
Convexity of b-matching Games

Soh Kumabe1,2 and Takanori Maehara2

1The University of Tokyo
2RIKEN AIP

soh kumabe@mist.i.u-tokyo.ac.jp, takanori.maehara@riken.jp

Abstract
The b-matching game is a cooperative game defined
on a graph, which generalizes the matching game
to allow each individual to have more than one
partner. The game has several applications, such
as the roommate assignment, the multi-item ver-
sion of the seller-buyer assignment, and the inter-
national kidney exchange. In contrast to the match-
ing game, the b-matching game is computationally
hard, i.e., the core non-emptiness problem and the
core membership problem are co-NP-hard. There-
fore, we focus on the convexity of the game, which
is a sufficient condition of the core non-emptiness,
often more tractable than the core non-emptiness,
and has several additional benefits. In this study,
we give a necessary and sufficient condition of the
convexity of the b-matching game, which yields an
O(n log n + mα(n)) time algorithm to determine
whether a given game is convex or not, where n
and m are the number of vertices and edges, re-
spectively, and α is the inverse-Ackermann func-
tion. Using our characterization, we also give a
polynomial-time algorithm to compute the Shapley
value of a convex b-matching game.

1 Introduction
1.1 Background and Motivation
Finding a “reasonable” matching is a fundamental research
topic in algorithmic cooperative game theory [Deng and
Fang, 2008]. After the seminal work of Shapley and Shu-
bik 1971, the matching game and its variants have been ex-
tensively studied.

In this study, we consider the b-matching game [Deng et
al., 1999], which is also known as multi-partner assignment
game [Sotomayor, 1992; Biró et al., 2018]. This game gener-
alizes the matching game [Deng et al., 1999; Biró et al., 2012;
Kern and Paulusma, 2003] to allow each individual to have
more than one partner. Such a multi-partner setting makes
the situation interesting and complex; thus, the game at-
tracts the attention of theorists. Moreover, the game has
several real-world applications such as the assignment of
roommates [Granot, 1984; Tamir and Mitchell, 1998], the

multiple-item version of the seller-buyer assignment [Shap-
ley and Shubik, 1971; Biró et al., 2012], and the international
kidney exchange [Biró et al., 2019]. Therefore, establishing
efficient algorithms for the b-matching game is regarded as an
important topic in the area.

Formally, the b-matching game is defined as follows. Let
G = (V,E) be an undirected graph, where V is the set of
vertices, and E is the set of edges. Through the paper, we
denote by n = |V | and m = |E|. The vertices have budgets
b : V → Z≥1, and the edges have weights c : E → R>0. Let
X ⊆ V . A vector x ∈ ZE is a b-matching of X if it satisfies
the following conditions:∑

e∈δ(v)

x(e) ≤ b(v), (v ∈ X), (1.1)

x(e) = 0, (e 6⊆ X), (1.2)

where δ(v) = {(u, v) ∈ E} be the set of edges incident to
v. The first condition is the budget constraint, and the sec-
ond constraint requires that the support of x is contained in
X . The b-matching game is a cooperative game (V, ν) whose
characteristic function ν : 2V → R is defined by

ν(X) = max
x:b-matching of X

∑
e∈E

c(e)x(e). (1.3)

The main research focus in algorithmic cooperative game
theory is the complexity of finding solution concepts such as
the core, the kernel, and the Shapley value. In this viewpoint,
the b-matching game is much harder than the matching game.
The core non-emptiness problem and the core-membership
problem are solvable in polynomial time if b = 1 [Deng et al.,
1999; Biró et al., 2012] (i.e., the matching game). However,
these are co-NP-hard [Biró et al., 2018; Biró et al., 2019] if
b ≥ 3; note that they also showed that these are polynomial if
b ≤ 2. Therefore, it will be hopeless to obtain an element in
the core in a realistic computational time.

