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Abstract

We study an information-structure design problem
(i.e., a Bayesian persuasion problem) in an on-
line scenario. Inspired by the classic gambler’s
problem, consider a set of candidates who arrive
sequentially and are evaluated by one agent (the
sender). This agent learns the value from hiring
the candidate to herself as well as the value to an-
other agent, the receiver. The sender provides a
signal to the receiver who, in turn, makes an irre-
vocable decision on whether or not to hire the can-
didate. A-priori, for each agent the distribution of
valuation is independent across candidates but may
not be identical. We design good online signaling
schemes for the sender. To assess the performance,
we compare the expected utility to that of an opti-
mal offline scheme by a prophet sender who knows
all candidate realizations in advance. We show
an optimal prophet inequality for online Bayesian
persuasion, with a 1/2-approximation when the in-
stance satisfies a “satisfactory-status-quo” assump-
tion. Without this assumption, there are instances
without any finite approximation factor. We ex-
tend the results to combinatorial domains and ob-
tain prophet inequalities for matching with multiple
hires and multiple receivers.

1 Introduction
In many settings an informed agent wants to use private infor-
mation in order to persuade other agents to take some action
that he would benefit from. Consider a salesperson informed
about the quality of the product who would like to maximize
sales. Is full disclosure of the product quality to customers an
optimal strategy? Perhaps revealing no information or reveal-
ing it partly would result in a higher sales volume.

The study of optimal information disclosure, known as
Bayesian persuasion, has gained enormous attention in the
recent decade. The canonical model is one where the in-
formed agent (the sender) commits to some information dis-
closure (or signaling) scheme before learning the true state
of nature. Once the state is realized, the appropriate sig-
nal is sent to other agents (the receivers) who, in turn, take

an action which results in payoffs for the sender and the re-
ceivers. Applications abound and can be found in diverse ar-
eas such as online advertisement [Badanidiyuru et al., 2018;
Emek et al., 2012; Arieli and Babichenko, 2019], secu-
rity problems [Rabinovich et al., 2015; Xu et al., 2015;
Xu et al., 2016], medical research [Kolotilin, 2015], financial-
sector stress testing [Goldstein and Leitner, 2018], and voter
coalition formation [Alonso and Câmara, 2016].

There are scenarios where this canonical model does not
work well. For example, consider a routing problem where
autonomous agents try to minimize their travel time over a
network. Information about network congestion is available
to a central planner who may share it with the agents in order
to maximize the network’s throughput. The planner receives
the information gradually (road closures, broken traffic lights,
traffic surges, etc.) and shares it gradually with the agents,
who sequentially need to decide on the next edge to take in
the network. In this case, we need to study online variants of
the persuasion problem.

In this paper, we study the online version of the persuasion
problem in a simple setting. Inspired by the classical gam-
bler’s problem, we consider a setting where n tasks arrive
sequentially. A sender learns the completion value of each
incoming task, for herself as well as for the receiver. Before
the tasks arrive the sender commits to some signaling scheme
and at each stage, depending on this policy and the actual in-
formation received, the receiver decides whether or not to un-
dertake the task. This decision is irrevocable, and the receiver
has capacity for a single task. An alternative motivation could
involve incoming threats with a limited defense capacity, job
candidates for a single position, priority routing for incoming
jobs, and more.

Our goal is to provide good online signaling schemes that
maximize the expected utility of the sender. We design simple
schemes and characterize the impact of dynamic information
revelation with prophet inequalities – we compare the perfor-
mance of our online schemes to the optimal expected utility
for the sender that could be obtained from knowing all the
information in advance.

1.1 Our Contribution
We study online Bayesian persuasion inspired by prophet in-
equalities for the classic gambler’s problem. At each round,
i = 1, . . . , n, a pair of values (one for the sender and one for
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the receiver) is drawn from a commonly known prior distri-
bution, Di. The pair of values is revealed to the sender who
then partly shares this information with the receiver accord-
ing to a signaling scheme committed to in advance. Based
on this information, the receiver takes an irrevocable binary
decision.

