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Abstract

We study a model where a group of representa-
tives is elected to make a series of decisions on
behalf of voters. The quality of such a represen-
tative committee is judged based on the extent to
which the decisions it makes are consistent with the
voters’ preferences. We assume the set of issues
on which the committee will make the decisions
is unknown—a committee is elected based on the
preferences of the voters over the candidates, which
only reflect how similar are the preferences of the
voters and candidates regarding the issues. In this
model we theoretically and experimentally assess
qualities of various multiwinner election rules.

1 Introduction
One of the fundamental goals that the (computational) so-
cial choice theory sets to itself is to evolve a set of tools
that could help societies to improve the processes of making
collective decisions. This includes developing frameworks
that allow to formally reason about and to meaningfully com-
pare election rules. Typically, such a comparison is done in
a context-free manner—the criteria used for comparing rules
are generic, not tailored to a specific scenario where the elec-
tion rule is to be used (cf., the axiomatic approach [Arrow et
al., 2002]). While such an approach has a natural appeal of
generality, various applications differ substantially, and a rule
which is considered perfect in one situation may be inappro-
priate in another one. This motivates comparing rules based
on context-specific assumptions. In this paper we focus on
indirect democracies—we study a framework for comparing
rules for selecting committees (e.g., parliaments, representa-
tive boards, etc.), assuming that the elected committee will
make a series of decisions on behalf of the society.
Our model can be informally described as follows (the for-

mal definitions are provided in Sections 2 and 3). There are
three types of objects: voters, candidates, and issues—an is-
sue is an alternative with two possible outcomes: “yes” or
“no”. Each voter and each candidate has her preferred out-
come for each issue—these preferred outcomes induce the
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preferences of the voters over the candidates—a voter exam-
ines how similar is her opinion on the issues to the opinions
of the candidates, and ranks them accordingly1. Further, the
preferred outcomes can be used to measure and to compare
the qualities of committees: for a given committee W we can
check what kind of decisions would be made by W if elected
(we assume that the elected committee uses the majority rule
to decide about each issue) and compare these decision with
the voters’ preferred outcomes. A committee whose decisions
coincides with most preferred outcomes is called optimal.
Finding an optimal committee would be possible if we knew

all the elements of the model. Yet, often the preferred out-
comes of the voters (or even the issue space itself) remain un-
known during elections, and winning committees are elected
based on the preferences of the voters over the candidates.
Since the voters’ preference rankings only reflect the similar-
ities between theirs and the candidates’ preferred outcomes
for the issues, it is not surprising that an election rule might
not be able to choose an optimal committee since it has only
access to partial information. In this paper we quantify this
effect and we ask what is the loss of utility that a committee
election rule can cause due to not knowing the issue space.

Our methodology and contribution are the following:

1. In Section 4 we assess the worst-case loss of utility of
multiwinner rules—by an analogy to the literature [Pro-
caccia and Rosenschein, 2006] we call this worst-case
loss of utility the distortion. We prove that the distortion
of any ordinal voting rule R equals to infinity. Thus, in
the most general case, it is inevitable that an error made
when selecting a committee based on the preferences of
the voters over the candidates, can be arbitrarily bad.

2. Due to the aforementioned negative result, we further fo-
cus our theoretical analysis on a specific domain restric-
tion inspired by works from political science on polarized
division of ideologies. Under this domain restriction we
assume that the societies are centered around two poles,
i.e., that there are only two types of preferred outcomes
that the voters and the candidates can have. It is quite sur-

1The candidates’ preferences are usually publicly known—e.g.,
politicians talk about their preferences over various issues during
election campaigns. The voters know their own preferences and so
they are able to construct their preferences over the candidates.
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prising that already under this seemingly strong assump-
tion the distortion of many known rules, such as SNTV,
k-Borda, the Chamberlin-Courant rule, and the Monroe
rule can be arbitrary bad once the parameters, such as the
number of voters or candidates, are large. On the other
hand, in this case the distortion of STV and k-Copeland
are constant. In fact, the k-Copeland rule always selects
an optimal committee when the societies are polarized.