Under these hardness results, we here focus on the convex-
ity, which is often a computationally more tractable concept
than the core non-emptiness. A cooperative game (V, ν) is
convex if its characteristic function ν is supermodular, i.e.,
for all X,Y ⊆ V , the following inequality holds:

ν(X) + ν(Y ) ≤ ν(X ∪ Y ) + ν(X ∩ Y ). (1.4)

Any convex game has a non-empty core, and an element of
the core is obtained in polynomial time using an evaluation
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oracle of ν. This implies that we can use the convexity as an
alternative (a sufficient condition) of the core non-emptiness.
Moreover, a convex game has its own benefits. For example,
the Shapley value is in the core, and the kernel contains a
unique point that coincides with the nucleolus, which can also
be computed in polynomial time.

The b-matching game is not necessarily convex even if b =
1 [Kumabe and Maehara, 2020]. Therefore, we are interested
in a condition when the game is convex. Also, we seek an
algorithm that can check the convexity of a given b-matching
game efficiently.

1.2 Our Contribution
In this study, we give a necessary and sufficient condition of
the convexity of a b-matching game (Lemma 3.6). Based
on this characterization, we propose a polynomial-time al-
gorithm to check the convexity of a given b-matching game.
Formally, the following is our main theorem.

Theorem 1.1. There is an O(n log n + mα(n)) time algo-
rithm to check whether a given b-matching game is convex,
where α is the inverse Ackermann function1

As an application of our characterization, we derive a
polynomial-time algorithm to compute the Shapley value of
a convex b-matching game. Computing the Shapley value is
#P-hard even if b = 1 and c(e) = 1 for all e ∈ E [Aziz
and de Keijzer, 2014]; therefore, this result indicates that the
convexity yields computational tractability on this game.

1.3 Related Work
Matching Games. Matching games are one of the well-
studied games in algorithmic cooperative game theory. Shap-
ley and Shubik 1971 considered the assignment game, which
is a 1-matching game on a bipartite graph. Several au-
thors [Deng et al., 1999; Biró et al., 2012; Kern and
Paulusma, 2003] studied the 1-matching game. The b-
matching game is also studied by several authors within sev-
eral different settings [Deng et al., 1999; Biró et al., 2019;
Biró et al., 2018; Granot, 1984; Sotomayor, 1992; Tamir and
Mitchell, 1998].

The b-matching game is a special case of the integral linear
production game. The linear production game [Owen, 1975]
is defined as follows. Let V be a set of players. For integers
n and m, let A ∈ Rn×m, bv ∈ Rn for each v ∈ V , and
c ∈ Rm. Then, the characteristic function ν of the linear
production game is defined by

ν(X) =


maximize c>x

subject to Ax ≤
∑
v∈X

bv,

x ∈ Rm≥0.

(1.5)

The integral linear production game [Deng et al., 2000] as-
sumes the integrality of x to the above problem. The b-
matching game is the integral linear production game in

1The inverse Ackermann function is an extremely slow-growing
function, which is less than five for any practical purpose. See [Cor-
men et al., 2001] for the definition.

v1 v2

v3

Figure 1: Configuration of Lemma 2.1.

which A is the incidence matrix of the graph, and bv =
b(v)ev , where ev is the v-th unit vector.

Deng et al. 2000 studied the condition of the core non-
emptiness of an integral linear production game when A’s
entries are zero and one, and b(v) = 1 for all v ∈ V . This
case is also called the packing game [Deng et al., 1999], syn-
ergy coalition game [Conitzer and Sandholm, 2006], and the
hypergraph matching game [Kumabe and Maehara, 2020].
Introducing the budget b ≥ 2 makes the situation compli-
cated. Biro et al. [Biró et al., 2018; Biró et al., 2019] showed
that the core non-emptiness problem and the core member-
ship problem are solvable in polynomial time if b(v) ≤ 2
for all v ∈ V ; however, it is co-NP-hard if b(v) ≤ 3 for all
v ∈ V . This study aims at studying the b-matching from the
convexity perspective.

