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Abstract

In the standard model of committee selection we
are given a set of ordinal votes over a set of candi-
dates and a desired committee size, and the task is
to select a committee that relates to the given votes.
Motivated by possible interactions and dependen-
cies between candidates, we study a generalization
of committee selection in which the candidates are
connected via a network and the task is to select a
committee that also satisfies certain properties with
respect to this candidate network. To accommo-
date few possibilities of taking voter preferences
into account, we consider three standard and di-
verse voting rules (namely, k-Borda, Chamberlin—
Courant, and Gehrlein stability); to model differ-
ent aspects of interactions and dependencies be-
tween candidates, we consider two graph properties
(namely, Independent Set and Connectivity). We
study the parameterized complexity of the corre-
sponding combinatorial problems and discuss cer-
tain implications of our algorithmic results.

1 Introduction

Given a set of candidates and a collection of voters — each
expressing her preferences over the candidates — a natu-
ral task is to select a committee of candidates that would
correspond to the voter opinions. The study of selecting
good committees is usually approached through the sub-
field of computational social choice [Brandt ef al., 2016;
Endriss, 2017] known as multiwinner elections [Faliszewski
et al., 2017a]). This study has proven to be quite fruitful:
Among other topics, researchers have studied the complexity
of winner determination for various multiwinner voting rules
(see, e.g., [Procaccia et al., 2008; Brill et al., 2019]); the
complexity of related manipulative actions (see, e.g., [Pro-
caccia et al., 2007; Faliszewski et al., 2017b]); few frame-
works of such rules (see, e.g., [Faliszewski e al., 2016;
Faliszewski et al., 2018)); and certain related axiomatic prop-
erties (see, e.g., [Elkind er al., 2017; Aziz et al., 2017al).
One aspect that is usually overlooked is the possibility
of certain interactions and dependencies between candidates.
For example, some candidates might be incompatible to a cer-
tain extent, perhaps due to different personalities; or some
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candidates might possess more efficient means of communi-
cation among them, allowing them to cooperate more effec-
tively than others (we explain this in detail in the paragraph
“Candidate Networks and Graph Properties™). Indeed, some
papers do take such externalities between candidates into ac-
count; e.g., Bredereck et al. [2018] (and others) study a set-
ting in which candidates have attributes (e.g., occupation),
and the task is to select a committee that is diverse enough.
Izsak et al. [2018] study a setting of a candidate network
modeling certain submodularities and supermodularities be-
tween groups of candidates. Talmon [2018] studies certain
related interactions wrt a voter network (and not a candidate
network).

Here we consider the following setting (formal definitions
are given in the paragraph “Voter Preferences and Candidate
Networks”): Given a graph over a set C of m candidates — a
candidate graph; a collection of n ordinal votes over the same
set C (that is, each of the n corresponding voters ranks all the
m available candidates) — a preference profile; and a desired
committee size k, we are interested in finding a committee
that is “good” with respect to both (1) the voter preferences
and (2) the candidate graph. Our setting is parameterized by
both (1) a multiwinner voting rule R, which takes the collec-
tion of n ordinal votes and assigns a score to each possible
committee (a committee is a subset of C containing exactly
k candidates) based on the voter preferences alone and (2) a
graph property O, which takes the candidate graph and look
for each possible committee (corresponding to a vertex sub-
set in the graph) that satisfies property Q based on the candi-
date graph alone. For specific R and Q, we are interested in
designing efficient algorithms that find a committee with the
highest R-score possible among all committees satisfying Q.
We describe our specific R’s and Q’s further on.

While, as we show, the combinatorial problems we study
here are generally intractable, we nevertheless develop sev-
eral efficient algorithms for certain special cases of these
problems. In particular, we discuss certain problem param-
eters that allow for efficient parameterized algorithms; as
well as consider some domain restrictions and various restric-
tions on the candidate graphs that allow for efficient algo-
rithms for these cases. As a added benefit, some of our al-
gorithms solve known graph problems such as BUDGETED
MAXIMUM WEIGHT TERMINAL STEINER TREE (BUDG-
MAXWT-TST) and MAXIMUM NODE-WEIGHTED k-TREE
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(MAX-NODEWT-k-TREE), thus our results are of separate
interest wrt these problems.

