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Abstract
In approval-based multiwinner elections, we are
given a set of voters, a set of candidates, and, for
each voter, a set of candidates approved by the
voter. The goal is to find a committee of size k
that maximizes the total utility of the voters. In this
paper, we study approximability of Thiele rules,
which are known to be NP-hard to solve exactly.
We provide a tight polynomial time approximation
algorithm for a natural class of geometrically domi-
nant weights that includes such voting rules as Pro-
portional Approval Voting or p-Geometric. The al-
gorithm is relatively simple: first we solve a lin-
ear program and then we round a solution by em-
ploying a framework called pipage rounding due to
Ageev and Sviridenko (2004) and Calinescu et al.
(2011). We provide a matching lower bound via
a reduction from the Label Cover problem. More-
over, assuming a conjecture called Gap-ETH, we
show that better approximation ratio cannot be ob-
tained even in time f(k)*pow(n,o(k)).

1 Introduction
We study multiwinner approval-based voting rules called
Thiele rules [Brill et al., 2018] that were introduced by Thor-
vald Thiele [1895].1 Versions of Thiele rules have been used
for distribution of seats within parties in Swedish parliamen-
tary elections [Janson, 2016]. In recent years, Thiele rules
regained interest in social choice community as a class of
natural voting rules generalizing such well known multiwin-
ner voting rules as Approval Chamberlin-Courant [Chamber-
lin and Courant, 1983; Procaccia et al., 2008; Skowron and
Faliszewski, 2017] or Proportional Approval Voting [Thiele,
1895; Kilgour, 2010; Aziz et al., 2015; Byrka et al., 2018].
Thiele rules. w-THIELE rule is parameterized by a non-
increasing non-negative sequence w = (w1, w2, . . . ). Util-
ity of a voter from a committee is increasing with the num-
ber of approved winners and it obeys the law of diminishing
marginal utility known in economics (also called Gossen’s
First Law). The increase is defined by the weights in w.

1The original paper was written in Danish, but there is a detailed
survey in English [Janson, 2016].

Specifically, utility of a voter from a committee in which he
or she approves j candidates is equal to

∑j
i=1 wi. w-THIELE

rule is purely utilitarian: the goal is to find a committee of k
candidates that maximizes the total utility of the voters under
the sequence of weights w.

When w is a constant sequence, the problem trivially ad-
mits a polynomial time algorithm. Such a voting rule is
called Single Non-Transferable Vote (SNTV) [Faliszewski et
al., 2018] and it is a generalization of a single-winner voting
rule called Plurality Voting into multiwinner setting (every
voter approves only the most favorite candidate, and the win-
ners are k candidates with the highest support). All other
Thiele rules are NP-hard [Skowron et al., 2016, Theorem
5]. Hence, they have been studied in terms of approximabil-
ity [Skowron et al., 2016], parameterized complexity [Bred-
ereck et al., 2020] and specific sequences of weights were
considered [Kilgour, 2010; Aziz et al., 2015; Skowron and
Faliszewski, 2017; Lackner and Skowron, 2019].

Related works. The simplest w-THIELE rule has w =
(1, 0, 0, . . . ) which is known as the Max k-Coverage prob-
lem (or Approval Chamberlin-Courant in social choice the-
ory [Procaccia et al., 2008; Skowron and Faliszewski, 2017]).
Nemhauser et al. [1978] provided a greedy algorithm that
finds (1 − 1/e)-approximate solution for Max k-Coverage.
This has been shown to be tight unless P = NP [Feige, 1998].
Recently, Cohen-Addad et al. [2019] and Manurangsi [2020]
showed this is tight even in FPT time with respect to k. In
particular, the latter showed that, assuming the Gap Expo-
nential Time Hypothesis (Gap-ETH)2, any (1 − 1/e + ε)-
approximation algorithm for Max k-Coverage must run in
time at least (n+m)Ωε(k). This means that a brute-force algo-
rithm checking all possible subsets of size k (runs inO?(mk))
is essentially best possible, if one insists on achieving any ap-
proximation ratio better than (1− 1/e).