We begin by considering the iid case (Di = Dj for all i, j)
in Section 2. We show that a simple signaling scheme de-
signed by Dughmi and Xu [2016] for the offline case can be
applied online and that it provides a (1−1/e)-approximation.
We then turn to the more general case under an additional as-
sumption, referred to as the “satisfactory-status-quo” (or SSQ
for short) assumption. Here, there exists an outside option
(e.g. the current employee) for the receiver which has a de-
terministic value which is at least as profitable as her expected
value of any of the candidates arriving online. An equivalent
way of expressing this assumption is to assume that the last
candidate has the maximum expected value for the receiver
among all candidates. For this scenario, we provide an on-
line signaling scheme that provides a 1/2-approximation and
show that this is the best possible guarantee. Unfortunately, if
we drop the SSQ assumption, then in general no scheme can
guarantee any finite approximation. On the positive side, one
can compute an optimal online scheme in polynomial time.

In Section 3, we discuss extensions of our general de-
sign template. More concretely, we design online schemes
for matching variants with multiple receivers and multiple
candidate hires per receiver, when each receiver satisfies
SSQ. Our schemes rely on an optimal solution to an LP-
relaxation, combined with carefully designed probabilistic
damping techniques from the area of Bayesian mechanism
design.

1.2 Related Work
Our work extends the study of prophet inequalities which
was introduced by Krengel and Sucheston [1977]. More
recently, the problem was the focus of a lot of research
which showed improvements for special cases and intro-
duced combinatorial variants of the original problem [Dütting
et al., 2017; Kleinberg and Weinberg, 2019; Alaei, 2014;
Chawla et al., 2010; Correa et al., 2017; Correa et al., 2019;
Esfandiari et al., 2015]. The study of Bayesian persua-
sion was initiated by Aumann and Maschler [1966] and
came back into focus more recently following the work
of Kamenica and Gentzkow [2011]. A plethora of au-
thors worked on variants of persuasion [Celli et al., 2019;
Arieli and Babichenko, 2019; Ely, 2017; Ely et al., 2015;
Au, 2015; Dughmi and Xu, 2017], including combinations
of persuasion with online learning and multi-armed bandit
problems (see, e.g., [Kremer et al., 2014; Frazier et al., 2014;
Mansour et al., 2015] and subsequent work). For a recent
survey on related algorithmic work see Dughmi [2017].

An online model of Bayesian persuasion closely related
to our work was studied in our recent work [Hahn et al.,
2019]. We study a similar round-wise persuasion game with
very different assumptions regarding the a-priori knowledge
of sender and receiver. The scenario is inspired by the sec-
retary problem – candidate values are unknown and adver-
sarially chosen but candidates arrive in uniform random or-

der. This uncertainty also has consequences for the defini-
tion of persuasiveness. In contrast, in this paper we assume
candidate values are drawn independently from known dis-
tributions, which allows to compute expected utilities and to
apply standard notions of persuasiveness. Moreover, we use
significantly different techniques for analysis.

1.3 Model
In the basic version of our model, there are two players –
a sender S and a receiver R. There are n rounds, and in
each round a candidate arrives. Candidate i has a type θi,
and each type is associated with a pair of non-negative utility
values, one for S and one for R. The type of candidate i is
drawn independently from distribution Di. The n distribu-
tions D1, . . . ,Dn are known to both players in advance and
have finite support of size m. The probability that candidate i
has type θi = j is denoted by qij for all1 i ∈ [n] and j ∈ [m].
The utility values of candidate i with type j for R and S are
denoted by ρij and ξij , respectively. We use ρ̄i = Ej∼Di

[ρij ]
to denote the expected utility forR in round i.

Upon arrival of a candidate in round i, S observes the type
θi and the associated values and sends a signal σi to R. The
receiver knows D1, . . . ,Dn and signals σ1, . . . , σi−1. Upon
reception of σi, she has to immediately decide whether she
wants to hire or dismiss candidate i. The process ends once
a candidate is hired or all n candidates have been dismissed.
The decision made in each round is irrevocable. Each player
strives to maximize its own utility of the hired candidate.