Voter Preferences and Multiwinner Rules

In multiwinner elections the task is to select a committee that
best corresponds to the voter preferences. Formally, a multi-
winner election consists of a set C of m candidates, a collec-
tion of n ordinal votes (i.e., rankings) of C, and a committee
size k. A multiwinner voting rule takes a multiwinner elec-
tion as input and outputs a set of k candidates from C as a
winning committee.

Many multiwinner voting rules are studied in the literature,
out of which we consider the following: Under k-Borda, a
voter assigns a score of m — ¢ to a candidate she ranks at
the ith position, and the winning committee consists of the
k candidates with the highest sum of scores over the voters;
under Chamberlin—Courant (CC), a voter assigns a score of
m —1 to a committee out of which the candidate she ranks the
highest (referred to as the voter’s representative) is at position
i, and the winning committee is of the highest score; under
Gehrlein stability (GS), a committee .S is chosen such that no
committee member ¢ € S has some ¢’ ¢ S such that more
voters rank ¢’ higher than c than vice versa; this is known as
weak Gehrlein stability in the literature [Aziz et al., 2017b],
we omit weak just for simplicity.

We chose k-Borda, CC, and GS as they are all well-studied
and form a diverse set of multiwinner rules: In particular,
following the discussion of Faliszewski et al. [Faliszewski et
al., 2017al, k-Borda is polynomial-time computable and an
archetypal rule for selecting individually accepted candidates,
CC is NP-hard and aims at identifying committees echoing
all views present in society, and GS is a generalization of
single-winner Condorcet-consistent rules, and it is a natural
Condorcet-based multiwinner voting rule.

Candidate Networks and Graph Properties

We put voter preferences aside for a moment, and consider in-
teractions and dependencies between candidates; consider the
candidate network, containing one vertex c for each candidate
¢ € C (we thus use candidates and vertices interchangeably):

e Consider a scenario of project team formation. In the elec-
tion, voters are not people, but the skills required for the
project. All the candidates are ranked on the basis of their
skills. Now, we would like to form a team which is not only
good from the perspective of skills, but also team members
should not distrust and dislike each other, as this will affect
the project. This can be captured by a candidate network
in which there is an edge between two vertices if the corre-
sponding candidates are “incompatible”. Such compatibility
should also be considered in parliamentary elections, which
is usually ignored. A related situation is if there is an edge be-
tween two candidates if they are too “similar”, and we wish to
choose a diverse committee to perform, say, a task for which
candidates with different skills are needed. In these cases, it
is natural to select a committee that corresponds to an Inde-
pendent Set of size k in the candidate network (i.e., a set of
pairwise nonadjacent vertices).!

'One might also settle for committees containing limited number
edges; independent set takes this view to the extreme.
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e Consider a scenario in which a “good” communication is
required between committee members, for example, in a res-
cue team. Here, again candidates are ranked on the basis of
their skills. This can be captured by a candidate network in
which there is an edge between two vertices if there is some
communication link between the corresponding candidates.
Another scenario is choosing positions for routers in a net-
work: one shall ensure router connectivity, while also taking
voter preferences into consideration, corresponding to some
external features of each router. To foster efficient communi-
cation, it would be natural to select a committee that is Con-
nected (i.e., corresponds to a connected subgraph) in the can-
didate graph.

Voter Preferences and Candidate Networks.

In this paper we combine the two aspects: Voter preferences
— modeled via a multiwinner voting rule and candidate net-
works — modeled via a graph property.

Formally, we study the following problem, parameterized
by a graph property Q (a property that is either satisfied by a
subgraph or not) and a multiwinner voting rule R.
Definition 1. In the (Q, R)-SCS problem, we are given a set
of m candidates, C, a collection of n ordinal votes over C,
the committee size k, a candidate graph over C, and the de-
sired score s; the goal is to decide if there exists a committee
satisfying Q whose R-score is at least s.

