
Logics of Allies and Enemies:
A Formal Approach to the Dynamics of Social Balance Theory

Wiebe van der Hoek1 , Louwe Kuijer1 and Yı̀ Wáng2

1University of Liverpool
2Zhejiang University

{wiebe, louwe.kuijer}@liverpool.ac.uk, ynw@xixilogic.org

Abstract
We combine social balance theory with tempo-
ral logic to obtain a Logic of Allies and Enemies
(LAE), which formally describes the likely changes
to a social network due to social pressure. We
demonstrate how the rich language of LAE can be
used to describe various interesting concepts, and
show that both model checking and validity check-
ing are PSPACE-complete.

1 Introduction
Social balance theory was initiated with Heider’s work on
social psychology [1944; 1946; 1958], and later reinvented
by Harary et al. using graph theory in [Harary, 1953;
Cartwright and Harary, 1956; Harary et al., 1965], an ap-
proach in which signed graphs represent social networks of
agents, with positive signs for allies or friends and negative
signs for enemies or antagonists. This has become a basic
framework for studying positive and negative ties, and has
since then become an active area in the field of social net-
work analysis.

A social network is balanced if it meets certain structural
conditions on its positive or negative ties between agents. For
example, a triad of three agents that are all enemies of one
another is considered unbalanced, since two of them have an
incentive to make an alliance against the third. Over time, the
ties in a social network tend to change in a way that makes the
network more balanced. Empirical and theoretical studies of
social balance can be found in [Newcomb, 1961; Doreian et
al., 1996; Hummon and Doreian, 2003; Wang and Thorngate,
2003; Antal et al., 2006; Radicchi et al., 2007; Kulakowski,
2007; Abell and Ludwig, 2009; Zheng et al., 2015].

Here we study the process under which networks become
more balanced from a different perspective, namely that of
temporal logic. Specifically, we introduce the Logic of Al-
lies and enemies (LAE), a variant of Computation Tree Logic
(CTL) [Clarke and Emerson, 1981; Emerson and Clarke,
1982] that describes the behaviour of social networks under
the assumption that they move towards balance “greedily”,
i.e., that change in relations between agents happens only if it
makes the network more balanced.

LAE allows us to describe properties of networks such as,
for example, “it is guaranteed that a and b eventually become

friends”, “if a and c ever become friends, then they will re-
main friends forever, and a and bwill forever be enemies” and
“a and bwill remain enemies until there are at least two agents
x and y that are mutual friends of a and b”. Our main results
are that (1) it is possible for a social network to get stuck in a
local maximum of balance, (2) the so-called balance theorem
or structure theorem, which states that a network is balanced
iff it is clique divisble, holds for LAE, and (3) model checking
and validity checking for LAE are PSPACE-complete.

The structure of the paper is as follows. We introduce the
basic ideas of network balance in the next section. In Sec-
tion 3 we introduce the syntax and semantics of LAE, to-
gether with a number of validities; we also show that the
movement towards balance may terminate in a state that is
not fully balanced but instead only stable. We study the com-
putation complexity in Section 4 and conclude in Section 5.

2 Network Balance
A social network consists of a set of agents with pairwise
ties that are positive (“friends”, “allies”, +), negative (“foes”,
“enemies”, −) or neutral (“neither friends nor foes”, 0).

While every relation is between exactly two agents, the dif-
ferent relations do influence one another. For example, one of
these influences is famously expressed by the saying that “the
enemy of my enemy is my friend”, so if there is enmity be-
tween a and b and between b and c, then there should be a
friendship between a and c. There are multiple equivalent
ways to describe these influences; our description is based on
balanced and unbalanced triads.1 Modulo symmetry there are
10 different triads, which are drawn in Figure 1.

We call a triad balanced if its edges reinforce each other.
For example, in the triad −−+ of Figure 1(b), the + edge
between a and c is reinforced because b is a mutual enemy, the
− edge between a and b is reinforced because a is the friend
of b’s enemy c and the − edge between b and c is reinforced
because c is the friend of b’s enemy a. The two balanced
triads are the aforementioned −−+ and the triad +++.

1The term “triad” is commonly used in the field of balance theory
for a group of three agents and their relations. The study of triads
was rooted in Heider [1944; 1946]. Influences from a bigger cycle
are typically considered to be of less strength, and modeled in this
paper by indirect cross-triad interaction over time.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

210

�
�

�
�

b

a c

(a) +++

b

a c

(b) −−+

�
�

�
�

b

a c

(c) ++−

b

a c

(d) −−−
Balanced Unbalanced�

�
�
�

b

a c

(e) ++0

b

a c

(f) −−0

b

a c

(g) +−0

Partially balanced�
�

�
�

b

a c

(h) 000

b

a c

(i) +00

b

a c

(j) −00
Pressure-free

Figure 1: The ten different triad shapes. Solid lines represent posi-
tive relations and dashed lines represent negative relations. Neutral
relations are represented by not drawing a line.