Recently, Barman et al. [2020] gave an (1− ``

e``!
)-approx-

imation algorithm for the Multi l-Coverage problem which
is tight assuming the Unique Games Conjecture. Multi `-
Coverage is equivalent to w-THIELE rule with w`(i) =

2Gap-ETH states that, for some constant δ > 0, there is no 2o(n)-
time algorithm that, given n-variable 3-SAT formula, can distinguish
whether the formula is fully satisfiable or that it is not even (1 −
δ)-satisfiable. Gap-ETH is a standard assumption in proving FPT
hardness of approximation (see e.g. [Chalermsook et al., 2017]).
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(1, 1, . . . , 1, 0, 0, . . . ) (i.e., ` ones followed by zeros). In fact,
Barman et al.’s result holds also for general utilities (not only
approval based). This means they provide a tight improved
approximation for the `-best OWA problem [Skowron et al.,
2016] (improving previous best (1− 1/e)-approximation).

Our contribution. Our main result (Theorem 1) is a tight
αw-approximation algorithm for a natural class of “geomet-
rically dominant” w-THIELE rules, where αw is a sequence-
dependent constant defined in (1). Resulting approximation
ratios for selected w-THIELE rules are presented in Table 1.

Theorem 1. Let w be any geometrically dominant sequence
such that limi→∞ wi = 0. There exists a polynomial time
αw-approximation algorithm for w-THIELE rule, and it is
NP-hard to compute (αw + ε)-approximate solution for any
constant ε > 0. Furthermore, assuming Gap-ETH, we cannot
achieve (αw + ε)-approximation even in f(k) · no(k)-time.

The algorithm is a simple application of a well known lin-
ear programming rounding technique called pipage rounding
due to Ageev and Sviridenko [2004]. Our contribution is an
analysis of this algorithm for w-THIELE rules (Section 3).
Pipage rounding gives a better ratio than (1− 1/e) for a large
class of w-THIELE rules with w being “geometrically domi-
nant” (intuitively, this means that w “decreases slower than”
a geometric sequence; for a formal definition, please refer to
Section 2). Our algorithm can be extended by replacing cardi-
nality constraint (choosing k winners) into matroid constraint
due to Theorem 2. Our proof of the hardness of approxima-
tion (Section 4) largely follows the proof of (1− 1/e+ o(1))-
inapproximability of Max k-Coverage of Feige [1998] by re-
ducing from the Label Cover problem. We remark that our re-
sult is based on the P 6= NP assumption in contrast to Barman
et al.’s result [2020] which assumes the Unique Games Con-
jecture. As a consequence of our result, w-THIELE rule is
APX-hard whenever marginal utility goes to 0 and, assuming
Gap-ETH, no FPT-approximation scheme exists (wrt. param-
eter k). Additionally, we provide a family of hard instances
for the standard greedy algorithm on which our LP-based al-
gorithm works better (Theorem 18).

Applications. Multiwinner elections has practical implica-
tions not only in committee [Skowron et al., 2016] or parlia-
mentary elections (apportionment seats in parliament) [Brill
et al., 2018]. Thiele rules with a knapsack constraint (instead
of cardinality constraint k) can be considered as participatory
budgeting model [Fluschnik et al., 2019; Talmon and Fal-
iszewski, 2019]. Multiwinner elections can model many real-
world issues in which we need to choose some number of el-
ements. In such scenarios, approximation algorithms seem to
have clear motivation. For more discussion on using approx-
imation and randomized algorithms in collective decision
making, we refer the reader to, e.g., [Skowron et al., 2016;
Byrka et al., 2018; Cygan et al., 2018].

Organisation of the paper. In Section 2 we define addi-
tional notations that will be used throughout. In Section 3
we describe the algorithm and provide the proof of its ap-
proximation guarantee. In Section 4 we prove our hardness
of approximation result. All the proofs omitted due to space
restrictions will be available in the full version of this paper.

2 Preliminaries
An approval-based election E = (V,C, {Av}v∈V ) consists
of a set V of n voters, a set C of m candidates, and, for each
voter v ∈ V , a set Av ⊆ C of candidates approved by v. The
w-THIELE rule is parameterized by an infinite-dimensional
non-increasing non-negative sequence w = (w1, w2, . . . );
the w-THIELE score (total utility) of a subset W ⊆ C is
defined as scrEw(W ) :=

∑
v∈V

∑|Av∩W |
i=1 wi. The goal of an

optimization problem called w-THIELE rule is to find a set
W ⊆ C of k candidates that maximizes its w-THIELE score.

For notational convenience, we assume throughout that
w1 = 1.3 Furthermore, for brevity, the sequence w is hence-
forth assumed to be non-negative and non-increasing.

