if and only if it is a d-blocking pair. The
proof of Theorem 1 can also be adapted to correct an erro-
neous theorem pertaining to a related problem called CLAS-
SIFIED STABLE MATCHING (CSM) [Huang, 2010, Theo-
rem 3.1]. In particular, that theorem claims that CSM is NP-
complete, but it is in effect also ΣP

2-hard. The idea for the
adaption is to construct dummy variable-students with zero-
types and introduce additional types to ensure that {v, d} is a
blocking pair in the proof of Theorem 1 if and only if v forms
with d and the dummy variable-students a blocking coalition.

The impact of diversity. The fact that SMI-DIVERSE lies
in a higher complexity class than FI-DIVERSE can be at-
tributed to the stability constraints. On the other end of the
spectrum, a stable matching without diversity constraints al-
ways exists and can be found in polynomial time [Manlove,
2013, Chapter 3]. We can pinpoint the cause of this jump
in complexity more precisely to the existence of lower quo-
tas, which in some sense implement affirmative action in
the SMI-DIVERSE model. Specifically, we show that if the
lower quotas are all zero, then SMTI-DIVERSE becomes NP-

complete (Theorem 2). Lemma 2 will be crucial for showing
NP-containment.

Lemma 2. If `∞ = 0, then checking whether a matching is
stable can be done in O(n ·m · t) time.

Proof Sketch. It suffices to show that a matching M is sta-
ble for an instance I = (U,W, T, (τu,�u)u∈U , (�w, `w =
0, uw, qw)w∈W ) if and only if the following (polynomially
verifiable) condition is met: for each unmatched student-
college pair {u,w} /∈ M with u preferring w to M(u) ei-
ther “τu +

∑
u′∈M(w) : u′�wu τu′ 6≤ uw” or “|M(w)|=qw and

M(w) �w u”, or both holds.

Even though with zero lower quotas SMTI-DIVERSE is
in NP, and thus can be considered significantly easier than
SMTI-DIVERSE in general, it is actually hard within NP.
Hardness for this case was claimed in [Aziz et al., 2019,
Proposition 5.3]. However the reduction contains a techni-
cal flaw. Indeed, the instance constructed in that proof is al-
ways a yes instance, independent of the original 3-SAT in-
stance. To see this, define the matching M for their produced
instance as follows (notations taken from that proof): First,
let MF :=

⋃
i∈[k]X

i
F \ {(ti1, o(ti1)), (ti2, o(t

i
2)) | i ∈ [k]}.

For each j ∈ [l], let Sj be the set consisting of the first two
(if there are fewer than two, then all) students of the form tiz
(i ∈ [k], z ∈ [2]) appearing in the preferences of oj . Then
M := MF ∪ {(s, oj) | j∈[l] ∧ s∈Sj} is feasible and stable.

Below, we use Lemma 1 to provide a new and simpler NP-
hardness proof for the case with zero lower quotas.

Theorem 2. For `∞ = 0, SMI-DIVERSE is NP-complete; it
remains NP-hard even if `∞ = 0, u∞ = 1, and t = q∞ = 2.

Proof Sketch. To show NP-containment, we guess in polyno-
mial time a matching M , and check whether M is feasible
and stable in polynomial time, using Lemma 2.

To establish NP-hardness, we reduce from (2,2)-3SAT, an
NP-complete variant [Berman et al., 2003] of 3SAT where
each literal lit ∈ X ∪ X appears precisely two times in
the set φ(X) of clauses. Given an instance I = (X =
{x1, . . . , xr}, φ(X) = {C1, . . . , Cs}) of (2,2)-3SAT, con-
struct an instance of SMI-DIVERSE as follows. For each
clause Cj ∈ φ(X), introduce a clause-college cj . For each
variable xi ∈ X , introduce two variable-students xi and yi,
four literal-students u1i , u2i , v1i , and v2i , and two variable-
colleges wi and pi. Introduce three special students r1, r2, r3,
and two special colleges a and b. Let T = {1, 2}.

For ease of description we use the following notation:
let c[uzi ] and c[vzi ], (z ∈ [2]) be the clause-college cj such
that clause Cj contains the zth occurrence of literal xi, and
xi respectively. Further, let sz[cj ] (z ∈ [3]) denote the
literal-student that corresponds to the zth literal appearing
in clause Cj . For instance, if Cj = (x2, x3, x5) and the
occurrence of x2 in cj is its second one, then s1[cj ] = v22 .
Types and preference lists are given below, in a format
similar to the one in Lemma 1.