As usual in Bayesian persuasion, we assume that the sender
has commitment power [Kamenica and Gentzkow, 2011], i.e.,
S can commit in advance to a signaling scheme ϕ. In each
round i, the scheme ϕ takes as input the vector of observed
types (θ1, . . . , θi) and outputs a signal σi to R. We restrict
the set of schemes to schemes ϕ that are direct and persua-
sive: In a direct scheme, all signals are σi ∈ {HIRE,NOT}
for all i ∈ [n]. A persuasive scheme is one that is incentive-
compatible, i.e.,R maximizes her expected utility by follow-
ing the recommendations. By a revelation-principle style ar-
gument, the assumption of a direct and persuasive scheme is
without loss of generality [Kamenica and Gentzkow, 2011;
Arieli and Babichenko, 2019].

We design online signaling schemes that are good for the
sender, i.e., our goal is to find direct and persuasive schemes
that maximize the sender’s expected utility of the hired can-
didate. To avoid technicalities, we assume that R breaks ties
in favor of S . We compare the expected utility to that of an
optimal (direct and persuasive) offline scheme, in which (the
prophet-version of) S can see the full vector of realizations
(θ1, . . . , θn) in advance and signal toR accordingly.

In Section 2, we briefly consider the iid scenario (with
D1 = D2 = . . . = Dn) and make the following satisfactory-
status-quo assumption. Under such an assumption, there ex-
ists an external option E /∈ [n] for R which is always avail-
able and gives the best expected utility for R (ρE ≥ ρ̄i for
all i ∈ [n]). An alternative formulation of this assumption is
that the last candidate provides the highest expected value for
R, i.e. ρ̄n ≥ ρ̄i for all i ∈ [n]. Thus, R can always wait for

1We use the short notation [x] = {1, 2, . . . , x} for x ∈ N.
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the final candidate. Since we are interested in the worst case
for S , we assume that the utility of S for the outside option is
zero.

2 Single Candidate
2.1 A Simple Scheme for the IID-Case
We start by briefly discussing the case of iid distributions.
Optimal persuasive signaling in the offline case, in which S
sees all realizations θ1, . . . , θn in advance, was studied by
Dughmi and Xu [2016]. Consider an optimal offline scheme.
We denote the ex-post distribution of the hired candidate by
xo = (xoij)i∈[n],j∈[m]. There is an optimal offline scheme
that is symmetric, i.e., that yields xoij = xoi′j =: xoj , for all
rounds i, i′. Hence, the probability that a candidate in a round
is recommended for hire is

∑
j x

o
j = 1/n. Dughmi and Xu

show that the additional constraints to ensure persuasiveness
can be expressed by a linear polytope, and an optimal scheme
can be computed by solving a polynomial-sized LP.

In contrast to the optimal scheme, they also propose a sim-
ple approximate scheme, which relies on solving the follow-
ing simpler LP with fewer constraints:

Max. n ·
∑
j xjξj

s.t. n ·
∑
j xj = 1

xj + (n− 1)yj = qj ∀ j ∈ [m]∑
j xjρj ≥

∑
j yjρj

xj , yj ≥ 0 ∀ j ∈ [m]

(1)

The intuition is that xj is an ex-post probability of receiv-
ing a HIRE signal on a candidate of type j in some round i,
while yj is an ex-post probability of getting a NOT signal. For
this LP, the complex persuasiveness constraints are relaxed
to simple ones – the first two are symmetry and consistency
constraints, the third one requires that hiring a candidate upon
HIRE signal is better forR than hiring one upon NOT signal.
The objective function yields the expected utility of S from
the hired candidate. It is easy to see that the ex-post distribu-
tion for the optimal symmetric offline scheme xo is a feasible
solution for this LP. Hence, an optimal LP solution x∗ yields
an upper bound on the expected utility for S in xo.

For every feasible solution yj = (qj − xj)/(n− 1), where
yj ≥ 0 whenever xj ≤ qj . We plug this into the third con-
straint and rearrange it to

∑
j xjρj ≥

∑
j qjρj ·

1
n = ρ̄·

∑
j xj .