Convexity of Games. The convexity is an important con-
cept in algorithmic cooperative game theory [Deng et al.,
1999; Shapley, 1971]. Most combinatorial games are not
convex; hence, they need additional conditions to be con-
vex [Deng and Fang, 2008]. Researchers have been de-
voted their effort for revealing the condition of the convexity
for several games, including the minimum base game [Nag-
amochi et al., 1997], the maximum spanning tree game [Koh
and Sanità, 2019; Okamoto, 2003], the minimum color-
ing game [Bietenhader and Okamoto, 2004], and the hy-
pergraph matching game [Conitzer and Sandholm, 2006;
Kumabe and Maehara, 2020]. This study aims at adding the
b-matching game in this line of studies.

Note that the budget b affects a significant impact on the
condition of the convexity. In the matching game case (i.e.,
b = 1), the game is convex if and only if the underlying graph
is a matching, i.e., no two edges intersect [Kumabe and Mae-
hara, 2020]. On the other hand, we can see much more com-
plicated graph structures appear in a convex b-matching game
with b ≥ 2.

2 Warm-Up: Unweighted Case

Our goal is to give a necessary and sufficient condition of
the convexity of the b-matching game and derive an efficient
algorithm for checking the convexity. However, the general
case, which will be given in the next section, is very compli-
cated; therefore, as a warm-up, we start from the case when
the graph has no edge weights, i.e., c(e) = 1 for all e ∈ E.

The proof strategy for this case and the general case are the
same. We first derive a necessary condition of the convexity
by considering a small graph. Then, we prove that the derived
condition is also sufficient for the convexity.
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2.1 Deriving Necessary Conditions
By looking at the interaction of three vertices, we obtain the
following lemma.
Lemma 2.1. Suppose that ν is supermodular. If v1, v2, v3 ∈
V satisfy (v1, v3), (v2, v3) ∈ E but (v1, v2) 6∈ E as in Fig-
ure 1, then b(v1) + b(v2) ≤ b(v3) holds.

Proof. We first observe that the following inequality holds:

min{b(v1), b(v3)}+min{b(v2), b(v3)} (2.1)
=ν({v1, v3}) + ν({v2, v3}) (2.2)
≤ν({v3}) + ν({v1, v2, v3}) (2.3)
=min{b(v1) + b(v2), b(v3)}, (2.4)

where the first line is the definition of ν, the second line is the
supermodularity of ν, and the third line is from ν({v3}) = 0
and the definition of ν.

Suppose the contrary that b(v1) + b(v2) > b(v3).
Then, by Eq. (2.4), we see that min{b(v1), b(v3)} +
min{b(v2), b(v3)} ≤ b(v3). This indicates that b(v1) <
b(v3) and b(v2) < b(v3). Therefore, b(v1) + b(v2) =
min{b(v1), b(v3)}+min{b(v2), b(v3)} ≤ b(v3), which leads
to a contradiction.

Using this lemma, we can determine the topology of the
graph. Let V = {v1, . . . , vn} be the vertices of the graph.
Without loss of generality, we assume that b(v1) ≤ · · · ≤
b(vn). For i = 0, . . . , n, let Gi = G[{v1, . . . , vi}] be the
subgraph induced by the vertices {v1, . . . , vi}.2 We denote
by N(v) = {u ∈ V : (u, v) ∈ E} the set of neighbors of v.
Lemma 2.2. Suppose that ν is supermodular. If C is a con-
nected component of Gi−1, then N(vi) ∩ C is either ∅ or C.

Proof. Suppose the contrary. Then, both C◦ = C ∩ N(vi)
andC• = C \N(vi) are non-empty. BecauseC is connected,
there exists u1 ∈ C◦ and u2 ∈ C• such that (u1, u2) ∈ E.
By Lemma 2.1, b(u2) + b(vi) ≤ b(u1) holds. However, this
contradicts to the ordering of the vertices.

Lemma 2.2 gives a “canonical representation” for the graph
of a convex b-matching game. For X ⊆ V , we refer the root
r(X) of X as the vertex in X with the largest index.