We call a triad unbalanced if all its edges weaken one an-
other. For example, in the −−− triad of Figure 1(d) each
pair of agents has reason to become friendly to one another
against a common foe. The other unbalanced triad is ++−.

There are also three triads where two of the edges are nei-
ther reinforced nor weakened, while a third edge experiences
some pressure one way or the other. We call these triads par-
tially balanced. E.g., in the triad −−0 of Figure 1(f), there is
no reason for the enmity between a and b or between b and c
to end. But there is a reason for the neutrality between a and
c to turn into a friendship, since they have b as a common foe.

Finally, the remaining three triads are pressure-free. In
these triads 000, +00, −00, there is no pressure on any of
the edges to change.

The different types of triads and the pressures they experi-
ence are summarized as follows:

Degree of balance Shape Has a reason to change to . . .

Balanced +++ N/A
+−− N/A

Unbalanced ++− −+−, +−− or +++
−−− +−−, −+− or −−+

Pressure-free
000 N/A
+00 N/A
−00 N/A

Partially balanced
++0 +++
−−0 −−+
+−0 +−−

2.1 Scope
Balance theory models the influence that different relations in
a social network have on one another. But the relations may
be influenced by other factors as well. For example, “John
may be the enemy of my enemy, but he punched me in the
face yesterday so he is definitely not my friend” is a reason-
able attitude, but does not follow from any of the relations
in the network. Since such influences originate from factors
that are not represented in the network, we refer to them as
outside influence.

Predicting outside influence would require an accurate
model of all human behavior, which seems rather unfeasible
and is outside the scope of balance theory, and of this paper.
We therefore do not model outside influence. The network
dynamics that we represent here are therefore best seen as the
likely changes in the social network provided that there are
no influences from outside the network.

3 The Logic of Allies and Enemies
In this section we first introduce formal definitions of 3-
signed social networks, stability scores and time evolution,
based on the understanding and convention from the previous
section. Then we introduce the syntax and semantics of the
Logic of Allies and Enemies (LAE).

We assume that every social network is finite, so let a finite
set AG be given. Furthermore, because there is no reason for
relations to change unless there are at least three agents, we
assume that |AG| ≥ 3.

3.1 3-Signed Social Networks
We define a social network to be a 3-signed undirected graph,
with its vertices representing agents and edges representing
ties between agents. The formal definition is given below.

Definition 1 (social networks). A social network (network for
short) is a function N : {{a, b} ⊆ AG : a 6= b} → {+,−, 0}
that assigns to each pair of different agents a positive (+), a
negative (−), or a neutral (0) edge.

Note that the domain of N consists of unordered pairs
of two different agents. We therefore have N ({a, b}) =
N ({b, a}), by definition. We write N (a, b) for N ({a, b}).
We say that a network is complete if it does not contain neu-
tral edges, and that two agents are in the same connected com-
ponent if they are connected by a path of non-neutral edges.

We first introduce the notion of balance coming from the
literature. That is, a network is balanced if all of its triads are
balanced.

Definition 2 ((semi-)balance). A networkN is balanced if for
every distinct a, b, c ∈ AG, the triad abc is balanced in N . A
networkN is semi-balanced if for every distinct a, b, c ∈ AG,
the triad abc is balanced or pressure-free in N .

The relation between the two concepts is characterized by
the following proposition.

Proposition 3. A network is semi-balanced if and only if all
of its connected components are balanced.

A network is semi-balanced if and only if no agent has any
reason to change any of its relations. However, it is possible
for two agents a and b to have both some reasons to become
or remain friends, and some reasons to become or remain en-
emies. So the mere fact that an agent has a prima facie rea-
son to change its relation does not mean that the agent has
an overall reason to change its relation, since the reason for
change may be outweighed by more reasons for the relation to
remain the same. As a result, it is possible for a network not
to be balanced, while still not containing any overall reason
for any relation to change. We therefore introduce the notion
of stability: a network is unstable if there is at least one pair

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

211

b c

a d

f e

Figure 2: A stable but unbalanced network.

of agents that have more reasons to change their relationship
than they have reasons for it to remain the same.

The stability of an edge is determined by its attraction and
repulsion. The attraction between two agents is the number
of reasons for them to become or remain friends, and the re-
pulsion the number of reasons to remain or become enemies.

This means that the attraction between a and b is the num-
ber of mutual friends/foes, while the repulsion is the number
of agents to which a and b have different non-neutral ties.
Definition 4 (stability of edges). Let N be a social network,
and let a, b ∈ AG. The attraction, repulsion and stability
score of (a, b), denoted attr(a, b), rep(a, b) and score(a, b),
respectively, is given by

attr(a, b)=|{c : N (a, c)=N (b, c) and N (a, c) ∈ {+,−}}|
rep(a, b)=|{c : N (a, c) = + and N (b, c) = −}| +

|{c : N (a, c) = − and N (b, c) = +}|

score(a, b)=

{
attr(a, b)− rep(a, b), if N (a, b) = +,
rep(a, b)− attr(a, b), if N (a, b) = −,
−|attr(a, b)− rep(a, b)|, if N (a, b) = 0.