We say that a sequence w (and its corresponding w-
THIELE rule) is geometrically dominant if for every i ∈ N,
wi · wi+2 > w2

i+1. It follows that if w is geometrically dom-
inant then either w = (1, 0, 0, . . . ) or wi

wi+1
> wi+1

wi+2
for all

i ∈ N. All Thiele rules in Table 1 satisfy these properties.
We use Poi(·),Ber(·),Bin(·, ·) to denote the Poisson,

Bernoulli and Binomial random variables respectively.
For a sequence w, we let αw denote

αw := E
x∼Poi(1)

[
x∑
i=1

wi

]
=
∞∑
x=1

1

e · x!
·

(
x∑
i=1

wi

)
. (1)

In words, αw is the expected utility of a voter if the number
of elected candidates that he/she approves, is distributed as
Poisson distribution with mean one.

3 Approximation Algorithm
In this section, we describe our algorithm and argue that it
gives αw-approximate solution, thereby proving the algorith-
mic part of Theorem 1. Our algorithm is based on an LP
rounding technique, which requires us to first define scrEw also
on a fractional solution x ∈ [0, 1]

C specifying for each can-
didate fractionally, how much the candidate is selected.

scrEw(x) =
∑
v∈V

|Av|∑
l=1

wl ·min {1,max {0, xAv − l + 1}},

where xAv =
∑
c∈Av xc. Intuitively, for each voter v this

function adds the first xAv elements of the sequence w. The
last element of the sequence may be counted in only frac-
tionally. With this definition, we now compute the optimum
fractional solution x∗ of the following linear program.

maximize scr Ew(x)

subject to
∑
c∈C

xc = k

x ∈ [0, 1]
C

To round x∗, we will employ a framework called pipage
rounding [Ageev and Sviridenko, 2004]. Specifically, we re-
sort to the following result of Călinescu et al.4

3This is w.l.o.g. since, as long asw1 6= 0, we may scale sequence
w by any constant factor without effecting the approximation ratio.

4Applying the theorem directly results in a randomized algo-
rithm. A way to construct a deterministic algorithm is described
in the full version of this paper.
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Problem Name Sequence w References Our Ratio

APPROVAL CHAMBERLIN-COURANT {1, 0, 0, . . . } [Chamberlin and Courant, 1983] 0.6321 . . . = 1− 1/e
PROPORTIONAL APPROVAL VOTING wi = 1/i [Thiele, 1895; Byrka et al., 2018] 0.7965 . . .
Saint-Laguë method wi = 1/(2i− 1) [Brill et al., 2018] 0.7394 . . .
Penrose apportionment method wi = 1/i2 [Brill et al., 2018] 0.7084 . . .
p-HARMONIC wi = 1/ip [Faliszewski et al., 2017]

∑∞
x=1

1
e·x! ·

(∑x
i=1

1
ip

)
p-GEOMETRIC wi = pi [Skowron et al., 2016] 1

1−p ·
(
1− 1

e1−p

)
Table 1: Our approximation ratios for w-THIELE rules. They are tight unless P = NP. All listed w-THIELE rules were known to have
(1 − 1/e)-approximation algorithm [Nemhauser et al., 1978; Skowron et al., 2016]. To the best of our knowledge, no better than (1 − 1/e)-
approximation algorithm was known for any of these rules.

Theorem 2 (Călinescu et al. [2011, Lemma 3.5]). Let f
be a monotone, submodular function and a polytope B(M)
be described by matroid constraints. Given vector y∗ =
arg max {f(x) | x ∈ B(M)} the procedure PipageRound-
ing(M, y∗) will return a solution S ∈M of value E[f(S)] >
Eŷ∼y∗ [f(ŷ)] where ŷ ∼ y∗ means a random vector with each
coordinate ŷi independently chosen to be 1 with probability
y∗i or 0 otherwise.

The function scrEw is submodular (because w is non-
increasing) and monotone (because w is non-negative). We
can thus use Theorem 2 to round the optimum LP solution
x∗. The resulting approximation ratio is then equal to

ρ =
Ex̂∼x∗ [scr Ew(x̂)]

scrEw(x∗)
.

The remainder of this section is dedicated to bounding ρ.
Let the approximation ratio of a voter v be ρv :=

Ex̂∼x∗ [scrEw(x̂,v)]
scrEw(x∗,v)

where scrEw(x, v) is the score of v, i.e.,∑|Av|
l=1 wk · min {1,max {0, xAv − l + 1}}. Henceforth, we

will focus on a single voter v and show that ρv > αw. This
straightforwardly implies that ρ > αw as desired.