Let Ci be the connected component of Gi that con-
tains vi. Note that, by Lemma 2.2, there are edges be-
tween vi and all other vertices in Ci. Let Xi,1, . . . , Xi,ki
be the connected components of Ci \ {vi}. Let Fi =
{(vi, r(Xi,1)), . . . , (vi, r(Xi,ki))} be the set of edges from
vi to the connected components directed from vi. Then, we
construct a directed graph T = (V,

⋃n
i=1 Fi). This directed

graph is a branching3. We refer to this branching as an auxil-
iary forest. By the construction and Lemma 2.2, the auxiliary
forest can reconstruct the original graph by taking its compa-
rability graph. Here, the comparability graph [Brandstadt et
al., 1999] of a directed acyclic graph is an undirected graph

2For a graph G = (V,E) and a vertex subset X , the subgraph
induced by X is a graph G[X] := (X,E[X]) where E[X] =
{(u, v) ∈ E : u, v ∈ X}.

3A directed graph is a branching if the in-degree of a vertex is at
most one.

7

3

2 1

Figure 2: Original graph (left) and the auxiliary forest (right). The
integers represents the budgets of the corresponding vertices.

obtained by taking the transitive closure4 and forgetting the
edge orientations. Figure 2 shows an example of a graph and
the corresponding auxiliary forest.

Now we derive a condition about the budgets using the aux-
iliary forest T . We introduce a few notations. Let Av be the
set of proper ancestors5 of v in T . Let Tv be the set of de-
scendants v in T . For a vertex subset X ⊆ V , we denote by
X+ the set of vertices v ∈ X that has no proper ancestor in
X , and let X− := X \X+. Note that T−v = Tv \ {v}.

Using these notations, we obtain the following lemma,
which generalizes Lemma 2.1 to the more than three vertices.
For X ⊆ V , we denote by b(X) =

∑
v∈X b(v).

Lemma 2.3. Suppose that ν is supermodular. Then, for all
v ∈ V , we have b(T−v ) ≤ b(v).

Proof. We see

b(T−v ) =
∑
u∈T−

v

ν({v, u}) (2.5)

≤ν(Tv) + (|T−v | − 1)ν({v}) (2.6)

≤b(Tv)
2

, (2.7)

where the first line is from b(u) ≤ b(v) for all u ∈ T−v and
there is an edge (u, v) ∈ E because the graph is obtained
by the transitive closure of T , the second line is from super-
modularity, and the last line follows from ν({v}) = 0 and
the fact that each edge in the optimal b-matching consumes
two unit of the budget. By arranging these terms we obtain
b(T−v ) ≤ b(v).

Now we obtain the following two necessary conditions of
the convexity of ν.
Condition U1 G is a comparability graph of a branching.
Condition U2 For every v ∈ V , b(T−v ) ≤ b(v).

2.2 Proving the Sufficiency of Conditions
Now we prove that the above two necessary conditions, Con-
ditions U1 and U2, are also sufficient for the convexity of ν.
We first give an explicit formula of ν.
Lemma 2.4. Suppose that Conditions U1 and U2 hold. Then,
ν(X) = b(X−) for all X ⊆ V .

4 The transitive closure of a directed graph D = (V, F ) is a
directed acyclic graph D = (V, F ) such that (u, v) ∈ F if there
exists a path from u to v in D.

5Let T = (V, F ) be a branching. A vertex u ∈ V is an ancestor
of v ∈ V if there exists a path from u to v. Here, v is a descendant
of u. We say that u is a proper ancestor (resp. proper descendant)
of v if u is an ancestor (resp. descendant) of u and u 6= v.
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Proof. We prove this lemma for a connected X; the general
case follows by adding the contributions of the connected
components. In this case, X+ consists of a single vertex.
Thus, we put X+ = {v}.

We first prove ν(X) ≥ b(X−). By Condition U1, we
see that (v, u) ∈ E for all u ∈ X−. We observe that
each (v, u) can be used b(u) time because Condition U1 im-
plies b(X−) ≤ b(T−v ), and Condition U2 implies b(T−v ) ≤
b(v). Because the size of this b-matching is b(X−), we have
ν(X) ≥ b(X−).