Thus, LP (1) is equivalent to

Max. n ·
∑
j xjξj

s.t. n ·
∑
j xj = 1
xj ≤ qj ∀ j ∈ [m]∑

j xjρj ≥ ρ̄ ·
∑
j xj

xj ≥ 0 ∀ j ∈ [m]

(2)

An LP-optimum x∗ might not represent an ex-post distribu-
tion of some persuasive signaling scheme ϕ, since it adheres
only to the simple, relaxed set of constraints. Dughmi and
Xu propose a way to turn x∗ into an persuasive signaling
scheme, which we formulate as our simple scheme: In each
round i ∈ [n − 1], observe the type θi. If there has been no
HIRE, signal HIRE independently with probability x∗θi/qθi ,

and NOT otherwise. In round n, signal HIRE if not done so
before, and NOT otherwise.

The simple scheme can be applied by S in the online sce-
nario, because in round i it does not use information about
future realizations. The proof of the following proposition
follows from [Dughmi and Xu, 2016, Theorem 3.8].
Proposition 1. The simple scheme is persuasive in the online
setting and yields a (1− 1/e)-approximation.

2.2 Beyond IID
In case of general distributions, our first result is that an opti-
mal online scheme can be computed in polynomial time. The
approach is via backwards induction and solving n− 1 linear
programs. Interestingly, this result contrasts the conditions
for an optimal offline scheme, which is known to be hard (for
details see Dughmi and Xu [2016]).
Theorem 1. An optimal persuasive signaling scheme in the
online setting can be computed in polynomial time.

Proof. The mechanism signals at most one HIRE signal. If
the receiver does not hire, the mechanism never sends a HIRE
signal again. As such, we can assume that the online process
ends upon sending the first HIRE signal. Now consider the
case that we reach round i without having sent any HIRE sig-
nal so far.

Let xij be the probability to signal HIRE upon arrival of
a candidate of type j in round i. We determine the val-
ues of xij using an LP and the optimal solution for rounds
i + 1, . . . , n. Let ξi and ρi be the expected utility for
S and R from the optimal mechanism applied in rounds
i, i + 1, . . . , n, respectively. Let ρ̄i be the best expected
utility for receiver in any single round i, i + 1, . . . , n, i.e.,
ρ̄i = maxi′∈{i,...,n}

∑
j qi′jρi′j .

In the last round it is optimal to set xnj = 1 for all j, since
it is in the interest of both S and R to hire the last candidate.
Hence ξn =

∑
j qnjξnj and ρn =

∑
j qnjρnj . Now suppose

we have computed the optimal mechanism to be applied in
rounds i + 1, . . . , n. Consider round i. The expected value
of the sender is given by qijξij if a candidate of type j ar-
rived and she signals HIRE, or qijξi+1 if a candidate of type
j arrived and she signals NOT. Thus, S strives to maximize∑
j qij(xijξij + (1− xij)ξi+1) or, equivalently,

ξi+1 +
∑
j qijxij(ξij − ξi+1) .

Clearly, this is maximized for xij ∈ {0, 1} with xij = 1 if
and only if ξij ≥ ξi+1. However, S also needs to incentivize
R to follow the signal.

Suppose R gets a HIRE signal in round i. If she accepts,
her conditional expectation is

∑
j qjxijρij

/∑
j qjxij . Upon

rejection, she can only resort to the subsequent round with
best expectation, i.e., ρ̄i+1. Hence, R accepts upon a HIRE
signal if and only if∑

j qijxij(ρij − ρ̄i+1) ≥ 0 .

Suppose R gets a NOT signal in round i. If she accepts,
her conditional expectation is

∑
j qj(1−xij)ρij

/∑
j qj(1−

xij). If she follows the mechanism, then by the inductive
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assumption that the mechanism is persuasive from round i+1
on, the best expected utility for R is ρi+1. Hence, R rejects
upon a NOT signal if and only if

(∑
j qij(1− xij)

)
·ρi+1 ≥∑

j qij(1− xij)ρij , which is equivalent to∑
j qijxij(ρij − ρi+1) ≥

∑
j qijρij − ρi+1 .