3. Our negative results show certain limitations of the worst-
case analysis when applied to the voting committee
model. Consequently, the major (and the main) part of our
study aims at understanding the average behavior of vot-
ing rules. To this end, we performed extensive computer
simulations for several natural distribution of individuals’
preferred outcomes. In particular, our distributions gener-
alize and extend the polarized model, as described above.

If we judge the rules from the majoritarian perspective (a view
that focuses solely on maximizing the total voters’ satisfac-
tion), our results show a dichotomy. In the two most extreme
cases: (i) when a society is strongly polarized, or (ii) when the
opinions with respect to various issues are uniformly and in-
dependently distributed in a society, multiwinner rules based
on the Condorcet criterion, such as k-Copeland, are the best:
this is confirmed both by our experiments and by the theoret-
ical results. On the other hand, when the number of predom-
inant views in a society is larger than two, then proportional
rules such as STV select committees whose majoritarian deci-
sions particularly well reflect the opinions of the voters (this
is somehow unexpected, given the majoritarian approach to
judging the rules). If we use a more proportional metric to
assess qualities of voting rules (a metric that puts more em-
phasis on reducing the societal inequality), then the propor-
tional rules such as STV are always superior.

Related Work
There is a vast literature that considers committees making
series of decisions [Young, 1995; Feddersen and Pesendor-
fer, 1997; Feddersen and Pesendorfer, 1998; Magdon-Ismail
and Xia, 2018]—this literature dates back to the 18th century,
when Condorcet formulated his famous Jury Theorem. How-
ever, all these aforementioned works use the assumption that
there exists a ground truth, and so, that each decision made by
a committee is either objectively correct or wrong. Our model
is different—here, the quality of a committee can be judged
only with respect to the voters—a good committee is the one
that well-represents (subjective) preferences of the society.
Scenarios where a committee makes a sequence of bi-

nary decisions were also considered in the context of
Colonel Blotto games [Laslier and Picard, 2002], storable
votes [Casella, 2005; Casella, 2011], and voting in multi-
attribute domains [Brams et al., 1998; Lacy and Niou, 2000;
Xia et al., 2008; Xia et al., 2010]. None of these works, how-
ever, considers an indirect process of decision-making.
The voting committee model that we use in this paper was

first introduced by Skowron [Skowron, 2015]; there, the au-
thor argued for the optimality of certain committee election
rules, but under strong assumptions on the form of the voters’
utility functions. The definition of the concept of the distor-

tion in the voting committee model and its analysis is new to
this paper.
Our model is closely related to the one by Koriyama

et al. [Koriyama et al., 2013]. The difference is that Koriyama
et al. consider the apportionment problem, i.e., a scenario,
where the task is to divide a fixed number of parliamentary
seats among political parties according to how the population
votes—in our model, on the other hand, the voters vote for
individual candidates rather than for political parties.
Recently, the ideas behind proxy voting [Miller, 1969;

Green-Armytage, 2015; Cohensius et al., 2017] and liquid
democracy [Behrens et al., 2014; Brill and Talmon, 2018;
Kahng et al., 2018] have attained a considerable attention in
the literature. These works consider scenarios where a se-
quence of decisions on certain issues is to be made through a
referendum, but the voters are allowed to transfer their voting
rights regarding selected issues to others; thus, for each issue
an implicit committee is elected that (for this particular issue)
votes on behalf of the whole population of the voters.
Our results allow to formulate conclusions saying how suit-

able are certain voting rules for electing representative com-
mittees. Thus, our research contributes to the vast literature
that aims at comparing multi-winner election rules. For an
overview of this literature we refer the reader to the paper
by Elkind et al. [Elkind et al., 2017], and to the recent book
chapter by Faliszewski et al. [Faliszewski et al., 2017].
The main measure that we use to compare voting rules in