We next characterize x∗ that minimizes the ratio ρv , which
in the end will lead us to the claimed bound.

Step 1: Three-Valued x∗
Let τ = x∗Av =

∑
c∈Av x

∗
c be a sum of x∗ values for candi-

dates approved by v. The score of the fractional solution x∗
is now scrEw(x∗, v) = w1 + · · ·+ wbτc + {τ} · wbτc+1.5

The numerator Ex̂∼x∗ [scr Ew(x̂, v)] of ρv can be written as
∞∑
l=0

(
(w1 + · · ·+ wl) P

x̂∼x∗

[∑
c∈Av

x̂c = l

])
.

We recall the following lemma due to Barman et al.
Lemma 3 (Barman et al. [2020]6). Let x ∈ [0, 1]

m be such
that x1 + · · ·+xm = τ . Then, for any non-negative sequence
(a1, a2, . . . ), there exist q ∈ (0, 1) and x′ ∈ {0, q, 1}m
such that

∑
i x
′
i = τ and

∑
l (al Px̂∼x [

∑m
i=1 x̂i = l]) >∑

l (al Px̂∼x′ [
∑m
i=1 x̂i = l]).

5{x} := x− bxc is a fractional part of a number x.
6In [Barman et al., 2020, Lemma 2.5], τ is required to be an in-

teger. It is however obvious from the proof that this is not necessary.

Now, notice that the denominator scrEw(x∗, v) in our ratio
ρv only depends on the sum τ =

∑
c∈Av x

∗
c and not the way

values are distributed among x∗c ’s. Hence, from Lemma 3, ρv
is minimised by x∗ that only takes three values—0, q and 1,
although we do not yet know what the value of q is.

Step 2: Getting Rid of Ones
Letw(x) be a functionw : R>0 → R>0 extending w, defined
byw(x) := wbxc ·(1−{x})+wbxc+1 ·{x}. Clearly, when x is
integral w(x) = wx. For fractional x, the function just takes
the weighted average of wbxc, wbxc+1.The following obser-
vation is straightforward (as w is geometrically dominant).
Observation 4. The function w is convex.

Using this observation, we can prove the following lemma,
which allows us to only consider x∗ that does not contain 1.
Lemma 5. Suppose x∗c̃ = 1 for a candidate c̃ ∈ Av . Then the
approximation ratio for the voter v decreases after removing
c̃ from the fractional solution x∗. Formally, if x∗c̃ = 1, then

ρv =

∑∞
l=0 (wl Px̂∼x∗ [

∑
c x̂c > l])

w1 + · · ·+ wbτc + {τ} · wbτc+1

>

∑∞
l=0

(
wl Px̂∼x∗

[∑
c 6=c̃ x̂c > l

])
w1 + · · ·+ wbτ−1c + {τ} · wbτc

.

Hence, the fractional solution x∗ that minimizes the ratio
ρv of a single voter only has values 0 and q where q ∈ (0, 1).

Step 3: Comparing Binomial and Poisson
The values {x∗c}c∈Av are now all either 0 or q and sum
up to τ . It means that, when we sample x̂ ∼ x∗, we
now are performing τ/q coin tosses with an identical coin
with bias q. The value of our integral solution which is
equal to

∑
l (wl · Px̂∼x∗ [

∑
c x̂c > l]) can be now rewritten

as
∑
l (wl · P[Bin(τ/q, q) > l]) = E[w1 + · · ·+wBin(τ/q,q)].

Let sw(n) = w1 + · · ·+wn. The function sw is monotone
(as w is non-negative) and concave (as w is non-increasing).
We recall another lemma by Barman et al.
Lemma 6 (Barman et al. [2020, Lemma 2.3]). For any con-
vex function f , any integer N > 1 and parameter p ∈ [0, 1]
we have E[f(Bin(N, p))] 6 E[f(Poi(Np))].

By applying the above lemma with the function s−w(x) =
−sw(x) which is convex, we get the following inequality
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E[w1 + · · ·+wBin(τ/q,q)] > E[w1 + · · ·+wPoi(τ)] and hence

ρv >
E[w1 + · · ·+ wPoi(τ)]

w1 + · · ·+ wbτc + {τ} · wbτc+1
. (2)

Step 4: Changing the Mean of Poisson
A property of Poisson distributions is that sampling Xi ∼
Poi(λi) for i = 1, . . . ,m and adding them is equivalent to
sampling Y ∼ Poi(

∑
i λi). Hence, E[w1 + · · ·+ wPoi(τ)]

=

 bτc∑
l=1

E
y∼Poi(l−1)

[wy+1 + · · ·+ wy+Poi(1)]


+ E
y∼Poi(bτc)

[wy+1 + · · ·+ wy+Poi({τ})]. (3)

We can bound each term in (3) as follows.
Lemma 7. For any l ∈ {1, . . . , bτc}, we have

E
y∼Poi(l−1)

[wy+1+· · ·+wy+Poi(1)]>E[w1+· · ·+wPoi(1)]
wl
w1
.