Given the optimal mechanism for rounds i+ 1, . . . , n we ob-
tain the optimal mechanism for rounds i, . . . , n by solving the
LP

Max. ξi+1 +
∑
j qijxij(ξij − ξi+1)

s.t.
∑
j qijxij(ρij − ρ̄i+1) ≥ 0∑
j qijxij(ρij − ρi+1) ≥

∑
j qijρij − ρi+1

xij ∈ [0, 1] ∀ j ∈ [m] .
(3)

By the inductive assumption, the mechanism is persuasive
for rounds i + 1, . . . , n. This implies ρi+1 ≥ ρ̄i+1, since
following the mechanism must be at least as profitable for
R as deviating to pick the candidate in the remaining round
with highest expectation. Given this property, we observe that
LP (3) always has a feasible solution. If

∑
j qijρij ≥ ρ̄i+1,

then xij = 1 for all j ∈ [m] satisfies both constraints. Oth-
erwise, if

∑
j qijρij < ρ̄i+1, then 0 >

∑
j qijρij − ρ̄i+1 ≥∑

j qijρij−ρi+1, and setting xij = 0 for all j ∈ [m] satisfies
both constraints.

Although we can compute the optimal online mechanism
in polynomial time, there are instances in which no finite ap-
proximation to the optimal offline signaling scheme can be
obtained. This is a consequence of commitment power of the
sender – S publishes and commits to a signaling scheme ϕ
in advance. By inspecting this scheme, R can determine if S
in round i uses access to (θ1, . . . , θn) available in the offline
case or (θ1, . . . , θi) available in the online case. Hence, R
can determine whether the signal of S contains information
about realizations in future rounds or not. This property is
key for the following lower bound.
Theorem 2. There are instances in which the optimal online
signaling scheme yields an unbounded approximation ratio.

Proof. Consider the following instance with n = 2 candi-
dates. D1 is deterministic, a single realization with value
pair (ρ11, ξ11) = (1, 0). D2 has two possible realizations
with probability 1/2 each. The value pairs are (ρ21, ξ21) =
(2− ε, 1) for some ε ∈ (0, 1), and (ρ22, ξ22) = (0, 0).

Consider the optimal offline scheme, in which the sender
knows both realizations. S signals HIRE for the second can-
didate if and only if the realization θ2 = (2−ε, 1). Otherwise,
S signals HIRE for the first candidate. In this way,R always
gets her optimal candidate – the scheme is persuasive. The
expected utility for S is 1/2.

Now consider the online case. By inspecting the online
scheme, the receiver realizes that the signal in the first round
contains no information – θ1 is perfectly known to both S and
R, and S has no information about θ2. The signal in the sec-
ond round, however, is irrelevant forR – upon reaching round
2, it is a dominant strategy forR to hire the second candidate.
As a consequence, R will take an action independent of the

signal of S and accept the candidate in round 1, since it yields
the higher expected value. The unique persuasive scheme in
the online scenario for S is to signal HIRE in the first round,
which has utility 0 for S .

There is a broad set of conditions under which the online
case leads to a drastic deterioration in expected sender util-
ity. For example, if a later candidate has a “golden-nugget”-
type distribution (small expected value, with tiny probability
a super-valuable realization for both players), then an offline
scheme can convince R to wait, since the signal contains the
information that the “golden nugget” will indeed arrive. In
contrast, an online scheme cannot transport this information,
and hence R has an incentive to accept an earlier candidate
with better expected value for her (and possibly much less
value for S).

2.3 A Simple Scheme for SSQ
In this section, we extend the idea of the simple scheme in the
case that SSQ holds. The main condition to ensure a small
constant approximation ratio is that the receiver has a canon-
ical option for deviation. In the iid case a valid deviation
from a HIRE signal in rounds i ∈ [n − 1] is to simply take
the last candidate in round n. This candidate has the best (in
fact, the same) expected value forR as every other candidate
i + 1, . . . , n − 1. In this section, we assume that there is an
external option E /∈ [n] that has the best expectation for R,
i.e., ρE ≥ ρ̄i for all i = 1, . . . , n. This external option (i.e.
the current employee to be replaced) can be chosen by R at
any time. Equivalently, we assume that the last candidate has
the highest expectation for R, i.e. ρ̄n ≥ ρ̄i, for all rounds
i ∈ [n− 1].