this paper is inspired by the popular concept of distortion (see,
e.g., [Procaccia and Rosenschein, 2006; Caragiannis and Pro-
caccia, 2011; Boutilier et al., 2015; Caragiannis et al., 2017;
Anshelevich et al., 2018; Goel et al., 2017; Pierczynski and
Skowron, 2019]). In these works, however, the unknown
primitives are the utilities of the voters over the candidates,
and the goal is to compare voting rules that do not have access
to the utilities but only to the rankings or approval ballots that
are consistent with these utilities. We study a more complex
model where the utilities of the voters from the committees
are inferred from the decisions made by these committees.

2 Preliminaries
For each n ∈ N by [n] we denote the set {1, . . . , n}. For a set
X we use Sk(X) to denote the set of all k-element subsets
of X; by S(X) we denote the set of nonempty subsets of X ,
i.e., S(X) =

⋃
k∈[|X|] Sk(X). For a logical expression P the

term 1P means 1 if P is true and 0 otherwise.

2.1 Elections, Preferences
Given a set of candidates C we call the elements of Sk(C)
size-k committees (or simply committees, when k is clear).
A multiwinner election (or, in short, an election) is a triplet
E = (C, V, k), where C = {c1, . . . , cm} is a set of candi-
dates, V = {v1, . . . , vn} is a set of voters and k is an in-
teger representing the intended size of the committee to be
elected. We will typically use n and m to represent the num-
bers of voters and candidates, respectively. We call the ele-
ments of C ∪ V (the voters and the candidates) individuals.
For a voter vi ∈ V by�i we denote the preference relation of
vi, which is a linear order over C; for example, if vi prefers
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a over b, then we write a �i b. By posi(c) we denote the
position of candidate c in the vi’s preference ranking; for in-
stance, posi(c) = 1 if c is vi’s most favorite candidate and
posi(c) = m when c is the least preferred candidate for vi.
A voting rule R is a function that for each election E =

(C, V, k) returns a nonempty set of size-k committees, i.e.,
R(E) ∈ S(Sk(C)). Throughout the paper we use the
parallel-universes tie-breaking mechanism that allows us to
obtain all committees that could possibly be built by means
of the selected voting rules (see [Conitzer et al., 2009]).

2.2 Overview of Selected Voting Rules
Below we provide formal definitions of the voting rules that
we study in this paper. First, though, let us recall the defini-
tions of the Plurality and Borda scores. The Plurality score
that a voter vi assigns to a candidate c, denoted by scP (vi, c),
equals 1 if posi(c) = 1 and 0, otherwise. The Borda score
that c gets from vi is scB(vi, c) = m − posi(c). Given an
election E = (C, V, k), the Plurality score of a candidate c
is the sum of the Plurality scores that c garners from all the
voters, scP (c) =

∑
vi∈V scP (vi, c). Analogously we define

the Borda score: scB(c) =
∑

vi∈V scB(vi, c).

Single nontransferable vote (SNTV). The SNTV rule re-
turns k candidates with the highest Plurality scores, i.e., can-
didates that are ranked first by the most voters.

k-Borda. It picks k candidates with highest Borda scores.

k-Copeland. The Copeland score of a candidate c is the
number of candidates c′ 6= c such that c is preferred to c′ by a
majority of voters. The k-Copeland rule selects k candidates
with the highest Copeland scores.

Single transferable vote (STV). Let q =
⌊
n
k

⌋
. STV is an

iterative procedure that works as follows. In each iteration we
check if there is a candidate with the Plurality score of at least
q. If such a candidate exists, call it c, then we:

a) add c to the committee;

b) delete some q voters that rank c first, and

c) delete c from the rankings of the voters, i.e., the candi-
dates that are ranked below c move one position up.