We refer to the optimization version of (Q,R)-SCS, in
which the goal is to find a committee with the highest score,
as MAaX-(Q,R)-SCS. GS is slightly different, as stable com-
mittees do not always exist; for GS we require the output
committee to be Gehrlein stable, as in Q-GS, the goal is to
find a stable committee also satisfying property Q.

Let (E, H,k, s) be an instance of (Q,R)-SCS, where E
is a preference profile over candidates C and voter set V, H
is a candidate graph, k is the size of committee, and s is the
score. When Q is the property of “independence” (i.e., we
require the winning committee to form an independent set in
H), we refer to (Q, R)-SCS as the CONFLICT FREE-R (CF-
R) problem. Similarly, when Q is the property of “connectiv-
ity” (i.e., when we require that the winning committee be con-
nected in H), we refer to (Q, R)-SCS as the CONNECTED-R
(CONN-R) problem.

1.1 Initial Observations

First, we observe that (Q, R)-SCS indeed generalizes winner
determination wrt R: In particular, if the candidate graph is
empty, then any set of k vertices is an independent set; thus,
(Q,R)-SCS isreduced to finding a k-sized committee wrt R.
Similarly, if the candidate graph is a clique, then any set of &k
vertices is connected. (We write R also to refer to Winner
Determination for R).

Observation 1. If R is NP-hard (W-hard wrt t), then CF-R
is NP-hard (W-hard wrt t), even for empty candidate graphs;
and CONN-R is NP-hard (W-hard wrt t), even when the can-
didate graph is a clique.

Since CC is NP-hard and W[2]-hard wrt k [Procaccia et
al., 2008] and GS is NP-hard [Aziz et al., 2017c] and W[1]-
hard wrt k [Gupta er al., 2019], using Observation 1 and the
fact that (Q, R)-SCS is decidable, we have the following:
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Corollary 1. CoNN-CC (CF-CC) is NP-complete and
WI[2]-hard wrt k and CONN-GS (CF-GS) is NP-complete
and W[1]-hard wrt k, even when the candidate graph is a
clique (respectively, edgeless).

1.2 Paper Structure

Throughout, we study the CF-R and CONN-R problems
for R € {CC, k-Borda, GS}. As CC, GS, and finding an
independent set of size k are all computationally intractable,
we indeed expect most of our problems to be intractable. In
fact even though both CONNECTIVITY and k-BORDA are
polynomial-time solvable, separately, we nevertheless show
that CONN-k-BORDA is NP-complete. We thus concentrate
on various ways of breaking this computational intractabil-
ity: In particular, we use parameterized complexity, domain
restrictions (restricting voter preferences), and graph classes
(restricting allowed candidate graphs).

We concentrate on natural election parameters, frequently
studied in papers on parameterized complexity of computa-
tional social choice problems: The number of candidates, m,
is frequently small — e.g., in most political elections; the num-
ber of voters, n, is sometimes small — e.g., when selecting
a jury, judges for a talent competition, or board of directors
(see, e.g., [Chen et al., 2015]); and the committee size, k, is
small in many real-life scenarios such as in shortlisting tasks,
parliamentary elections, and forming a rescue team.

We consider single-peaked profiles, unanimous profiles,
and strongly unanimous profiles as domain restrictions; while
single-peaked is probably the most popular domain restric-
tion, the other two domain restrictions, though perhaps too
restricted to be practically useful, nevertheless provide good
insights on the combinatorics of our problems. Additionally,
we study our problems on inputs where the candidate graph
has a certain structure.

The paper is structured by problems: In Sections 2.1, 2.2,
and 2.3 we study connected committees for CC, k-Borda, and
GS, respectively; while in Sections 3.1, 3.2, and 3.3 we study
conflict-free committees for CC, k-Borda, and GS, respec-
tively. To give a full picture, Table 1 lists all our results.
We highlight our most technically-involved results: Theo-
rems 1, 4, and 13. As the table shows, we are able to iden-
tify several cases for which efficient algorithms exist for our
problems. We mention that, while doing so, we also prove
certain results regarding combinatorial problems on graphs
that might be of independent interest. Some proof details are
missing due to limited space. The notation O*(f(k)) sup-
presses poly(n) factors.