An edge ab is stable if score(a, b)≥0, and unstable otherwise.
An unstable edge is improving if its attraction is greater than
repulsion, and deteriorating if attraction less than repulsion.

Put in a different way, a positive edge is unstable if it is
deteriorating, a negative edge is unstable if improving, and a
neutral edge is unstable if either deteriorating or improving.
Definition 5 (stability of networks). A network is stable if
every edge is stable, and unstable otherwise. The stability
score of a network N is the sum of the stability scores of its
edges. We write score(N) for the stability score of N .

It is easy to see that every semi-balanced network is stable:
if no edge has any reason to change, then, in particular, no
edge has more reasons to change than to remain the same.
The converse does not hold, however.

For example, the network shown in Figure 2 is stable but
not balanced. For every edge in this network the agents have
a reason to change their relation, but also a countervailing
reason to keep their current relation. E.g., a and b might wish
to become friends due to their common friendship with c and
e, but they also wish to remain enemies due to the fact that d
and f are enemies of b but friends of a.
Proposition 6. The set of semi-balanced networks is a proper
subset of the set of stable networks.

If a network is unstable, one or more relations have more
reasons to change than to remain the same. In such a situa-
tion, we expect one of these relations to change accordingly.

If a network is stable, then no relation has an overall reason
to change, so the network is expected to remain the same. It

follows that while networks trend towards balance, they may
get stuck in a stable but not semi-balanced state.
Definition 7 (successors). We say a network N2 is a succes-
sor of a network N1 if: (i) N1 is stable and N1 = N2, or (ii)
N1 andN2 differ in exactly one edge ab, and for that edge it is
either the case that ab is improving in N1 and N2(a, b) = +,
or that ab is deteriorating inN1 andN2(a, b) = −. We write
N1 ; N2 if N2 is a successor of N1.
Proposition 8. Let N1 and N2 be two networks such that
N1 ; N2. Then,

1. If N1 is stable, then score(N1) = score(N2);
2. If a neutral edge of N1 becomes positive or negative in
N2, then score(N1) can be greater than, equal to or
smaller than score(N2) (all cases can indeed occur);

3. If a positive (resp. negative) edge of N1 becomes nega-
tive (resp. positive) in N2, then score(N1)<score(N2).

Definition 9. The time evolution T (N) of a network N is
the smallest graph (S,⇒) such that: (i) N ∈ S, and (ii) if
N1 ∈ S and N1 ; N2, then N2 ∈ S and N1 ⇒ N2.
Proposition 10. The time evolution of a network is a tree-like
structure, i.e., there are no cycles except self-loops of leaves.

Proof. By Prop. 8 the only cycles are self-loops, i.e., of the
form N1 ; N1, where N1 is stable. This is because when-
ever N1 ; N2 and N1 6= N2, either N2 contains strictly
fewer neutral edges than N1, or N1 and N2 have the same
number of neutral edges and score(N1) < score(N2).

We abuse notation by saying that T (N) has a depth,
namely the length of the longest cycle-free path.
Proposition 11. The depth of any time evolution is bounded
from above by 2 · |AG|5.

Proof. Each reason for an edge to improve or deteriorate can
be identified by a triad abc, where ab and bc influence ac.
There are less than |AG|3 such triples, so the stability score
must be between −|AG|3 and |AG|3. Furthermore, there are
at most |AG|2 edges with value 0. Since every non-reflexive
transition requires either one edge to become non-neutral or
the stability score to increase, the maximum cycle-free path
length is at most 2 · |AG|3 · |AG|2 = 2 · |AG|5.

3.2 Syntax and Semantics
We wish to reason about social networks and their evolution
with a logical language. As T (N) strongly resembles the
branching time models of CTL, we base the temporal con-
nectives of our language on those of CTL. In addition to these
temporal connectives we use a number of atoms that describe
the ties. Because it is important for the network dynamics
how many mutual friends/foes two agents have, we also use a
quantifier ∃≥nx that allows us to describe how many agents
satisfy a certain property.
Definition 12 (languages). The language L of LAE is given
by the following grammar:

ϕ ::=Paa |Naa|¬ϕ |(ϕ→ϕ) |AXϕ |A(ϕUϕ) |E(ϕUϕ) |∃≥nxϕ

where a, x ∈ AG and n ∈ N. We use the Boolean operators
∧,∨,> and ⊥ as well as the CTL operators EX, AF, EF, AG

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

212

and EG as abbreviations as usual. Pab reads as “the relation
between a and b is positive, andNab as “the relation between
a and b is negative”. Oab abbreviates (¬Pab ∧ ¬Nab), and
reads as “the relation between a and b is neutral”. With re-
gard to the quantifier, ∃≥nxϕ reads as “there are at least n
agents x such that ϕ(x) is true.” We will make use of the
following abbreviations:

∃xϕ =df ∃≥1xϕ
∀xϕ =df ¬∃x¬ϕ
∃!nxϕ =df (∃≥nxϕ ∧ ¬∃≥n+1xϕ)

For simplicity we treat Pab and Pba as the same formula,
and similarly for the operators N and O.