On the other hand, if all the candidates have their Plurality
scores lower than q, then we delete the candidate with the
lowest Plurality score from each voter’s ranking.
The procedure repeats until k candidates are selected.

Chamberlin–Courant (CC). We call a function φ : V →
C k-assignment if |φ(V )| = |{φ(v) | v ∈ V }| ≤ k. CC com-
putes the assignment φ that maximizes

∑
vi∈V scB(vi, φ(vi))

and returns φ(V ) as the winning committee. If |φ(V )| < k,
then CC picks k−|φ(V )| arbitrary candidates to fill the miss-
ing slots in the committee.
Intuitively, a k-assignment specifies for each voter vi, who

is vi’s representative in the elected committee; CC finds the
committee and the corresponding assignment so that the sum
of the voters’ happiness from their representatives (measured
through Borda scores) is maximized.

Monroe. It works as CC, but puts an additional constraint
on assignment functions—each candidate from the set φ(V )
must represent roughly the same number of voters, i.e.,
|φ−1(c)| ∈

{⌊
n
k

⌋
,
⌈
n
k

⌉}
for each c ∈ φ(V ). As for CC,

Monroe first computes the (balanced) assignment Φ that max-
imizes

∑
vi∈V scB(vi, φ(vi)), and then returns the committee

implicitly induced by φ.
Greedy–Monroe. This is an iterative procedure. It starts
with two empty sets V0 and W0. In the i-th iteration it
chooses a pair—a candidate ci ∈ C \ Wi−1 and subset of
voters V ′ ⊆ V \ Vi−1 with |V ′| ∈

{⌊
n
k

⌋
,
⌈
n
k

⌉}
—that max-

imizes
∑

vj∈V ′ scB(vj , ci). The rule updates the two sets,
Wi = Wi−1 ∪ {ci} and Vi = Vi−1 ∪ V ′. It stops after k
iterations and returns Wk as the winning committee.

3 The Voting Committee Model
An indirect election is a quadruple (C, V, I, k), where C and
V are sets of candidates and voters, respectively, k is a size
of a committee to be elected, and I = (I1, . . . , Ip) is a vector
of p issues. Each individual i ∈ V ∪ C is represented as a
p-dimensional binary vector (i[j])j∈[p], indicating her prefer-
ences over the issues—for each j ∈ [p] we set i[j] = 1 if
individual i is for issue Ij and i[j] = 0 if i is against issue Ij .
In indirect elections, similarly as in elections, the voters

have preferences over the candidates. These preferences
are consistent with the preferences of individuals over the
issues—a voter v ranks the candidates according to the num-
ber of issues for which their preferences coincide. Formally,
for each vi ∈ V and c, c′ ∈ C we have that c �i c

′ only if:

|{j ∈ [p] | vi[j] = c[j]}| ≥ |{j ∈ [p] | vi[j] = c′[j]}|.

(if for a given voter v there are multiple candidates with the
same numbers of issues on which they agree with v, the voter
ranks them in an arbitrary order; intuitively, the voter breaks
ties between these candidates according to the preferences
over issues of secondary importance, which are not part of the
model, according to her personal taste, or simply randomly).
Consequently, each instance of indirect elections can be in-
terpreted as a simple election, and so the voting rules from
Section 2.2 naturally apply to indirect elections.
To assess the quality of a committee W , we assume that W

uses the majority voting to make the decisions regarding the
issues. Formally, we define the decision vector of W as a bi-
nary vector (W [j])j∈[p], whereW [j] = 1 if |{c ∈W | c[j] =

1}| > k
2 and W [j] = 0 if |{c ∈ W | c[j] = 0}| > k

2 . In or-
der to avoid tie-breaking issues, hereinafter we assume that
the size of the committee k is odd. Naturally, since the vot-
ers have preferences over the issues, the decision made by the
committee W has an influence on voters’ satisfaction. Here,
we use perhaps the simplest measure, and define the utility
of the voter vi from a committee W as the number of issues
for which the committee’s decision coincide with vi’s prefer-
ences: ui(W ) =