An optimal offline scheme can be obtained by solving an
exponential-sized LP using the ideas in [Dughmi and Xu,
2016]. Instead, we set up a polynomial-sized LP as a natu-
ral extension of LP (2). The intuition for xij is the ex-post
probability for a HIRE signal for candidate type j from Di:

Max.
∑
i,j xi,jξi,j

s.t.
∑
i,j xi,j ≤ 1

xij ≤ qij ∀ i ∈ [n], j ∈ [m]∑
j xijρij ≥ ρE ·

∑
j xij ∀ i ∈ [n]

xij ≥ 0 ∀ i ∈ [n], j ∈ [m]
(4)

Lemma 1. The optimal value of LP (4) is an upper bound on
the expected utility for S in any offline persuasive signaling
scheme.

Proof. Consider an optimal offline scheme for S . Suppose
xij be the ex-post probability that a HIRE signal is issued for
candidate j from Di. We show that the vector x defined in
this way is a feasible solution for LP (4). The utility function
of the LP corresponds to the expected utility for S upon a suc-
cessful recommendation. The constraint xij ≤ qij is fulfilled,
since a candidate cannot be recommended more often than it
arrives. The constraint

∑
j xijρij ≥ ρE ·

∑
j xij is fulfilled

for all i ∈ [n], since the scheme is persuasive and therefore
does not allow a profitable deviation upon a HIRE signal in
round i to the outside option. The remaining two constraints
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Algorithm 1. Simple Scheme for SSQ
Input: Distributions (Di)i∈[n], factors d = (di)i∈[n],

online sequence of θi drawn from Di
for rounds i = 1 to n do

Upon seeing the draw θi from Di:
W. prob. 1− di: Signal NOT, go to next round.
Otherwise, w. prob. x∗iθi/qiθi : Signal HIRE now
and NOT in all remaining rounds

Otherwise: Signal NOT, go to next round

simply state that x is a vector of probabilities that sum to at
most 1 – both conditions are fulfilled in the optimal offline
scheme. Thus, x is a feasible solution for the LP. The opti-
mal solution to LP (4) gives an upper bound on the expected
utility for S in any persuasive scheme.

Based on the optimal solution x∗ to LP (4), we define a
simple scheme for SSQ (Algorithm 1) and prove our main re-
sult of this section.

Theorem 3. For a suitable choice of parameters d, the sim-
ple scheme is persuasive in the online setting satisfying SSQ
and yields a 1/2-approximation.

Proof. First, we show that for every set of damping parame-
ters d ∈ [0, 1]n the scheme is persuasive. We subdivide the
proof into two cases. In case 1 we assume S signals HIRE
in round i and NOT in all previous rounds. By following the
signal, Bayes’ rule shows thatR gets an expected utility of∑

j qij · xij · di · ρij/qij∑
j qij · xij · di/qij

=

∑
j xijρij∑
j xij

≥ ρE ,

where the last inequality follows from the LP-constraint∑
j xijρij ≥ ρE ·

∑
j xij . In case the receiver decides to

deviate and reject candidate θi, the scheme will not provide
any more signals. Thus, ρE is the maximum utility that R
can expect for such a deviation. Hence,R has an incentive to
follow the signal.

In case 2, we assume that there are only signals NOT in all
rounds 1, . . . , i. If the receiver deviates and hires, she gets an
expected utility of∑

j qij ·
(

1− xijdi
qij

)
· ρij∑

j qij

(
1− xijdi

qij

) =

∑
j(qij − xijdi) · ρij∑

j qij − xijdi

=

∑
j qijρij − di ·

∑
j xijρij

1− di
∑
j xij

≤
ρE − diρE

∑
j xij

1− di
∑
j xij

= ρE .