2 Connected Committees

We study the complexity of finding connected committees.

2.1 Connected-CC

Here, we first give an FPT algorithm wrt n + k. Towards this,
we first observe that in polynomial time, MAX-CONN-CC
can be reduced to BUDG-MAXWT-TST?, in which given an

21t is NP-hard (since TERMINAL STEINER TREE, in which we
look for a minimum cost terminal Steiner tree, is NP-hard [Lin and
Xue, 2002]).
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edge-weighted graph G, a set of terminals 7', and an integer
t; we look for a maximum weight tree of size ¢ containing
each of the terminals as leaves, where the size of the tree in
the reduced instance, that is ¢, is n + k. We design an FPT
algorithm wrt ¢ for BUDG-MAXWT-TST which can then be
used to solve MAX-CONN-CC.

Our FPT algorithm for BUDG-MAXWT-TST with tree
size as the parameter relies on the following result; unlabeled
graph is one in which the vertices are not named.

Proposition 1 ([Beyer and Hedetniemi, 1980; Otter, 1948]).
There are t,, = 2.956™ non-isomorphic unlabeled trees on n
vertices. Moreover, we can enumerate them in time O(t,).

Theorem 1. BUDG-MAXWT-TST is FPT wrr t.
quently, MAX-CONN-CC is FPT wrtn + k.

Conse-

Proof. Let (G,T,t) be the given instance of BUDG-
MAXWT-TST. Let T* be a solution to BUDG-MAXWT-
TST. Using Proposition 1 we enumerate all unlabeled trees
T, on t nodes. For each of these trees, if the number of its
leaves is less than |T|, then we discard the tree and move
to the next one. For each unlabeled tree T,,, we recast it as
the MAX-EDGEWT-TREE-ISO problem as follows: Given an
edge-weighted graph G and a tree T}, we find a maximum
edge-weighted tree in G that is isomorphic to 7. For BUDG-
MAXWT-TST, we go through each of the unlabeled trees as
a potential 7, and apply the algorithm for MAX-EDGEWT-
TREE-ISO with G and T, as the input. This step takes
2.956t9() time. By our choice we know that 7}, has at least
|T| leaves. We first guess an injective mapping from the ter-
minals to the leaves of T, (there are at most ¢t/7| = 20(tlog?)
guesses, in total). Let this mapping be g. Now our problem
reduces to MAX-EDGEW T-TREE-ISO where some leaves are
already labeled. This can be solved using the algorithm for k-
TREE [Fomin et al., 2016] in 2.6182¢~1T1t9() time. (Note
that the algorithm given in [Fomin et al., 2016] is for find-
ing a minimum weight isomorphic copy. However, replacing
minimum weight g-representative with maximum weight g-
representative in that algorithm will yield the maximization
version of the problem.) This implies that the total running
time of our algorithm is upper bounded by the number of
unlabeled trees on ¢ vertices, the number of injective map-
ping from terminals to the leaves of 7}, and the algorithm for
MAX-EDGEWT-TREE-ISO, where the leaves are already la-
beled. Thus, the total time required is 2°(#1°8)¢tO(1)  Thus,
we can conclude that MAX-CONN-CC is FPT wrtn+ k. O

While CC is solvable in polynomial time for single-peaked
(SP) profiles® [Betzler et al., 20131, CONN-CC is not.

Theorem 2. CONN-CC is NP-complete for SP profiles.