∑p
j=1 1W [j]=vi[j]. The notion of the utility

of an individual voter gives us a basis to define the utility of
the whole set of voters; we use the following measures:
1. In the utilitarian approach we define the voters’ utility

from a committee W simply as: u(W ) =
∑n

i=1 ui(W ).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

198



2. In the proportional approach, we use an aggregation based
on Nash Welfare: u(W ) =

∑n
i=1 log(1 +ui(W )). Using

the logarithm in the aggregation function is grounded in
the broad literature on fair allocation (see, e.g. [Conitzer
et al., 2017; Caragiannis et al., 2016]); intuitively, this
metric puts less weight to the total satisfaction of the vot-
ers, and more to how the satisfaction is distributed among
the voters (promoting reducing the societal inequality).

We will also use the concept of disutility of the voter,
dui(W )—it is defined as the number of issues on which the
voter disagree with the decisions of the committee. Analo-
gously, for each committee W we define the utilitarian disu-
tility ofW as du(W ) =

∑n
i=1 dui(W ). We will not be using

proportional aggregations of the disutilities.2

4 The Distortion: the Worst-Case Approach
In this section we employ the worst-case approach, formal-
ized through the concept of distortion. Informally speaking,
the distortion of a rule quantifies the worst-case loss of the
utility being the effect of the rule not having access to all the
information—here, our rules do not have access to informa-
tion about issues, but rather choose the winning committees
based on the preferences of the voters over the candidates.
This section focuses on the utilitarian distortion; even for

this simple aggregation our results are mainly negative. Their
primary purpose is to illustrate the limitations of the worst-
case analysis when applied to the voting committee model.
Definition 1 (Distortion). The satisfaction-based distortion
of a voting ruleR wrt. a set of indirect elections E is:

distsat{R,E} = sup
E∈E

max
W∈R(E)

u(OPT(E))

u(W )
,

where OPT(E) is a committee with the maximal utility in E,
i.e., OPT(E) ∈ argmaxW∈Sk(C)u(W ). Analogously, we de-
fine the dissatisfaction-based distortion ofR as:

distdis{R,E} = sup
E∈E

max
W∈R(E)

du(W )

du(OPT(E))
,

In the above definition we take the convention that 0/0 = 1.
In Definition 1 the distortion is parameterized with a set

of instances; this allows us, e.g., to explain how the distor-
tion depends on certain structural properties of voters’ pref-
erences. Usually, the considered set of instances will be clear
from the context—in such cases we will write distsatR (resp.,
distdisR ) as an abbreviation for distsat{R,E} (resp., distdis{R,E}).
For k = 1 the dissatisfaction-based distortion boils down to

the well-known concept of the metric distortion [Anshelevich
et al., 2018] in pseudo-metric spaces where the voters and
candidates are represented as vertices of hypercubes.

4.1 Universal Hardness of Distortion
We start our analysis by providing a negative result which
says that in general, the distortion of any voting rule is arbi-
trarily bad. On the one hand, this result illustrates the pos-
sible inefficiency of the process of making decisions through

2We are not aware of any formula for aggregating disutilities that
would share strong fairness properties of the Nash Welfare.

a representative body, specifically if the committee is elected
based on the voters’ preferences over the candidates. On the
other hand, it justifies introducing additional assumptions to
the model—in the subsequent sections we will consider cer-
tain restricted (but realistic) structures of voters’ preferences.
Theorem 1 (Universal Hardness Theorem). For each voting
ruleR and for each committee size k ≥ 3:
1. the satisfaction-based distortion ofR equals to∞.
2. the dissatisfaction-based distortion ofR equals to∞.
3. there exists an instance E where du(W )/du(OPT(E)) = ∞,

and u(OPT(E))/u(W ) ≥ (k+1)/2− ε, for each ε > 0.