We then prove ν(X) ≤ b(X−). Each unit of an edge in a
b-matching of X consumes at least one amount of budgets of
vertices in X−. Therefore, ν(X) ≤ b(X−).

Using this representation, we prove that ν is supermodular.
Lemma 2.5. Suppose that Conditions U1 and U2 hold. Then,
ν is supermodular.

Proof. We see that b(X+) = b(X)−b(X−) = b(X)−ν(X),
where the last equality is Lemma 2.4. Thus, we prove that
b(X+) is submodular in X (i.e., −b(X+) is supermodular in
X).

We prove the submodularity for the case when X ∪ Y is
connected; the general case follows by adding the contribu-
tions of the connected components. In this case, (X ∪ Y )+

consists of a single vertex. Thus, we put (X ∪ Y )+ = {v}.
Without loss of generality, we assume that v ∈ X+.

We prove b((X ∩ Y )+) ≤ b(Y +) as follows. First,

b((X ∩ Y )+) =
∑
w∈Y +

∑
u∈(X∩Y )+∩Tw

b(u). (2.8)

Thus, it is sufficient to show∑
u∈(X∩Y )+∩Tw

b(u) ≤ b(w) (2.9)

for each w ∈ Y +. If w ∈ (X ∩ Y )+ then (X ∩ Y )+ ∩
Tw = {w}; therefore, the above inequality holds in equality.
Otherwise, ∑

u∈(X∩Y )+∩Tw

b(u) ≤ b(T−w ) ≤ b(w). (2.10)

Here, the first inequality follows from w 6∈ (X ∩ Y )+, and
the second inequality is from Condition U2. Using this in-
equality, we obtain

b(X+) + b(Y +) ≥ b(X+) + b((X ∩ Y )+) (2.11)

= b((X ∪ Y )+) + b((X ∩ Y )+). (2.12)

Here, the last line follows from (X ∪ Y )+ = {v} = X+

because v ∈ X+.

2.3 Algorithm
Now we propose a polynomial-time algorithm to check the
convexity of the b-matching game. By Lemma 2.5, it is suf-
ficient to construct an algorithm that checks Conditions U1
and U2 efficiently.

Our algorithm, shown in Algorithm 1, maintains the fam-
ily S of the connected components of G[{v1, . . . , vi}] and
checks Conditions U1 and U2 in Lines 8 and 4, respectively.
This algorithm gives the following theorem.

Algorithm 1 Checking the supermodularity of ν

Input: A graph G = (V,E), budgets b(v) for all v ∈ V
1: Sort the vertices in the non-decreasing order of the bud-

gets. Let v1, . . . , vn be the order.
2: S ← ∅
3: for i = 1, . . . , n do
4: if b(N(vi) ∩ {v1, . . . , vi−1}) > b(vi) then
5: return false
6: end if
7: Let Ci = {C | C ∈ S, C ∩N(vi) 6= ∅}
8: if |

⋃
C∈Ci C| 6= |N(vi) ∩ {v1, . . . , vi−1}| then

9: return false
10: end if
11: S ← (S \ Ci) ∪ {

⋃
C∈Ci C ∪ {vi}}

12: end for
13: return true

Theorem 2.6. There is aO(n log n+mα(n)) time algorithm
to check whether ν is supermodular, where α(n) is inverse-
Ackerman function.

Proof. The correctness of the algorithm is clear. Now we
analyze the time complexity. Sorting the vertices can be
done in O(n log n) time. Line 4 is done in O(|N(vi)|) time
in each iteration. Thus, it takes O(m) time in total. By
maintaining S by the disjoint-set data structure [Galler and
Fisher, 1964], Line 8 is evaluated by O(|N(vi)|) queries to
the disjoint-set data structure in each step. Therefore, it takes
O(mα(n)) time in total. Therefore, the total time complexity
is O(n log n+mα(n)).