Lemma 8. Ey∼Poi(bτc)[wy+1 + · · ·+wy+Poi({τ})] > E[w1 +

· · ·+ wPoi(1)] ·
wbτc+1

w1
· {τ}.

Putting together (2), (3), Lemmas 7 and 8 allows us to con-
clude that the ratio ρv is at least

E[w1 + · · ·+ wPoi(1)] ·
w1+···+wbτc+{τ}·wbτc+1

w1(w1+···+wbτc+{τ}·wbτc+1)

which is equal to E[w1 + · · ·+ wPoi(1)] = αw since w1 = 1.
Hence, our algorithm yields an αw-approximate solution.

4 Hardness of Approximation
We next prove the hardness of approximation (second part of
Theorem 1). Our proof largely follows the proof of (1−1/e+
o(1))-inapproximability of Max k-Coverage of Feige [1998].
Specifically, we reduce from the Label Cover problem:
Definition 9. A Label Cover instance L = (A,B,E, [L],
[R], {π}e∈E) consists of a bi-regular bipartite graph (A,B,
E), alphabet sets [L], [R] and, for every edge e ∈ E, a con-
straint πe : [L]→ [R].

A labelling of L is a function φ : A → [L]. We say that
φ satisfies a right vertex v ∈ B if, for every two neigh-
bours u, u′ of v, we have π(u,v)(φ(u)) = π(u′,v)(φ(u′)).
The value of φ, denoted by val(φ), is defined as the frac-
tion of right vertices satisfied by φ. Moreover, we say
that φ weakly satisfies a right vertex v ∈ B if there exist
two distinct neighbours u, u′ of v such that π(u,v)(φ(u)) =
π(u′,v)(φ(u′)). Similarly, we define the weak value of φ, de-
noted by weak-val(φ), as the fraction of right vertices weakly
satisfied by φ. We use val(L) (resp. weak-val(L)) to denote
the maximum value (resp. weak value) among all assignments
φ, i.e., val(L) := maxφ:A→[L] val(φ) (resp. weak-val(L) :=
maxφ:A→[L] weak-val(φ)).

For any δ > 0 and t ∈ N, let δ-Gap-Label-Cover(t, R)
denote the following problem: given a Label Cover instance
L with right degree t and right alphabet set [R], distinguish
between val(L) = 1 and weak-val(L) < δ.

The hardness of δ-Gap-Label-Cover(t, R) is well-known
and is often used as a starting point for reductions in hardness
of approximation. Below we summarize the two hardness of
approximation of Label Cover relevant to our work.
Theorem 10 (Feige [1998]). For every δ > 0, every t ∈
N, t > 2, and for any sufficiently large R ∈ N (depending on
δ, t), δ-Gap-Label-Cover(t, R) is NP-hard.
Theorem 11 (Manurangsi [2020]). Assuming Gap-ETH, for
every δ > 0, every t ∈ N, t > 2, and any sufficiently large
R ∈ N (depending on δ, t), no f(k) · No(k)-time algorithm
can solve δ-Gap-Label-Cover(t, R), where k denote the num-
ber of left vertices in Label Cover and f can be any function.
We may now state the main properties of our reductions:
Theorem 12. Let w be such that limi→∞ wi = 0. For
any ε > 0, there exist δ > 0, t ∈ N and a reduction
that takes in an instance L = (A,B,E, [L], [R], {πe}e∈E)
of δ-Gap-Label-Cover(t, R) and produces an election E =
(V,C, {Av}v∈V ) in poly(|C|, |V |) time such that:
• (Completeness) If val(L) = 1, then there exists W ⊆ C

such that scrEw(W ) = |V |.
• (Soundness) If weak-val(L) < δ, then for all W ⊆ C,

we have scrEw(W ) = (αw + ε) · |V |.
• (Size bound) |C| = |A| · L and |V | = |B| · tR.
• (Parameter) k = |A|.
Plugging in Theorem 12 to Theorems 10, 11 immediately

yields the desired hardness of approximation in Theorem 1.
The rest of this section is devoted to the proof of Theo-

rem 12. Our reduction is in fact the same as Feige’s [1998],
which can be interpreted as the inapproximability for AP-
PROVAL CHAMBERLIN-COURANT. Hence, on the hardness
front, our main contribution is in extending the analysis to
work with more general sequences of weights. To this end,
we provide several helpful auxiliary lemmas in Section 4.1.
Then, in Section 4.2, we describe Feige’s reduction together
with our generalized analysis, and prove Theorem 12.