This leads us to a more restricted domain, namely unani-
mous profiles, in which every voter rank the same candidate
on top, and strongly unanimous (SU) profiles, in which every
voter has the same preference list. We have the following:

31t is a domain restriction, in which every voter is single-peaked
wrt an axis 7, i.e, for every voter v, and for each pair of candidates
a, b, if either @ w b 7 top(v) or top(v) 7 b 7 a holds, where top(v)
is the first ranked candidate of voter v, then v ranks b above a.
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Connected Conflict-free
. Restricted Candidate . Restricted Candidate
Complexity Graph/Election Ref. Complexity Graph/Election Ref.
NPC and W-h wrt &k H is clique Cor. 1 | NPC and W-h wrt & H is edgeless Cor. 1
FPT wrtn + k Thm. 1 | NPC and W-h wrt &k n=1s=0 Thm. 6
NPC SP Thm. 2 FPT wrt. n |F|in H is polyn. Thm. 7
NPC and W-h wrt & unanimous Obs.2 | O*(1.1996™) solvable constant n Thm. 8
CC P strongly unanimous | Obs.2 | O*(1.4423™) solvable SP Thm. 9
FPTwrtl+k,q+k Lem. 1
Open wrt n
Open wrt k SP
NPC Thm. 3 NPC and W-h n=1s=0 Thm. 10
B FPT wrt k Thm.4 | O*(1.4423™) solvable Thm. 11
-Borda
Open wrt n
NPC and W-h wrt k H is clique Cor.1 | NPC and W-h wrt & H is edgeless Cor. 1
O*(2") solvable Thm.5 | NPC and W-h wrt k n =2, SP Thm. 12
NPC and W-h wrt & unanimous Obs.3 | O*(1.4656™) solvable Thm. 13
GS P strongly unanimous | Obs. 3 O*(1.46") solvable Thm. 14
NPC and W-h wrt & unanimous Obs. 4
P strongly unanimous | Obs. 4

Table 1: Summary of our results. H denotes the candidate graph. Parameter k£ is the size of the committee, n is #voters, m is #candidates, s
is the committee score, ¢ (or g) is the minimum number of voters that need to change their preference list (respectively, minimum number of
consecutive swaps required) so that the profile is strongly unanimous, and h is the size of the tournament vertex deletion set. F is the set of all

maximal independent sets in H. A

implies that the result holds for an arbitrary graph and election. SP stands for single-peaked.

NPC and W-h stands for NP-completeness and W-hardness, respectively.

Observation 2. CONN-CC is NP-complete and W[2]-hard
wrt k even for unanimous profiles. But, for SU profiles, MAX-
CONN-CC can be solved in polynomial time.

As SU profiles are very restricted, we view them as trivial
instances and study two related distance parameters.

Lemma 1. MAX-CONN-CC is FPT wrt £ + k and q + k,
where € is the minimum number of voters that need to change
their preference list, and q is the minimum number of consec-
utive swaps required, so that the profile is SU.

2.2 Connected-k-Borda

Even though k-Borda is polynomial-time solvable, we have
the following for CONN-k-BORDA:

Theorem 3. CONN-k-BORDA is NP-complete.

To break the intractability, we first consider parameter
k. Towards this, we first observe that in polynomial time,
MAX-CONN-k-BORDA can be reduced to MAX-NODEWT-
k-TREE, in which we are given a node-weighted graph G and
need to find a k-sized tree of maximum weight. Given an
instance (E, H, k, s) of CONN-k-BORDA, we create an in-
stance (G = H, k' = k,w = s) of MAX-NODEWT-k-TREE.
The weight of each vertex is set to be the Borda score of the
corresponding candidate.

Theorem 4. MAX-NODEWT-k-TREE is FPT wrt k. Conse-
quently, MAX-CONN-k-BORDA is FPT wrr k.

Proof. Our proof combines three ingredients: (i) enumer-
ation of unlabeled trees, (ii) the color-coding technique of
Alon et al. [1995], and (iii) dynamic programming. Let T
denote a solution to MAX-NODEWT-k-TREE. Observe that
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if we ignore the labels of the vertices of T, then it is isomor-
phic to an unlabeled tree, say 7y, on k vertices and hence 7,
will be enumerated when we enumerate all unlabeled trees
on k vertices, using Proposition 1. Thus, in O(2.956Fk°(1))
time, we have reduced MAX-NODEWT-k-TREE to a prob-
lem of finding a tree in G that is isomorphic to a given tree
and has maximum weight — we refer to this problem as MAX-
NODEWT-TREE-ISO. That is, given a vertex-weighted graph
G and a tree Ty, find a maximum weight tree in G that is
isomorphic to 7T},).