3 Main Result: Weighted Case
Now we describe our result in the weighted case. The proof
strategy is the same as the unweighted case: We first derive
necessary conditions of the convexity. Then we prove that
these conditions are also sufficient. However, the details are
much more complicated than the unweighted case. Therefore,
due to the space limitation, we only give an outline of the
proof. The complete proof will appear in the full paper.

3.1 Deriving Necessary Conditions
We start from the following lemma. This is a weighted ver-
sion of Lemma 2.1 and is proved by a similar strategy to
Lemma 2.1 with a careful case analysis.

Lemma 3.1. Suppose that ν is supermodular. If v1, v2, v3
satisfy (v1, v3), (v2, v3) ∈ E but (v1, v2) 6∈ E (see Figure 1),
then b(v1) + b(v2) ≤ b(v3).

Lemma 3.1 is syntactically the same as Lemma 2.1. There-
fore, it allows us to define the auxiliary forest in the same way
as the unweighted case. This means that G should be a com-
parability graph of a branching. We use the same notations as
in the unweighted case. The next lemma is a weighted version
of Lemma 2.3.

Lemma 3.2. Suppose that ν is supermodular. Then, for all
v ∈ V , we have b(T−v ) ≤ b(v).
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Figure 3: An example that shows Conditions W1, W2, and W3 are
not sufficient for the convexity: LetX be the left and the top vertices
and Y be the left and the right vertices. Then ν(X) = 3, ν(Y ) = 3
but ν(X ∪ Y ) = 5.

The proof is not as easy as Lemma 2.3. We use the follow-
ing lemma. We write c((u, v)) as c(u, v) for simplicity.
Lemma 3.3. Suppose that ν is supermodular. Consider three
vertices v1, v2, v3 such that b(v1) ≤ b(v2) ≤ b(v3) and
(v1, v2), (v2, v3), (v3, v1) ∈ E. Then, c(v1, v3) ≥ c(v2, v3).

The proof of Lemma 3.3 is unexpectedly involved. We
used a linear programming relaxation and a careful case anal-
ysis to prove this lemma.

Thus far, we obtain the following three necessary condi-
tions of supermodularity of ν.

Condition W1 G is a comparability graph of a branching.
Condition W2 For every v ∈ V , b(T−v ) ≤ b(v).
Condition W3 For every v1, v2, v3 ∈ V with b(v1) ≤

b(v2) ≤ b(v3) with edges (v1, v2), (v1, v3), we have
c(v1, v2) ≤ c(v1, v3).

You should notice that Condition W3 does not assume the
existence of (v2, v3) even though Lemma 3.3 assumes. This
is because the existence is guaranteed from Condition W1,
and by omitting this condition from Condition W3, we can
reduce the complexity of checking Condition W3.

Unfortunately, these three conditions are not sufficient to
make ν supermodular; Figure 3 shows an example. There-
fore, we derive one more condition. For a vertex subset X
and a vertex v with Av ∩X 6= ∅, let aX(v) be the unique ver-
tex in X+ ∩ Av . For a vertex s ∈ V −, let p(s) be the parent
(i.e., the immediate ancestor) of s in the auxiliary forest.
Lemma 3.4. Assume that ν is supermodular. Then, the fol-
lowing condition holds:
Condition W4 For all vertex s ∈ V −,∑

v∈T−
s

c(s, v)b(v) ≤ c(p(s), s)b(s)

+
∑

v∈(T−
s )−

c(aT−
s
(v), v)b(v). (3.1)

3.2 Proving the Sufficiency of Conditions
Now we obtain the four necessary conditions. We show that
these are also sufficient for the convexity of ν.

We first give an explicit formula of ν, which is a weighted
version of Lemma 2.4. Then, we obtain the following. The
proof is similar to the proof of Lemma 2.4.
Lemma 3.5. Suppose that Conditions W1, W2, and W3 hold.
Then, for all X ⊆ V , ν(X) =

∑
v∈X− c(aX(v), v)b(v).