Proof. We provide the proof of (3) - the construction for (1)
is analogous. Statement (2) follows from (3).
Fix a rule R, a committee size k, and m = k + k+1

2 . As-
sume that for a single voter, with the preference ranking c1 �
c2, . . . , cm, the rule picks the committeeW = {ci1 , . . . , cik}.
Fix a constant L and an instance E with p = L · k+1

2 issues.
We have one voter represented as the vector of p ones, and
the following three classes of candidates:
1. C1: in this class we have k−1

2 candidates, each repre-
sented as the vector of p ones;

2. C2: this class contains k+1
2 candidates. The i-th candidate

is represented as a vector of (i − 1)L zeros, followed by
L ones, followed by (k+1

2 − i)L zeros.

3. C3: here we have k+1
2 candidates, each represented by L

ones followed by (k+1
2 − 1)L zeros.

Each candidate in C2 ∪C3 is equally liked by the voter (their
preferences coincide for L issues). Now, we slightly perturb
the instance, to enforce that the voter will use a particular tie-
breaking for the candidates in C2∪C3. For that, for each can-
didate in C2∪C3, we change at most k+ 1 zeros to ones. We
do that in a way that the candidates from C3 will be put in the
voter’s preference ranking in the positions from {i1, . . . , ik}.
We give the names to the candidates so that the candidates
ranked in the positions from {i1, . . . , ik} are ci1 , . . . , cik , and
the remaining candidates have names from {c1, . . . , cm}\W .
For this instance, the rule picks a committee containing C3.

This committee will make the decision “one” for at most L+
k+1 issues. On the other hand, the committeeC1∪C2 would
make the decision “one” for all p issues. Thus, we have that:

du(W )

du(OPT(E))
=∞ and

u(OPT(E))

u(W )
≥ p

L+ k + 1
.

For large L, we have that u(OPT(E))/u(W ) ≥ (k+1)/2− ε.

4.2 Distortion for Polarized Society
We next study a model where the society is centered around
two points in the issue space. Formally, we say that an indi-
rect election (C, V, I, k) is centered around two poles if there
exists two binary p-dimensional vectors, p1 and p2, such that
each individual from V ∪ C is represented as either p1 or p2.
When determining the distortion of a ruleR for two poles, we
assume that the set of instances E from Definition 1 consists
of all elections that are centered around two poles.
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Due to space constraints, here we only present our results
very briefly. We summarize them in the following theorem:
Theorem 2. For societies centered around two poles, the
satisfaction-based distortion:
1. of the k-Copeland rule equals to 1.
2. of STV is 3, but for large n/k and k it approaches 1.
3. of SNTV and CC is Θ(n), of k-Borda is Θ(m/k), of Mon-

roe is Ω(n) even if k = 3, and of greedy-Monroe is Ω(k).

5 Beyond the Worst-Case Analysis
Our theoretical results illuminate particular limitations of the
worst-case analysis when applied to the voting committee
model. Already Theorem 1 provides a certain barrier to deriv-
ing meaningful conclusions that would allow to reason about
voting rules and that would apply more broadly. Further,
even under a seemingly strong assumption of the society be-
ing completely polarized the distortion of some known voting
rules is arbitrarily bad in limit. This motivates us to extend
our analysis beyond the worst-case and to assess the average
qualities of the studied rules for certain natural distributions.
In this section we consider a probabilistic model—we as-