All lower quotas are zero. This completes the construction
of the instance for SMI-DIVERSE. One can verify the
restrictions stated in the theorem. We show that (X,φ(X))
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is satisfiable if and only if the constructed instance admits a
feasible and stable matching.
S. Pref. T. S. Pref. T. C. Pref. UQ.C.
u1i : wi c[u

1
i ]11r1 : b a 10cj : s1[cj ] s

2[cj ] s
3[cj ] r2 11 1

u2i : wi c[u
2
i ]00r2 : b [C] a11a : r1 r2 r3 11 1

v1i : pi c[v
1
i ] 11r3 : a b 01b : r3 r2 r1 11 2

v2i : pi c[v
2
i ] 00xi : pi wi 10wi : xi u

1
i yi u

2
i 11 2

yi : wi pi 01pi : yi v
1
i xi v

2
i 11 2

The “only if” part: let the truth assignment σX satisfy φ(X).
It can be verified that the following matching M is feasible.
• For each xi ∈ X , if σX(xi) = true, then let M(wi) :=
{xi, yi} and M(pi) := {v1i , v2i }; otherwise let M(wi) :=
{u1i , u2i } and M(pi) := {xi, yi}. • For each clause Cj ∈
φ(X), let M(cj) := {sz(cj)}, where z ∈ [3] is minimal such
that the zth literal in Cj is set to true under σX ; note that
there exists at least one such literal since σX is a satisfying
assignment. • Let M(a) := {r2} and M(b) := {r1, r3}.

To show that M is stable, consider a block-
ing student-college pair {α, β} for M witnessed
by S′ ⊆ M(β). By Lemma 1(1), we infer that α must
lie in {xi, yi, u1i , u2i , v1i , v2i } for some i ∈ [r]. It then suffices
to do a case distinction that rules out α being one of the
former 2 students, and also being one of the latter 4 students.

For the “if” part, let M be a feasible and stable matching
for the constructed SMI-DIVERSE instance. Define the
following assignment σX with σX(xi) := true if there exists
a clause-college cj such that u1i or u2i is assigned to cj ;
let σX(xi) := false if there exists a clause-college cj such
that v1i or vzi is assigned to cj . If no such clause-college
exists, then the truth value of xi can be arbitrary; e.g., let
σX(xi) = true. The constructed assignment satisfies all
clauses because of Lemma 1(2). Thus, to complete the proof,
it suffices to show that σX is a valid truth assignment.

We note that the reduction behind Theorem 2 can be adapted
to show NP-hardness for FI-DIVERSE, even with three types.
Proposition 2. FI-DIVERSE remains NP-hard even if t = 3,
u∞ = 1, q∞ = 2.

As a final remark on the impact of diversity, we note that if
there are only few types t or the maximum capacity q∞ is a
constant, then SMTI-DIVERSE is in NP. The reason for this is
that the size of a witness set is upper-bounded by min{t, q∞}.
Observation 1. If t or q∞ is a constant, then SMTI-
DIVERSE is in NP.
The case with few colleges. The NP-hardness reduction
behind Theorem 2 produces a college gadget for each vari-
able in order to maintain as few types as possible. This leads
to the question of whether the problem remains NP-hard for
few colleges. The following theorem answers the question
affirmatively. The idea is to reduce from the NP-complete
INDEPENDENT SET problem [Garey and Johnson, 1979] and
introduce types corresponding to the vertices and the edges
in an input graph, and students corresponding to the vertices
such that the students assigned to a special college w must
correspond to an independent set. We use Lemma 1 to en-
force that w receives at least some given number of students.
Theorem 3. SMI-DIVERSE is NP-hard even ifm = 4, `∞ =
0 and u∞ = 2.

4 Algorithmic Results
This section provides the algorithmic results that together al-
low us to complete Table 1. The first result deals with the
case where the number of students is bounded by a constant.
Theorem 4. SMTI-DIVERSE can be solved in O(n ·m · t+
2n · (2n+ 1)n · n2 · t) time.