Algorithm for MAX-NODEWT-TREE-Is0*: Rather than us-
ing the randomized version of color-coding [Alon et al.,
1995] for our problem, we directly apply the deterministic
version. To that end we use the (n, k)-perfect hash functions.
Definition 2. A family of functions f1, ..., f: from a universe
U of size n to a universe of size k is a (n, k)-perfect family of
hash functions if for every set S C U such that |S| = k there
exists an i such that the restriction of f; to S is injective.

We need the following result:

Proposition 2 ([Naor et al., 1995]). For any n,k > 1
one can construct an (n,k)-perfect hash family of size
eFEO08 k) 1og 1 in time € kP12 k) p log n.

Recall that 7}, is an input to MAX-NODEWT-TREE-ISO
and T is a hypothetical solution to the problem. To give
an algorithm for the MAX-NODEWT-TREE-ISO problem, we
convert this into a colored problem by applying Proposition 2.

“Due to space restriction, we give here slightly sub-optimal algo-
rithm that is easier to explain and sufficient for the result, however,
one can design a 2000 time algorithm using the notion of rep-
resentative families.
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Note that by the definition of (n, k)-perfect family of hash
functions, there exists a function, say f, such that the restric-
tion of f to the vertices of V(T) is injective. By trying all
possible functions in the hash family, we find the desired one.
Let us fix such a function, f. This partitions the vertex set
V(G) into V; = f~1(i), i € [k]. We refer to each V; as a
color class.

To find a subgraph T' of G of maximum weight that is
isomorphic to 7y, we “guess”, for every vertex of 7}, the
color class that contains this vertex. This corresponds to
k! = 20(klogk) gyesses. Let this injective (coloring) func-
tion be g : V(Tu) — [k]. Given the function g, we root the
tree T, at some arbitrary vertex, say r, and assign to each
vertex the name of the color class. Denote this tree by 75
We will use Tlf,‘" to do a bottom-up dynamic programming
from leaves to root. We first perform the following cleaning
operation in the graph G: Delete any edge from G that is not
a potential edge of T'; i.e., delete an edge from G with col-
ored end-points as 4, j € [k], if the edge ij ¢ T<'. We delete
all the vertices of degree 0 from GG. Next, we go bottom up
and delete vertices from color classes that cannot be mapped
to T For a color class V; such that 4 is a leaf in 7°', we do
nothing. Now for every vertex j in TuC,°', let j1, jo, ..., je be
the children of j. We keep a vertex v € V; only if it has at
least one neighbor in V;_, for all s € [/].

Observe that there is a tree in G that is isomorphic to Ty iff
each color class is non-empty. To find the maximum weight
tree isomorphic to 7}, rather TUC|°', we do dynamic program-

ming as follows: For a vertex ¢ € V(T5), let T5%, denote

the subtree of 7' rooted at g. For a vertex v € V, Av,q]
stores the maximum weight of a subtree in G that is rooted at
v and isomorphic to T lfﬁg. Clearly, if g is a leaf of TuC|°', then
Alv,q] = w(v). Else, we can compute this using the given
recurrence: Let g;, for each ¢ € [¢] be the children of ¢, then:
Alv,q] = w(v) + Zﬁ:l max { Afu,q;] : u € N(v) NV, }.
The correctness of the recursive relations follows from the
disjointness provided by the function g and the cleaning pro-
cess. The running time of the algorithm is upper bounded
by the product of tree enumeration time, number of hash-
functions f, number of functions g, and the dynamic pro-