sume that the preferences of the individuals are drawn ran-
domly from a given distribution. For each voting rule R we
run a series of experiments in order to assess the qualities of
the outcomes produced by R for elections drawn from sev-
eral different distributions. In our experiments we focussed
on instances with n = 500 voters, m = 100 candidates, and
where the total number of issues is p = 100. We consider the
following distributions of individuals’ preferences:
Impartial Culture. For each individual i and issue Ij the
i’s preferred outcome on Ij is drawn uniformly at random.
(ξ1, ξ2)-Polarized Balanced Society ((ξ1, ξ2)-PBS). Here
we assume that the individuals come from two equal-size
groups—each containing 250 voters and 50 candidates. For
each group we choose a vector of preferred outcomes, which
we call the center of the group. Specifically, the center of
the first group is the vector with all ‘ones’; for the second
group this is the vector of all ‘zeros’. For each individual
i from group t ∈ {1, 2} we sample a value ξ(i) uniformly
at random from [ξt, 1]. Intuitively, ξ(i) describes how close
is i (with respect to her preferences) to the center of his or
her group. Formally, for each issue Ij the probability that i’s
preferred outcome for Ij is consistent with the center of her
group equals to ξ(i).
(ξ1, ξ2)-Polarized Imbalanced Society ((ξ1, ξ2)-PIS).
This model is similar to (ξ1, ξ2)-PBS; the difference is that
the two groups do not have equal sizes. There are 150
voters and 50 candidates in the first group; the second group
contains 350 voters and 50 candidates.
(t, ξ)-Poles. In the (t, ξ)-Poles distribution the society is di-
vided into t groups, the sizes of which are derived as follows:
We first sample t integers, x1, x2, . . . , xt, i.i.d., uniformly at
random from [0, 1]. Next, for each i ∈ [t] we set the size
of the i-th group—both the number of candidates and the
number of voters—to be proportional to xi. The total num-
ber of voters and candidates must be equal to 500 and 100,
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Figure 1: Comparison of voting rules for elections drawn from the
(ξ1, ξ2)-PBS for ξ1 = ξ2 and k = 31. The plots depict the average
(normalized) utility of committees returned by different voting rules.

respectively; we round up or down the number of individu-
als within each group when necessary. Second, we sample
t central points for the groups—each central point is a p-
dimensional binary vector whose coordinates were sampled
independently, uniformly at random from {0, 1}. Finally, for
each group z ∈ [t] and each individual i from the z-th group
we derive the preferred outcomes of i as follows. First, we
sampled ξ(i) uniformly at random from [ξ, 1]. For each issue
Ij the individual i will have a preferred outcome consistent
with the central point of its group (i.e., equal to the j-th coor-
dinate of the central point) with probability equal to ξ(i).
In our simulations we covered a wide range of possible val-

ues of the parameters of the distributions (we give details be-
low). For each distribution with a fixed set of parameters we
ran 500 experiments; each experiment was performed as fol-
lows. We drew an indirect election and computed the winning
committees according to different voting rules. For each such
a committee W we computed the vector of decisions made
byW , compared these decisions to the preferred outcomes of
the voters, and calculated the utility value u(W ). We normal-
ized these values, dividing them by n · p—for the utilitarian
aggregation, or by n · log(1 + p)—for the proportional aggre-
gation (the best possible utility that would be obtained if each
voter were perfectly satisfied with every decision made by the
committee; an alternative approach would be to divide u(W )
by the utility of the optimal committee—cf., Definition 1—
but finding such a committee is NP-hard), and we computed
the average of these normalized utilities over the 500 runs.
For the sake of clarity, in all the figures in this section we

plot only the results for STV, k-Copeland, and SNTV. The
plots for greedy Monroe are almost indistinguishable from
the plots for STV; similarly, the plots for k-Borda are almost
the same as the plots for k-Copeland.
The results of our simulations for (ξ1, ξ2)-PBS for ξ1 = ξ2

and k = 31 (recall that we use an odd size of the commit-
tee to avoid tie-breaking in the decision-making process) are
depicted in Figure 1. The results for (ξ1, ξ2)-PBS with fixed
ξ2 = 0.85 and ξ1 ranging from 0.5 to 1, and for (ξ1, ξ2)-
PIS with ξ1 = ξ2 lead to the same conclusion, so we do not
present the corresponding plots. Further, for all these distri-
butions we also run the experiments for k = 11, and obtained
results consistent with the ones presented in Figure 1. We also
do not include plots for the Impartial Culture model since the
results obtained in this model were similar to those obtained
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(d) proportional aggr., t = 5