Formally, the meaning of the formulas is determined by the
satisfaction relation |=, which is defined as follows.
Definition 13 (satisfaction). Whether a network N satisfies
(notation N |=) a formula is determined inductively by the
following (where ϕ and ψ are formulas, and a, b, x ∈ AG):

N |= Pab iff N(a, b) = +
N |= Nab iff N(a, b) = −
N |= ¬ϕ iff not N |= ϕ
N |= (ϕ→ ψ) iff N |= ϕ implies N |= ψ
N |= AXϕ iff ∀N ′ : N ; N ′ implies N ′ |= ϕ
N |= A(ϕUψ) iff ∀N1, · · · , if N0 ; N1 ; · · · with

N = N0, then ∃i : Ni |= ψ and ∀j < i,Nj |= ϕ
N |= E(ϕUψ) iff ∃N1, · · · such that N0 ; N1 ; · · ·

N = N0, and ∃i : Ni |= ψ and ∀j < i,Nj |= ϕ
N |= ∃≥nxϕ iff there are distinct a1, . . . , an ∈ AG

such that N |= ϕ
[
a1

x

]
∧ · · · ∧ ϕ

[
an

x

]
,

where ϕ
[
ai

x

]
(for all i = 1, . . . , n) is the formula achieved by

substituting all occurrences of x in ϕ to ai.
A formula is satisfiable if there is a network that satisfies it,

and valid if all networks satisfy it.

Our logic is strong enough to express stability of edges and
networks and balance of triads and networks:

stable(a, b) =df (Pab∧AXPab) ∨ (Nab∧AXNab)
∨(Oab∧AXOab)

stable =df ∀xy stable(x, y)
noneutral(a, b, c) =df ¬(Oab ∨Obc ∨Oac)
balanced(a, b, c) =df (Pab∧Pbc∧Pca)∨(Pab∧Nbc∧Nca)

∨(Nab∧Pbc∧Nca)∨(Nab∧Nbc∧Pca)
balanced =df ∀xyz(noneutral(x, y, z)→ balanced(x, y, z))

∧∀x¬∃≥2yOxy
where stable(a, b) intuitively says that the edge ab is stable,
stable says that the current network is stable (N |= stable iff
N is stable), noneutral(a, b, c) says that abc contains no neu-
tral edges, balanced(a, b, c) says that abc is a balanced triad
(positive 3-cycle), and balanced says that the current network
is balanced (N |= balanced iffN is balanced). Semi-balance
can also be expressed in LAE, but not in a straightforward
way (see Section 3.3). To further illustrate the expressive
power of LAE, we list some validities below.
Proposition 14. The following formulas are valid, where ϕ
is any formula, and a, b, c and d are distinct agents:

1. (One is neither a friend nor an enemy of oneself) Oaa
2. Pab→∃xPax, Nab→∃xNax and Oab→ ∃≥2xOax

3. (Stable networks don’t evolve) stable→ (ϕ→ AXϕ)
4. (At most one sign is changed in one step)

(Pab ∧ Pcd)→ AX(Pab ∨ Pcd)
5. (A network becomes stable eventually) AFstable
6. (A network is stable after 2 · |AG|5 steps) AX2·|AG|5stable
7. (Balance implies stability) balanced→ stable
8. (There are |AG| agents) ∃≥|AG|xϕ↔ ∀xϕ

Proof. Statements 5 and 6 follow from the fact that the depth
of T (N) is bounded by 2 · |AG|5. The remaining statements
follow easily from the definitions.

3.3 Balance Theorem Revisited
The balance theorem relates balance to cliques. So let us start
our discussion of the theorem by formally defining what we
mean by the network being divisible into cliques.
Definition 15. A clique division of a networkN is a partition
V1, . . . , Vk of AG such that (i) for all i = 1, . . . , k and all
a, b ∈ Vi, N (a, b) = + and (ii) for all i, j such that 1 ≤ i <
j ≤ k, either N (a, b) = − for all a ∈ Vi and b ∈ Vj or
N (a, b) = 0 for all a ∈ Vi, b ∈ Vj .

A clique division is semi-bipartite if for every i there is at
most one j such that for a ∈ Vi and b ∈ Vj , N (a, b) = −.

A network is (semi-bipartite) clique divisible if it has a
(semi-bipartite) clique division.