gramming; O* (20 1°2k)) in total. O

2.3 Connected-Gehrlein Stable

Here, we obtain some tractability results. To define our pa-
rameter, we need the known graph theoretic formulation of
GS. Given an election E, the majority graph consists of ver-
tices corresponding to every candidate in the election and if
more than half of the voters prefer candidate u over candidate
v in the pairwise election between v and v, then there is an arc
from wu to v. Note that the task of finding a GS committee for
(E, k) boils down to finding a k-sized subset .S in the major-
ity graph such that no vertex outside S has an out-neighbor in
S. When the majority graph is a tournament (i.e., a directed
graph in which there is an arc between every pair of vertices),
GS has a unique solution, which can be found in polynomial
time [Aziz et al., 2017b]. Thus, CONN-GS can be solved in
polynomial time as we only need to check connectivity in the
solution of GS. As CONN-GS is tractable on tournaments,
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we study CONN-GS wrt the number h of vertices whose dele-
tion from the majority graph leads to a tournament; we refer
to h as the size of tournament vertex deletion set (tvd). Note
that h is smaller than the number of pairs of candidates that
are in tie. In real-life scenarios, it is usually unlikely to have
ties between lots of candidates. The algorithm for the follow-
ing result is similar to the algorithm in [Gupta et al., 2019],
who study h as a parameter for GS.

Theorem 5. CONN-GS can be solved in O*(2"") time, where
h is the size of the minimum tournament vertex deletion set.

We have the following result for a restricted domain.

Observation 3. CONN-GS is NP-complete and W[1]-hard
wrt k even for unanimous profile. But, the problem is
polynomial-time solvable for SU profiles.

3 Conflict Free Committees

We study the complexity of finding conflict-free committees.
Most of the NP-hard and W[1]-hard reductions are from IN-
DEPENDENT SET (IS, in short) which is known to be NP-
hard [Garey and Johnson, 2002] and W[1]-hard [Downey
and Fellows, 1995].

3.1 Conflict Free-Chamberlin Courant

Here, even the parameterization by the number n of voters
and the committee score s does not break the intractability, as
can be exhibited by a reduction from IS.

Theorem 6. CF-CC is NP-complete and W[1]-hard wrr k
even when there is one voter and the score is 0.

Next, we describe an FPT algorithm wrt n for special
classes of candidate graphs, in particular, when the number
of maximal independent sets in the candidate graph is polyno-
mial (There are graph classes with bounded number of maxi-
mal independent sets; most notable is the class of split graphs,
in which the number of maximal independent sets is linear in
the number of vertices). The algorithm is based on the idea
that any solution of CF-CC is a subset of a maximal indepen-
dent set in the candidate graph. Therefore, we can restrict the
election on the candidates to a maximal independent set of
H and find a CC committee in this restricted election. Thus,
if the number of maximal independent sets is polynomial in
the input size, then it can be enumerated in polynomial time
[Johnson et al., 1988], and hence we can use the known FPT
algorithm for CC wrt n. Thus, we have the following:

Theorem 7. If the number of maximal independent sets in the
candidate graph H is polynomial, then MAX-CF-CC is FPT
wrt n.

Turns out that we can improve the brute-force algorithm
for elections with a constant number of voters.

Theorem 8. MAX-CF-CC can be solved in O*(1.1996™)
time for a constant number of voters.

Using the idea of enumerating maximal independent sets
in the candidate graph, we have the following:

Theorem 9. MAX-CF-CC can be solved in O*(1.4423™)
time for SP profiles.
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3.2 Conflict Free-k-Borda

We first have the following intractability result which can be
exhibited by a reduction from IS.

Theorem 10. CF-k-BORDA is NP-complete and W[1]-
hard wrt k even when there is one voter and score is 0.

Using the same intuition as for Theorem 7 that the solution
is contained in a maximal independent set of /1, and the poly-
nomial time algorithm for k-BORDA, we have the following:

Theorem 11. MAX-CF-k-BORDA can be solved
0*(1.4423™) time.
3.3 Conflict Free-Gehrlein Stable

Here, we obtain that CF-GS is NP-hard even for two voters
which can be exhibited by a reduction from IS.