Figure 2: The average utilities of voting rules for elections drawn from the (t, ξ)-Poles distribution. The committee size is k = 31.
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Figure 3: Average qualities of voting rules for elections drawn from
(ξ1, ξ2)-PBS (ξ2 = 0.85) for the binary distribution of weights.

for (ξ1, ξ2)-PBS when values of ξ1 and ξ2 were close to 1/2.
The results of our experiments performed for the (t, ξ)-Poles

distribution are summarized in Figure 2. Due to space con-
straints, we only present the results for t ∈ {3, 5} and k = 31,
but we also performed experiments for t = 10 and k = 11;
the results are consistent with those presented.
Our interpretations of the results are as follows: For the

utilitarian aggregation we observe a dichotomy. In the two
most extreme cases: (i) when the society is strongly polar-
ized, or (ii) when the opinions in the society are uniformly
distributed with no correlations (the Impartial Culture model),
k-Copeland is the best, and performs better than the propor-
tional rules; this conclusion is consistent with our theoretical
results (see Theorem 2). SNTV is the worst out of the con-
sidered rules. For the proportional aggregation of the utilities
the proportional rules, specifically STV, perform better, even
when the society is strongly polarized. On the other hand, for
societies with more than two predominant opinions, or when
the predominant opinions are less extreme, the proportional
rules perform better, even for the utilitarian aggregation of
the voters’ satisfactions; this effect is yet magnified when we
look at the proportional aggregation of the utilities.
Finally, since in real-life it is often the case that the voters

consider some issues more important than the others, we ex-
tended our experimental setting in order to capture this intu-
ition. For each voter i and each issue Ij we assume that there
is a weightwi,j that measures how important voter i perceives
issue Ij . The definition of the utility that a voter i assigns to
a committee W changes accordingly (cf., Section 3):

ui(W ) =
∑p

j=1 wi,j · 1W [j]=vi[j].

We consider three different distributions of weights:

Uniform. For each voter and each issue the weight is sam-
pled uniformly at random from [0, 1].
Exponential. We sample the weight a voter assigns to an
issue from the exponential distribution with λ = 1.
Binary. For each voter we randomly pick 10% of issues
that she considers important, and for these issues we set the
weight to 1. The weights for the remaining issues are 0.
The results of our simulations for (ξ1, ξ2)-PBS for the binary

distribution of weights for k = 31 are depicted in Figure 3—
we do not include plots for the remaining distributions, as the
results are very similar. Our main conclusion is that adding
weights does not change the overall picture—the rules that
performed well (resp., badly) in settings without weights still
perform well (resp., badly) in the same settings with weights
(independently of the distribution from which the weights are
drawn).

6 Conclusion
We studied a model, where the voters and the candidates have
preferences over a certain set of issues. The preferences of
the voters over the candidates are inducted by the individuals’
preferred outcomes for the issues. We assumed that the issue
space is unknown and the selection of the winning committee
is purely based on the preferences of the voters over the can-
didates. We measured the quality of committees by looking
at the majoritarian decisions made by them and by comparing
those decisions with the voters’ preferred outcomes.
In the most general case, the distortion of any voting rule can

be arbitrarily bad. This motivated us to look at special cases
inspired by works from political science, where the voters’
preferences have certain structure. If the society is extremely
polarized or when there is no predominant view in the society,
then k-Copeland is the best according to the majoritarian per-
spective. If we look at the proportional aggregation of voters’
utilities, or in the intermediate cases (when there are more
predominant views in the society, or when the predominant
views are not extreme)—both for the proportional and for the
majoritarian aggregation—STV performs much better.
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