We prove the submodularity of ν using this representation
as follows. Its proof requires a long chain of inequalities.

Lemma 3.6. Suppose that Conditions W1, W2, W3, and W4
hold. Then, ν is supermodular.

3.3 Algorithm
Now we propose a polynomial-time algorithm to check the
convexity of the b-matching game.

We first see that Conditions W1 and W2 are the same as
the unweighted case. Therefore, these can be checked by
the algorithm for the unweighted case (Algorithm 1). Con-
dition W3 requires that for each vertex v1 ∈ V the ordering
of N(v1) ∩ {u ∈ V : b(u) ≥ b(v1)} by b(·) and the ordering
by c(v1, ·) coincide. We can check this in O(m) by com-
paring (v1, v2) and (v1, p(v2)) for each (v1, v2) ∈ E with
b(v2) ≥ b(v1). To check Condition W4, we first compute
ν(Tv) for all v ∈ V . This is done in O(m) time. Then, we
check Condition W4 in O(m) time.

In summary, we obtain the following theorem.

Theorem 3.7. There is aO(n log n+mα(n)) time algorithm
to check whether ν is supermodular.

4 The Shapley Value
Our necessary and sufficient condition restricts the graph of
a convex b-matching game as a comparability graph of a
branching. By exploiting this structure, we can obtain an ef-
ficient algorithm to calculate the Shapley value of a convex
b-matching game.

The Shapley value is defined as follows [Shapley, 1953].
Imagine that all the players join the coalition one-by-one in
random order. Then, the marginal contribution of the player
v to the coalition is given by ν(X ∪ {v}) − ν(X), where X
is the set of players that appear before v. The Shapley value
is the expectation of this quantity. Formally, it is given by

sv :=
∑
X⊆V

|X|!(n− |X| − 1)!

n!
(ν(X ∪ {v})− ν(X)) .

(4.1)

For an efficient computation of the Shapley value, we try to
represent the marginal contribution ν(X ∪ {v})− ν(X) by a
simple form.

As a preprocessing, we compute the auxiliary forest T of
the graph, which is obtained during the algorithm in Theo-
rem 1.1. For a vertex v ∈ V , we denote by d(v) the depth of
v, which is the maximum length of the path in T that ends at
v. For example, if v has no parent in T , then d(v) = 0. For
i = 0, . . . , d(v) − 1, let avi be the unique ancestor of v with
d(avi ) = i.

We first evaluate the contribution of X with X ∩ Av 6= ∅.
This is a direct consequence of Lemma 3.5.

Lemma 4.1. Suppose that X ∩Av 6= ∅. Then, ν(X ∪{v})−
ν(X) = c(aX(v), v)b(v).

The event aX(v) = avi occurs if and only if avi and v are
the first two elements added to X in {av0, . . . , avi , v} in this
order. Therefore, such a probability is 1/(i+ 1)(i+ 2). This
shows the next lemma.
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Lemma 4.2. The caseX∩Av 6= ∅ contributes to the Shapley
value by

d(v)−1∑
i=0

1

(i+ 1)(i+ 2)
c(avi , v)b(v). (4.2)

Next, we evaluate the contribution from X with X ∩Av =
∅. This is also a direct consequence of Lemma 3.5.
Lemma 4.3. Suppose that X ∩Av = ∅. Then,

ν(X ∪ {v})− ν(X) (4.3)

=
∑
u∈X

c(v, u)b(u)−
∑
u∈X−

c(aX(u), u)b(u). (4.4)

For u ∈ T−v , the event u ∈ X occurs if and only if u and
v are the first two elements added to X in Av ∪ {u} in this
order. Therefore, such a probability is 1/(d(v)+1)(d(v)+2).
Furthermore, for w ∈ T−v and u ∈ T−w , the event aX(u) = w
occurs if and only if w and v are the first two elements added
to X in Aw in this order, and u is added before v. Therefore,
such a probability is 2/(d(w)(d(w) + 1)(d(w) + 2)). From
the linearity of the expectation, we obtain the following.
Lemma 4.4. The caseX∩Av = ∅ contributes to the Shapley
value by

1

(d(v) + 1)(d(v) + 2)

∑
u∈T−

v

c(v, u)b(u) (4.5)

−
∑
w∈T−

v

2

d(w)(d(w) + 1)(d(w) + 2)

∑
u∈T−

w

c(w, u)b(u).