Theorem 12. CF-GS is NP-complete and W[1]-hard wrt k
even when there are two voters and the profile is SP.

in

Next we describe an FPT algorithm wrt the number m of
candidates that is better than the brute-force algorithm. To
this end, we consider the graph-theoretic formulation of GS
(see Section 2.3). Let (M, H, k) be an instance of CF-GS,
where M is the majority graph, H is the candidate graph, and
k is the size of the committee. The algorithm is based on the
following observations that ensure that committee is GS.

1. If acandidate w is in the committee, then its in-reachability
set is also in the committee (a vertex v is in the in-reachability
set of u, if there is a directed path from v to ).

2. If a candidate w is not in the committee, then its out-
reachability set is also not in the committee (a vertex v is
in the out-reachability set of wu, if there is a directed path from
u to v).

3. If w and v are neighbors in H, and w is in the in-
reachability set of v, then v cannot be in the solution.

4. If w is in the committee, then none of its neighbors in H is
in the committee.

Following (2) and (3), we apply the following reduction
rule. We reuse the notation after application of every reduc-
tion rule (RR) and branching rule (BR), and denote the re-
duced instance by (M, H, k).

RR 1. Let wv € E(H). Suppose that w is in the in-
reachability set of v in M. Then, delete v and its out-
reachability set from M and H.

We define the in-reachability set of a subset of vertices X,
denoted by R~ (X), as the set containing the in-reachable set
of every vertex x € X. Similarly, define the out-reachability
set of a subset of vertices X, and denote it by R (X). Next,
we apply several branching rules.

BR 1. Suppose that u is vertex of degree at least 2 in H.
Then, branch on u as follows:

1. w is in the solution. We add {u} U R~ (u) to the solution
and delete {u}UR™ (u), N({u}UR™ (u)), and R™ (N ({u}U
R~ (w))) (out-reachability set of N({u} U R~ (u))) from M
and H and obtain the majority graph M' and the candi-
date graph H'. Recurse on the instance (M', H' k — |{u} U
R~ (u)]).
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2. w is not in the solution. We delete {u} and R (u) from
M and H and obtain the majority graph M’ and the candi-
date graph H'. Recurse on the instance (M', H' | k).

BR 2. Suppose that u is a vertex with at least one in-neighbor
and at least one out-neighbor in M. Then, branch on u in a
similar way as in BR 1.

BR 3. Suppose that u is a vertex with either at least two in-
neighbors or at least two out-neighbors in M. Then, branch
on u in a similar way as in BR 1.

After applying BR 1 to 3, exhaustively, M consists of iso-
lated vertices and disjoint arcs (i.e., arcs that do not share
their end-points), and in H, each vertex has degree at most
one. Therefore, if M contains at least 2k isolated vertices
or if the end-points of the disjoint arcs in M are isolated ver-
tices in I, then we can solve the instance in polynomial time.
Otherwise, we branch as follows.

BR 4. Suppose that (u,v) is an arc in M. If either u or v has
degree 1 in H, then branch on v in a similar way as in BR 1.

The running time of the whole algorithm is governed by
the recurrence T'(m) < T'(m — 1) + T'(m — 3), which solves
to O*(1.4656™). Thus, we have the following:

Theorem 13. CF-GS can be solved in O*(1.4656™) time.
Next, we study CF-GS wrt tvd and have the following:

Theorem 14. CF-GS can be solved in O*(1.46") time,
where h is the size of tournament vertex deletion set in M.

We have the following result in restricted domain:

Observation 4. CF-GS is NP-complete and W][1]-hard
wrt k even for unanimous profiles. But, the problem is
polynomial-time solvable when the profile is SU.

4 Future Direction

Beside considering other ways of breaking the computational
intractability (e.g., using randomization, approximation algo-
rithms, and heuristic methods) and studying further multiwin-
ner rules R and graph properties O, further research direc-
tions include studying other ways of combining multiwinner
rules R and graph properties Q, such as by aiming at find-
ing points on the Pareto curve (similarly in spirit to multigoal
committee selection [Kocot et al., 2019]) or, e.g., relaxing
the requirement of Independent Set by merely minimizing the
number of edges between committee members.
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