The inequality arises from the SSQ-constraint
∑
j qijρij =

ρ̄i ≤ ρE and the LP-constraint
∑
j xijρij ≥ ρE ·

∑
j xij .

If, on the other hand, R obeys the signal and does not hire,
the expected utility from the remaining scheme in rounds i+
1, . . . , n is at least ρE : If R gets a HIRE signal in one of
the subsequent rounds i′ > i, we showed in case 1 that the
conditional expectation upon hiring in round i′ is at least ρE .

Otherwise, if R gets no HIRE signal in the later rounds, she
can revert to the outside option and secure a value of ρE . This
shows that the scheme is persuasive.

Let us now show that it achieves a 1/2-approximation w.r.t.
the optimal offline signaling scheme. Using Lemma 1, it is
sufficient to show that the scheme achieves an expected utility
for S that is at least 1/2 of the optimal value for LP (4).

Following Chawla et al. [2010] as well as Alaei [2014], we
use damping factors di for all i ∈ [n] defined as follows. We
define ri = Pr[reaching round i]. It follows a recursion: r1 =

1, ri+1 = ri

(
1− di

∑
j xij

)
. We choose di = 1/(2ri),

which yields ri · di = 1/2 for every i ∈ [n]. di is well-
defined since, inductively, ri ≥ 1/2. This is due to ri+1 =
r1 − 1

2 ·
∑
k≤i,j xkj and

∑
i,j xij ≤ 1. As a consequence, S

obtains an expected utility of∑
i ri · di ·

∑
j ξij · qij · x∗ij/qij

=
∑
i ri · di ·

∑
j x
∗
ijξij = 1

2

∑
i,j x

∗
ijξij ,

i.e., 1/2 of the optimal value of LP (4).

The bound of 1/2 is best possible: Suppose n = 2, D1

is deterministic with (ρ11, ξ11) = (1, 1), D2 has two re-
alizations ((ρ21, ξ21) = (n, n) with probability 1/n and
(ρ22, ξ22) = (0, 0) with probability 1 − 1/n), and ρE = 1.
The optimal offline scheme recommends the best candidate.
It yields expected utility of 2−1/n for both S andR. Online
schemes can only guarantee a utility of at most 1.

3 Extensions
The approach in the previous section can be generalized to a
variety of combinatorial problems when a good external op-
tion provides a canonical deviation opportunity forR. In this
case, to obtain persuasiveness it suffices to provide R with
an expected value of ρE conditioned on a HIRE signal. We
discuss natural extensions with multiple hirings and multiple
receivers. Our approach is again to solve an appropriate LP-
relaxation for the ex-post distribution of hired candidates and
compute a signal using carefully chosen probabilistic damp-
ing factors. For the latter we incorporate results from the
area of Bayesian mechanism design with sequential posted
prices [Alaei, 2014].

3.1 Hiring Multiple Candidates
Suppose R strives to hire 1 ≤ k ≤ n candidates and has k
good outside options, i.e., k options with a value ρE each,
where ρE ≥ ρ̄i for all i ∈ [n]. We call this k-SSQ for short.
The utilities of both S and R are additive over the hired can-
didates.

Theorem 4. There is a persuasive signaling scheme in the
online setting with k hires satisfying k-SSQ that yields a(

1− 1√
k+3

)
-approximation.

Proof. Consider LP (5) as the natural extension of LP (4).
The optimal value constitutes an upper bound for the expected
utility for S in the optimal offline scheme – if we set xij to
the ex-post probability of hiring candidate i of type j in the

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

179



offline scheme, the vector x is feasible for the LP and the
objective function value is the expected utility of S in the
offline scheme.

Max.
∑
i,j xijξij

s.t.
∑
i,j xij ≤ k
xij ≤ qij ∀ i ∈ [n], j ∈ [m]∑

j xijρij ≥ ρE
∑
j xij ∀ i ∈ [n]

xij ≥ 0 ∀ i ∈ [n], j ∈ [m]
(5)

To devise an online scheme, we use a natural extension of
the simple scheme under SSQ. First solve LP (5) optimally,
let x∗ be the optimum solution. The decision in round i is
again split into two steps. In step 1, send NOT with probabil-
ity 1− di, otherwise advance to step 2. In step 2, send HIRE
with probability x∗iθi/qiθi , and NOT otherwise. Overall, we
send HIRE with probability di · x∗iθi/qiθi .