Proof Sketch. We show how to preprocess an SMTI-
DIVERSE instance I = (U,W, T, (�u, τu)u∈U , (qw, `w,
uw)w∈W ) to obtain an instance I ′ = (U,W ′, T ′, (�′u,
τ ′u)u∈U , (q′w, `′w, u′w)w∈W ) with n students, n2 + n colleges
and 2n types which is equivalent in terms of the existence of
a feasible and stable matching. It then suffices to solve I ′ in
the claimed running time via an exhaustive brute-force pro-
cedure.
2n types. Observe that types z, z′ ∈ T which describe the
same subset of students, i.e., {u∈U | τu[z]=1} = {u ∈ U |
τu[z′]=1}, can be merged into a single type ζ. For each fea-
sible matching of I , the students assigned to a college w∈W
of two types z, z′ ∈ T merged in this way always adhere to
the stricter of the upper and lower quotas of the merged types,
i.e., max{`w[z], `w[z′]} and min{uw[z], uw[z′]}. Exhaustive
merging yields the modified types T ′ with |T ′|≤2n.
n2 + n colleges. First, note that we can reject an instance
with more than n colleges with non-zero lower quotas. To
upper-bound the number of colleges with zero lower-quotas,
denoted as W0, note that in a stable and feasible matching M
every student (say, u) matched to a college fromW0 may only
be matched to one of her n most preferred colleges in W0

which has enough upper-quotas to accommodate her. Other-
wise there would be an empty zero lower-quota college inW0

which u prefers to M(u), forming a blocking pair.
We employ this observation by defining the following

marking procedure. Let us begin by setting W ′ = ∅. Now,
for each student u ∈ U , we mark the n most preferred col-
leges in W0 \ W ′, resolving ties arbitrarily. Clearly, at the
end we obtain a set W ′ of size at most n2. This is easy to
prove via a replacement argument and the above observation
that the colleges inW0\W ′ may be deleted without changing
the existence of a stable and feasible matching.

Next, we show that SMTI-DIVERSE can be solved in poly-
nomial time if the number m of colleges and the maximum
capacity q∞ of all colleges are constants, using a simple
brute-forcing algorithm based on the following observation.
Observation 2. Every feasible matching can assign colleges
to at most m · q∞ students.

By the above observation, we only need to guess a subset
of at most m · q∞ students which are assigned to colleges,
and branch for each student in the guessed set on the choice
of one out of m possible colleges. For each branch, we check
feasibility and stability in O(2q∞ · n ·m · t) time since each
college obtains at most q∞ students (see Observation 1).
Proposition 3. SMTI-DIVERSE and FI-DIVERSE can be
solved in O(nm·q∞ · (m · q∞)m · 2q∞ · n ·m · t) time.

Finally, we turn our attention to instances with a small
number of colleges and types, and show that in this case
SMTI-DIVERSE also admits a polynomial-time algorithm.
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We note that while under such restrictions one can use
the bounded-variable ILP Encoding technique [Bredereck et
al., 2014, Section 3.1] to show that FI-DIVERSE becomes
polynomial-time solvable, the same technique is unlikely to
work for SMTI-DIVERSE. That is because two students,
even with the same type vectors and the same preferences,
may be preferred differently by a college.

However, to witness a blocking pair in a matching, only
those students assigned to a college w need to be considered
that are least preferred by w among all students assigned to w
with the same type vector. We introduce two notations to
formally describe such students. Given a matching M , a col-
lege v, and a type vector τ ∈ {0, 1}t, let S(M,v, τ) := {u ∈
M(v) | τu = τ} denote the set of students with type vector τ
that are assigned to v, and let worst(M,v, τ) denote the set of
students in M(v) with type vector τ that v prefers least:

worst(M,v, τ) := {u ∈ S(M,v, τ) | S(M,v, τ) �v u}.
Proposition 4. Let M be a feasible matching in an SMTI-
DIVERSE instance. Then, an unmatched student-college
pair {u,w} with w �u M(u) is blocking M if and only if
there is a subset of k students U ′ := {ui1 , . . . , uik} ⊆M(w)
(0 ≤ k ≤ |M(w)|) assigned to w such that

(i) no two students from U ′ have the same type vector,
(ii) each student u′ ∈ U ′ belongs to worst(M,w, τu′),

(iii) w strictly prefers u to each student in U ′, and
(iv) M ∪ {{u,w}} \ ({{u,M(u)}} ∪ {{u′, w} | u′ ∈ U ′})

is feasible for w.