The property of being clique divisible, and of semi-
bipartite clique divisible, can be expressed in LAE as follows:

clique=df∀xy(Pxy→(∀z(Nxz→Nyz)∧¬∃≥2z(Pxz∧Oyz)))
sbclique =df clique ∧ ∀xyz¬(Nxy ∧Nyz ∧Nxz)
The following proposition shows that clique and sbclique
faithfully represent their respective concepts.
Proposition 16. A network N is clique divisible iff N |=
clique. N is semi-bipartite clique divisible iffN |= sbclique.

Proof. A network is clique divisible iff for every a, b and c,
if N (a, b) = +, then N (a, c) = N (b, c). We show that the
formula clique guarantees exactly this property.

Take any three agents a, b and c such that N (a, b) = +.
Suppose that N (a, c) 6= N (b, c). Then we distinguish two
possibilities: (i) one of a, b is an enemy of c and the other is
not or (ii) one of a, b is a friend of c while the other is neutral.
Without loss of generality, the negative relation in case (i) and
the positive relation in case (ii) is between a and c. Then, in
case (i), we haveN |= Pab and N 6|= Nac→ Nbc, so N 6|=
clique. In case (ii), we have N |= Pab, N |= Pac ∧ Obc
and N |= Pab ∧ Obb, so there are at least two witnesses for
∃≥2z(Paz ∧Obz). Again, N 6|= clique.

Similar reasoning shows that if a and b have the same re-
lation with every c, then clique holds. So clique holds if and
only if N is clique divisible. Furthermore, a clique division
is semi-bipartite if every clique is hostile to at most one other
clique, so if no three cliques are mutually hostile. It is easy to
see that this is the case iff sbclique holds.

In Section 3.2 we claimed that the property of being semi-
balanced can be expressed in LAE. Here, we define a formula
semi-balanced that expresses this property. The definition of
semi-balanced is not entirely straightforward. The problem

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

213

lies in the fact that Oab may hold because N (a, b) = 0, or
because a = b. So while a semi-balanced network does not
contain any triads of the form ++0, it may contain agents x, y
and z such that Pxz ∧ Pyz ∧ Oxy, if x = y. In the formula
semi-balanced we have to take care of this special case.

semi-balanced(a, b) =df ∀x(((Pax ∧Nxb)→ Nab)∧
((Nax ∧ Pxb)→ Nab)∧

((Pax ∧ Pxb)→ (Pab ∨ (Oab ∧ AXOab)))∧
((Nax ∧Nxb)→ (Pab ∨ (Oab ∧ AXOab))))

semi-balanced =df ∀y∀z semi-balanced(y, z).

Proposition 17. A networkN is semi-balanced if and only if
N |= semi-balanced.

Proof. Suppose that N is semi-balanced, and that N |=
Pax ∧ Pxb. Then there are two possibilities: either a = b
or abx is a balanced or pressure-free triad with at least two
positive edges. In the first case N |= OAb ∧ AXOab, since
an agent is neutral to itself. In the second case, abx must
be of the form +++, so N |= Pab. In either case, N |=
(Pax∧Pxb)→ (Pab∨ (Oab∧AXOab)). The antecedents
of the other three implications are false, so they are trivially
satisfied. It can similarly be shown that if N |= Pax ∧Nxb,
N |= Nax ∧ Pab or N |= Nax ∧Nxb all four implications
hold, so N |= semi-balanced.

Suppose then thatN is not semi-balanced. Then it contains
a triad of the form ++0,−−−, +−0, ++− or −−−. We
show one case in detail, the others cases are similar. Suppose
that the triad is ++0. Then there are a, b and x such that
N |= Pax ∧ Pxb ∧ Oab. Because a and b have a mutual
friend, ab has an attraction of at least 1. If this attraction is
counterbalanced by a repulsion, then there is an x′ such that
N 6|= (Pax′ ∧ Nx′b) → Nab or N 6|= (Nax′ ∧ Px′b) →
Nab. Otherwise, the edge ab is improving, which implies
that N 6|= AXOab. In either case, N 6|= semi-balanced.

Now that we have the formulas semi-balanced and
sbclique, it is quite easy to formulate the Balance Theorem.

Theorem 18 (balance). |= semi-balanced↔ sbclique.

Proof. Suppose N |= sbclique. By Proposition 16 this im-
plies that N is semi-bipartite clique divisible. Now, take any
triad abc in N . If a, b and c are members of the same clique,
then abc is of the form +++. If a and b are members of the
same clique and c is a member of a different clique, then abc
is of the form +−−, if the cliques are hostile to each other, or
+00, if the cliques are neutral to each other. If a, b and c are
all members of different cliques, then due to the fact that N
is semi-bipartite, at most two of these cliques can be hostile
to one another. So abc is of the form −00 or 000. Each of
these possible forms for abc is either balanced or pressure-
free, so N is semi-balanced. By Proposition 17 this implies
that N |= semi-balanced.