The exact same calculations as in Theorem 3 show that
conditioned on a HIRE signal in round i, the expected value
of the candidate for R is at least ρE . The same calculations
show that conditioned on a NOT signal in round i, the ex-
pected value of the candidate for R is at most ρE . Hence, a
deviation of R to an outside option or to hiring upon a NOT
signal is not profitable and, thus, the scheme is persuasive.

To show the approximation factor, we need to carefully de-
sign the damping scheme di for step 1. di should be high to
hire good candidates in round i, but also low to ensure that
better candidates in later rounds i′ > i can be hired. This is
exactly the trade-off faced by the “γ-Conservative Magician”
in [Alaei, 2014]. Here, a magician has k wands to open n
boxes. If he applies a wand to a box, the box opens, but the
wand breaks with some probability. Each box comes with a
distribution for the value of the content and a probability that
a wand breaks when opening it. In our context, the k wands
are k positions for hire, the n boxes are n rounds, “opening a
box” means surviving step 1, and “breaking the wand” means
actually sending a HIRE signal in step 2.

In [Alaei, 2014, Definition 3] Alaei devises an adaptive
strategy to set the di such that every round i the joint prob-
ability of having at most k − 1 HIRE signals and arriving at
step 2 of round i is at least γk = 1− 1√

k+3
. Hence, using his

strategy to design the di, the expected utility for the sender in
the resulting scheme is at least∑

i γk
∑
j ξij · qij · x∗ij/qij = γk

∑
i,j x

∗
ijξij .

It recovers at least a γk-fraction of the optimum for LP (5).

3.2 Hiring with Multiple Receivers
Private Signals
Suppose there are ` different receivers R1, . . . ,R`. In every
round i and for every t ∈ [`], S sends Rt a private signal
σ
(t)
i ∈ {HIRE,NOT} (c.f. [Dughmi and Xu, 2017] for re-

sults on private and public signaling channels in a related of-
fline scenario). A problem arising with multiple receivers is
feasibility of the assignment of candidates. There might be
conflicting situations when several receivers simultaneously
decide to hire the same candidate. We circumvent this prob-
lem due to the following: (1) Our scheme will ensure at most

a single receiver gets a HIRE-signal in every round. (2) When
deviating, the (weakly) most-preferred option for any receiver
is the outside option, which does not interfere with the other
receivers. Note that our scheme is persuasive even when ev-
ery receiver assumes that she can hire every candidate, irre-
spective of the decisions made by others.

Formally, a candidate type is a vector (ρijt, ξijt)t∈[`] of
value-pairs, for all i ∈ [n], j ∈ [m]. Receiver Rt strives
to hire kt candidates and fulfills kt-SSQ, i.e. has kt unique
good outside options with value ρ(t)E ≥ ρ̄

(t)
i , where ρ̄(t)i =

Ej∼Di
[ρijt]. We define k = mint kt. The utility of the sender

is additive over all hired candidates. The utility of receiver
Rt is additive over candidates hired by Rt. The proof of the
following result is deferred to the full version of this paper.
Theorem 5. There is a persuasive signaling scheme in the
online setting with ` receivers R1, . . . ,R` with Rt having
kt hires and satisfying kt-SSQ for all t ∈ [`] that yields a(

1− 1√
k+3

)
-approximation.

Public Signals
Let us briefly look at the case when S can only use public
signals (instead of private signals studied above). With pub-
lic signals S faces the feasibility problem discussed above,
i.e., multiple receivers might get an incentive to hire the same
candidate. Ensuring feasibility with persuasive signals can
lead to a drastic performance loss for S , even in case of SSQ
for all receivers. The proof of the following result is deferred
to the full version of this paper.
Proposition 2. There are instances with SSQ in which any
persuasive signaling scheme with public signals yields an un-
bounded approximation ratio.
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