Proof Sketch. (iii) and (iv) necessarily hold for every set that
witnesses that {u,w} is a blocking pair. (i) can be seen to
hold for every minimal such set because at most one student
from each type vector has to be removed fromM(w) to make
the addition of u to M(w) feasible for w. We can achieve (ii)
by swapping each student u /∈ worst(M,w, τu) from a
minimal witnessing set for a student in worst(M,w, τu).
This modification maintains all previous conditions and the
fact that the set witnesses that {u,w} is a blocking pair.

Theorem 5. SMTI-DIVERSE can be solved in
O(nm·2

t+(2m+1)·(t+1) ·m2 · (nt · t+m)) time.

Proof Sketch. Let I = (U,W, T = [t], (τu,�u)u∈U , (�w,
qw, `w, uw)w∈W ) be an instance of SMTI-DIVERSE. We
introduce an extra type possessed by each student, and require
each collegew ∈W to have no more than qw students for this
extra type to encode capacities by types.

Motivated by Proposition 4, we will exhaustively branch,
for each college and each type vector τ ∈ {0, 1}t, on the
choice of a student wst(wj , τ) ∈ A(wj) ∪ {>} who will
be in worst(M,wj , τ) for a hypothetical feasible and sta-
ble matching M . Here wst(wj , τ) = > is interpreted as
worst(M,wj , τ) = ∅. Moreover we branch to determine the
number #(wj , z) ∈ {`wj [z], . . . , uwj [z]} of students of each
type z ∈ [t] that each college wj ∈W receives under M .

For each such branch we iteratively try to extend M0 =
{{wst(wj , τ), wj} | wj ∈ W, τ ∈ {0, 1}t} to a feasible and
stable matching which conforms to the guesses in the branch,
one not yet matched student at a time.

More specifically, we only add a student-college pair to the
matching if doing so maintains the status that each guessed
wst(wj , τ)-student is least preferred among the students as-
signed to wj with type vector τ , the guessed number of stu-
dents for each college and type is not exceeded, and there
is no induced blocking pair involving the added student and
some guessed wst(wj , τ)-students (as witness). To check
these conditions and more importantly to upper-bound the
number of considered matchings we keep a record in addi-
tion to each constructed (partial) matching, the guessed least
preferred students wst(wj , τ), τ ∈ {0, 1}t and the guessed
numbers #(wj , z) of students, z ∈ [t], wj ∈ W . A record
for a set Ui of students is an (m + 1) × (t + 1)-dimensional
integer matrix Q∈{0, . . . , n}(m+1)×(t+1) storing the type-
specific number of students assigned to a college, and the
number of students assigned to it in total. Two “partial”
matchings in a branch can be argued to be equivalent in terms
of existence of feasible and stable extensions whenever they
have the same record, which is why in each branch we only
need to consider at most n(m+1)·(t+1) matchings.

After having considered the last student un, we check
whether there exists a record Q with a matching M that cor-
responds to the information in #(wj , z), i.e., for each col-
lege wj ∈ W and each type z ∈ [t] whether Q[j][z] =
#(wj , z) holds. We return M once we found a matching
fulfilling the above condition. If no such matching is found,
we return that we have a “no”-instance. Correctness can be
argued using Proposition 4 and the fact that, in each branch,
two partial matchings with the same record are equivalent in
terms of existence of feasible and stable extensions.

5 Conclusion
We identified and studied a natural, albeit highly in-
tractable, stable matching problem enhanced with diversity
constraints (SMTI-DIVERSE). We showed that while SMTI-
DIVERSE is in general ΣP

2-complete, it is polynomial-time
solvable when n (the number of students), m+t (the number
of colleges and types), orm+q∞ (the number of colleges and
the capacity) is a fixed constant.

For future work, studying SMTI-DIVERSE through the
lens of parameterized complexity [Downey and Fellows,
2013; Flum and Grohe, 2006; Niedermeier, 2006; Cygan et
al., 2015] may provide further insights into the fine-grained
complexity of the problem. We left open whether the prob-
lem is FPT parameterized by m+ t. One can also exploit the
structure of interactions between students, colleges and types
to identify new tractable instances, for instance via the use
of notions such as treewidth. Another future research direc-
tion is to investigate the trade-off between stability and diver-
sity by allowing few blocking pairs [Abraham et al., 2005;
Chen et al., 2018; Mnich and Schlotter, 2020] or few unsatis-
fied diversity constraints.

Acknowledgments
JC is supported by the WWTF research project (VRG18-
012). RG and TH are supported by the Austrian Science Fund
(FWF, project P31336).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

151



References
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