Suppose N |= semi-balanced. By Proposition 17, N is
semi-balanced. Let V1, . . . , Vk be the partition such that a, b
are in the same part if and only if there is a path of positive
relations from a to b. Because N is semi-balanced, positive
relations are transitive. So all a, b ∈ Vi have positive relations
between each other. It follows that V1, . . . , Vk is a clique di-
vision. Now, suppose towards a contradiction that there are

cliques Vi, Vj , Vl that have negative relations with one an-
other. Then for a ∈ Vi, b ∈ Vj and c ∈ Vl, the triad abc is
of the form −−−. This contradicts N being semi-balanced.
The clique division V1, . . . , Vk is therefore semi-bipartite. By
Proposition 16, this implies that N |= sbclique.

4 Computational Complexity
Now that we have defined our logic of allies and enemies,
we address the complexity of model checking and validity
for this logic. Formally, the model checking problem is to
determine, given a network N and a formula ϕ, whether
N |= ϕ. The validity problem is to determine, given a for-
mula ϕ, whether |= ϕ. We show that both the model checking
problem and the validity problem are PSPACE-complete.

Before we can determine the complexity of either decision
problem, we first need to define a measure for the input, and
the complexity is then defined relative to this measure.

Definition 19. The size of a formula ϕ, denoted |ϕ| is given
recursively by
|Pab| = |Nab| = 1, |¬ϕ| = |AXϕ| = |ϕ|+ 1,
|ϕ→ ϕ′| = |A(ϕUϕ′)| = |E(ϕUϕ′)| = |ϕ|+ |ϕ′|+ 1,
|∃≥nxϕ| = |ϕ|+ n.

The clause |∃≥nxϕ| = |ϕ|+ n means that we assume that
n is represented in unary. This is not critical for our results:
all complexity results presented in this paper would still be
true if we used a binary or decimal representation of n, with
corresponding size measure |∃≥nxϕ| = |ϕ|+ 1 + log n.

The difficulty of the model checking and validity problems
depends on AG as well as ϕ. This suggests two possible ways
to define the input of the two problems. If we consider AG to
be part of the input, then the input size for both problems is
|ϕ|+|AG|. If we consider AG to be fixed, hence not part of the
input, then the input size is |ϕ|. Fortunately, this distinction
turns out not to matter: regardless of whether we consider
AG to be part of the input, the model checking and validity
problems are PSPACE-complete w.r.t. the relevant input size.
In fact, our proofs in this section apply to either case.

4.1 Model Checking in LAE: PSPACE-Complete
We show that the complexity of the decision problem is
PSPACE-complete. We start by proving hardness.

Lemma 20. Model checking for LAE is PSPACE-hard.

Proof. We use a reduction from the truth/satisfiability prob-
lem of quantified Boolean formulas (QBFSAT) which is
known to be PSPACE-complete [Stockmeyer and Meyer,
1973]. Take any QBF instance Q1p1 · · ·Qnpnψ(p1, . . . , pn),
where every Qi is either ∃ or ∀. Let N be the network such
that N (a, b) = + and N (x, y) = 0 for {x, y} 6= {a, b}.
We can now simulate the choosing of true/false of QBFSAT
by choosing either b (for truth) or any other agent (for false)
using the quantifier of LAE. Note that we can recognize the
choice because we have N |= Pab and N |= ¬Pac for any
c 6= b. We have N |= Q1x1 · · ·Qnxnψ(Pax1, . . . , Paxn)
iff Q1p1 · · ·Qnpnψ(p1, . . . , pn) is satisfiable. The PSPACE-
hardness of LAE model checking now follows immediately
from the PSPACE-hardness of QBFSAT.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

214

Algorithm 1 Model checking algorithm for the case ∃≥nxψ
1: initialize k = 0
2: for all a ∈ V do
3: ifN |= ψ[x/a] then
4: k ++
5: end if
6: end for

7: if k ≥ n then
8: return true
9: else

10: return false
11: end if

Algorithm 2 Model checking algorithm for the case A(ψUχ)
1: ifN |= χ then
2: return true
3: else ifN 6|= ψ then
4: return false
5: else ifN |= ψ then
6: compute ν = {N ′ :

N ; N ′}
7: if ν = {N} then
8: return false
9: else

10: initialize x = true
11: for allN ′ ∈ ν do
12: if N ′ 6|= A(ψUχ)

then
13: x = false
14: end if
15: end for
16: return x
17: end if
18: end if

Example 21. Consider the QBF instance ∀p∃q(p ↔ q),
which is satisfiable. The translation to LAE is ∀x∃y(Pax ↔
Pay). For every x ∈ AG, choose y ∈ AG in the follow-
ing way: if x = b, then choose y = b, otherwise choose
y = a. Then we have N |= Pax ↔ Pay. It follows that
N |= ∀x∃y(Pax ↔ Pay). Consider then the QBF instance
∃p∀q(p↔ q) which is not satisfiable. The translation to LAE
is ∃x∀y(Pax↔ Pay). Now, choose y in the following way:
if x = b, then y = a, otherwise y = b. Then N 6|= Pax ↔
Pay. It follows that N 6|= ∃x∀y(Pax↔ Pay).