(4.6)

From Lemmas 4.2 and 4.4, the Shapley value of a convex
b-matching game is given as follows.
Theorem 4.5. The Shapley value of the player v is given by

d(v)−1∑
i=0

1

(i+ 1)(i+ 2)
c(avi , v)b(v)

+
1

(d(v) + 1)(d(v) + 2)

∑
u∈T−

v

c(v, u)b(u)

−
∑
w∈T−

v

2

d(w)(d(w) + 1)(d(w) + 2)

∑
u∈T−

w

c(w, u)b(u).

(4.7)

This theorem immediately gives an efficient algorithm to
compute the Shapley value as follows.
Theorem 4.6. The Shapley values of convex b-matching
game is computed in O(n log n+mα(n)) time.

Proof. The algorithm is presented in Algorithm 2. The al-
gorithm computes term of Eq. (4.7) independently: Lines 2–
5 compute the second term in Eq. (4.7) in O(n + m) time.
Lines 6–10 compute the first term in Eq. (4.7). Because there
are only O(m) summands in the first term, this computation
takes O(m) time. Lines 11–15 compute the third term. Be-
cause

∑
v∈V |T−v | = m, this computation takes O(m) time

in total. Therefore, we obtain the correctness and the time
complexity of the algorithm.

Algorithm 2 Calculating the Shapley Value

Input: A graph G = (V,E), budgets b(v) for all v ∈ V ,
weights c(e) for all e ∈ E, such that the b-matching game
defined by G, b, c is convex

1: Calculate an auxiliary forest T of the game and the depth
d(v) for each v ∈ V

2: for v ∈ V do
3: tv ←

∑
u∈T−

v

c(v, u)b(u)

4: end for
5: sv ←

tv
(d(v) + 1)(d(v) + 2)

for all v ∈ V

6: for v ∈ V do
7: for i = 0, . . . , d(v)− 1 do

8: sv ← sv +
c(aiv, v)b(u)

(i+ 1)(i+ 2)
9: end for

10: end for
11: for v ∈ V do
12: for i = 0, . . . , d(v)− 1 do

13: sv ← sv −
∑
w∈T−

v

2tw
d(w)(d(w) + 1)(d(w) + 2)

14: end for
15: end for
16: return sv for all v ∈ V

5 Conclusion
In this study, we give a necessary and sufficient condition of
the convexity of the b-matching game. Then, we propose an
efficient algorithm to check whether a given game is convex
or not. Our characterization also gives an efficient algorithm
to compute the Shapley value of a convex b-matching game.

There are several interesting future works. The most im-
portant future work is to extend the conditions of the convex-
ity to more general games that include the matching games.
A necessary and sufficient condition of the convexity of the
hypergraph matching game is given in [Kumabe and Mae-
hara, 2020]. Therefore, it will be natural to expect a char-
acterization on the hypergraph b-matching game, which is a
common generalization of the b-matching game and the hy-
pergraph matching game.

Another interesting future work is about integrality. We
can prove that Conditions W1 to W4 are still necessary
and sufficient conditions for the fractional b-matching game,
which relaxes the integrality condition of the problem. This
implies the following property: “the fractional b-matching
game is convex if and only if the integral b-matching game
is convex.” The same result is obtained in the hypergraph
matching game [Kumabe and Maehara, 2020]. Therefore, we
conjecture that the same result holds on the linear production
game and the integral linear production game.
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Paulusma. Computing solutions for matching games. In-
ternational journal of game theory, 41(1):75–90, 2012.
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[Koh and Sanità, 2019] Zhuan Khye Koh and Laura Sanità.
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