Note that the reduction requires only 2 agents. This implies
that model checking is PSPACE-hard regardless of the choice
of AG. Left to show is that the model checking problem of
LAE can be solved in polynomial space.

Lemma 22. Model checking for LAE is in PSPACE.

Proof. The temporal operators of LAE are those of CTL.
The standard model checking algorithms for CTL [Clarke and
Emerson, 1981] can therefore, with minor modifications, be
used here. The algorithm is based on a case distinction re-
garding the main connective of ϕ. We present only two of
these cases here, those of ∃≥nxψ and A(ψUχ), in Algorithms
1 and 2, respectively.

In these cases, as in most other cases, the algorithm recur-
sively calls itself. In each case, however, the recursive calls
are either for a strictly smaller formula or for a different net-
work N ′ that occurs strictly deeper in the tree T (N). Since
T (N) is of finite depth and has no cycles except in leaf nodes,
it follows that the algorithm terminates.

The usual algorithm for CTL runs in polynomial time, but
that is with respect to |ϕ| and the size of the computation tree.
In our case, this computation tree is T (N), which is in gen-
eral exponentially large with respect to |AG|. Fortunately, we
do not need to keep all of T (N) in memory at once: we can
free all memory needed to compute whether N ′ |= A(ψUχ)
before we begin to compute N ′′ |= A(ψUχ). In effect,
this allows us to search T (N) in a depth-first way using an
amount of memory polynomial in the depth of T (N). As

shown in Proposition 11, this depth is polynomial in |AG|. As
such, model checking for LAE is in PSPACE.

Theorem 23. Model checking for LAE is PSPACE-complete.

4.2 Validity Checking in LAE: PSPACE-Complete
We begin with PSPACE-hardness, for which we give, as usual,
a reduction from QBFSAT.
Lemma 24. Validity checking for LAE is PSPACE-hard.

Proof. We use a formula ξ to characterize models in which
a and b are the only agents to have any non-zero edges to
anyone else, and the relation between a and b is positive. I.e.,

ξ =Pab ∧ ∀x(∃y(Pxy ∨Nxy)→
(Pxa ∨ Pxb)) ∧ ¬∃≥2xPax ∧ ¬∃≥2xPbx.

Networks satisfying ξ are exactly of the form that was used
in Lemma 20. If N |= ξ, then Q1p1 · · ·Qnpnψ(p1, . . . , pn)
is satisfiable iff N |= Q1x1 · · ·Qnxnψ(Pax1, . . . , Paxn).
So Q1p1 · · ·Qnpnψ(p1, . . . , pn) is satisfiable iff |= ξ →
(Q1x1 · · ·Qnxnψ(Pax1, . . . , Paxn)). This reduction does
not depend on |AG|, so the validity problem is PSPACE-hard
regardless of whether we consider AG as part of the input.

Left to show is PSPACE membership. This too can be
shown using the result for model checking.
Lemma 25. Validity checking for LAE is in PSPACE.

Proof. For given AG there are finitely many different net-
works. This means that we can check whether ϕ is valid
in LAE, using an exhaustive search. That is, for every net-
work N we check whether N |= ϕ. Since model checking
can be done in polynomial space (w.r.t. |N | + |ϕ|) and we
only need to keep one network in memory at a time, valid-
ity checking can be done in polynomial space with respect to
|N |+ |ϕ| = |AG|+ |ϕ|. If we consider AG to be constant, this
means that validity checking is in PSPACE with respect to |ϕ|.
If we consider |AG| to be part of the input, then the problem
is in PSPACE with respect to |AG|+ |ϕ|. In either case, it is in
PSPACE with respect to the relevant input size.

The PSPACE-completeness of LAE follows immediately.
Theorem 26. Validity checking for LAE is PSPACE-complete.

5 Conclusion
We have introduced a logic of allies and enemies (LAE),
which combines social balance theory with temporal logic.
LAE can be used to describe the likely evolution over time of
relations in a social network. An important concept from so-
cial balance theory is that of balance. We showed that the bal-
ance theorem can be formulated and proven in LAE. Further-
more, we showed that, in addition to balance, the weaker con-
cept stability is important for understanding the behaviour of
social networks. Finally, we showed that both model check-
ing and validity checking for LAE are PSPACE-complete.

Two remaining directions for future research are (i) finding
an elegant axiomatization for LAE and (ii) combining LAE
with other formalisms for describing social networks, such
as the ones from [Christoff and Hansen, 2015; Baltag et al.,
2019; van der Hoek et al., 2019; Xiong and Ågotnes, 2019;
Pedersen et al., 2019].

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

215

References
[Abell and Ludwig, 2009] Peter Abell and Mark Ludwig.

Structural balance: A dynamic perspective. The Journal
of Mathematical Sociology, 33(2):129–155, 2009.

[Antal et al., 2006] Tibor Antal, Paul L. Krapivsky, and Sid-
ney Redner. Social balance on networks: The dynamics of
friendship and enmity. Physica D: Nonlinear Phenomena,
224(1-2):130–136, December 2006.

[Baltag et al., 2019] Alexandru Baltag, Zoé Christoff, Ras-
mus K. Rendsvig, and Sonja Smets. Dynamic epistemic
logics of diffusion and prediction in social networks. Stu-
dia Logica, 107(3):489–531, 2019.

[Cartwright and Harary, 1956] Dorwin Cartwright and Frank
Harary. Structure balance: A generalization of Heider’s
theory. Psychological Review, 63(5):277–293, September
1956.

[Christoff and Hansen, 2015] Zoé Christoff and Jens Ulrik
Hansen. A logic for diffusion in social networks. Jour-
nal of Applied Logic, 13(1):48 – 77, 2015.

[Clarke and Emerson, 1981] Edmund M. Clarke and
E. Allen Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In
Dexter Kozen, editor, Logics of Programs, pages 52–71,
Berlin, Heidelberg, 1981. Springer Berlin Heidelberg.

[Doreian et al., 1996] Patrick Doreian, Roman Kapuscinski,
David Krackhardt, and Janusz Szczypula. A brief history
of balance through time. The Journal of Mathematical So-
ciology, 21(1-2):113–131, 1996.

[Emerson and Clarke, 1982] E.Allen Emerson and Ed-
mund M. Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Science of
Computer Programming, 2(3):241–266, 1982.

[Harary et al., 1965] Frank Harary, Robert Z. Norman, and
Dorwin Cartwright. Structural Models: An Introduction
to the Theory of Directed Graphs. John Wiley & Sons Inc,
New York, September 1965.

[Harary, 1953] Frank Harary. On the notion of balance of a
signed graph. Michigan Mathematical Journal, 2(2):143–
146, 1953.

[Heider, 1944] Fritz Heider. Social perception and phenome-
nal causality. Psychological Review, 51(6):358–374, 1944.

[Heider, 1946] Fritz Heider. Attitudes and cognitive organi-
zation. Journal of Psychology, 21(1):107–112, 1946.

[Heider, 1958] Fritz Heider. The Psychology of Interper-
sonal Relations. John Wiley & Sons, 1958.

[Hummon and Doreian, 2003] Norman P Hummon and
Patrick Doreian. Some dynamics of social balance
processes: bringing Heider back into balance theory.
Social Networks, 25(1):17–49, 2003.

[Kulakowski, 2007] Krzysztof Kulakowski. Some recent at-
tempts to simulate the Heider balance problem. Comput-
ing in Science and Engineering, 9:80–85, 06 2007.

[Newcomb, 1961] Theodore M. Newcomb. Acquaintance
Process. Holt, Rinehart & Winston, New York, Decem-
ber 1961.

[Pedersen et al., 2019] M.Y. Pedersen, Sonja Smets, and
Thomas Ågotnes. Analyzing echo chambers: A logic of
strong and weak ties. In Proceedings of LORI 2019, pages
183–198, 2019.

[Radicchi et al., 2007] Filippo Radicchi, Daniele Vilone,
Sooeyon Yoon, and Hildegard Meyer-Ortmanns. Social
balance as a satisfiability problem of computer science.
Physical Review E, 75:026106, Feb 2007.

[Stockmeyer and Meyer, 1973] L. J. Stockmeyer and A. R.
Meyer. Word problems requiring exponential time (pre-
liminary report). In Proceedings of the Fifth Annual ACM
Symposium on Theory of Computing, pages 1–9, 1973.

[van der Hoek et al., 2019] Wiebe van der Hoek, Louwe B.
Kuijer, and Yı̀ N. Wáng. Who should be my friends? so-
cial balance from the perspective of game theory. In Pro-
ceedings of LORI 2019, pages 370–384, 2019.

[Wang and Thorngate, 2003] Zhigang Wang and Warren
Thorngate. Sentiment and social mitosis: Implications of
Heider’s balance theory. Journal of Artificial Societies and
Social Simulation, 6(3):12–23, June 2003.

[Xiong and Ågotnes, 2019] Zuojun Xiong and Thomas
Ågotnes. On the logic of balance in social networks.
Journal of Logic, Language and Information, 29:53–75,
2019.

[Zheng et al., 2015] Xiaolong Zheng, Daniel Zeng, and Fei-
Yue Wang. Social balance in signed networks. Information
Systems Frontiers, 17(5):1077–1095, January 2015.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

216

	Introduction
	Network Balance
	Scope

	The Logic of Allies and Enemies
	3-Signed Social Networks
	Syntax and Semantics
	Balance Theorem Revisited

	Computational Complexity
	Model Checking in LAE: pspace-Complete
	Validity Checking in LAE: pspace-Complete

	Conclusion