4.1 Auxiliary Lemmas
Similar to the analysis of our algorithm, we will need to move
from (generalizations of) Binomial random variables to Pois-
son random variables. The difference between here and the
algorithmic counterpart (Section 3) is that the sign is flipped.
Specifically, in Section 3, we need E[w1 + · · ·+wBin(n,p)] >
E[w1 + · · ·+ wPoi(np)]. Below, we show that in fact the left-
hand side is not much more than the right-hand side. Our
lemma is presented in its full generality below.
Lemma 13. Let w be such that limi→∞ wi = 0, γ, λ > 0
be any positive real numbers. Then, there exists p0 =
p0(w, γ, λ) > 0 such that, for any positive real number
p < p0, any positive integer n < λ/p and any non-negative
integers m1, . . . ,m` with

∑`
i=1mi = n, we have

E
z1,...,z`∼Ber(p)

[w1 + · · ·+ w∑`
i=1mizi

]

< E[w1 + · · ·+ wPoi(np)] + γ.

Another useful fact is stated below.
Lemma 14. The function f : R>0 → R>0 given by f(λ) =
Ez∼Poi(λ)[w1 + · · ·+ wz] is concave.
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4.2 The Reduction and Proof of Theorem 12
We can now describe the reduction and prove Theorem 12.
As stated earlier, our reduction is the same as that in [Feige,
1998], which employs the following gadget:

Definition 15 (Hypercube Set System [Feige, 1998]). For
any integer t ∈ N, R ∈ N, the (t, R)-hypercube set system
is defined as H = (U ,P1, . . . ,PR) where the universe U is
[t]R and each Pj = (Pj,1, . . . , Pj,t) is a partition of U into t
parts where Pj,i = {u = (u1, . . . , uR) ∈ [t]R | uj = i}.
In our reduction, we first pick the parameters as follows.
• Let i∗ denote the smallest positive integer such that
wi∗ < 0.1ε, and let ϑ = 10i∗/ε.
• Let γ = 0.7ε, p0 = p0(w, γ, 10ϑ) be as in Lemma 13.
• We select t = d2/p0e and δ = 0.0001ε

ϑ3t2 .
Given a Label Cover instance L = (A,B,E, [L], [R],
{πe}e∈E) where the right degree is t, we create an election
E = (V,C, {Av}v∈V ) as follows.
• Let (U ,P1, . . . ,PR) be a (t, R)-hypercube set system.
• Let the set of voters be V := B × U .
• Let the set of candidates be C := A× [L].
• For each b ∈ B, order its neighbours arbitrarily and,

for a neighbour a of b, let ι(a) ∈ [t] denote its index
in this ordering. A voter (b,u) ∈ B × U approves a
candidate (a, σ) ∈ A× [L] iff a is a neighbour of b and
u ∈ Pπ(a,b)(σ),ι(a).
• Let k = |A|.
The reduction obviously runs in poly(|C|, |V |) time and

the sizes of C, V are as stated in Theorem 12.

Completeness. Suppose that there is an assignment φ :
A → [L] that satisfies every b ∈ B. Pick W = {(a, φ(a)) |
a ∈ A}. We claim that scrEw(W ) > |V |; specifically, we will
argue that every voter approves a candidate in W . Consider
any voter (b,u) ∈ B × U and let a1, . . . , at be b’s (ordered)
neighbours. Since φ satisfies b, we have π(a1,b)(φ(a1)) =
· · · = π(at,b)(φ(at)). Since Pπa1,b(φ(a1)) is a partition of
u, there exists i ∈ [t] such that u ∈ Pπa1,b(φ(a1)),i =

Pπai,b(φ(ai)),i. This implies that (b,u) approves (ai, φ(ai))
as desired.

Soundness. Assume contrapositively that there exists a
subset W ⊆ C of k candidates, such that scrEw(W ) >
(αw + ε) · |V |. We will show that weak-val(φ) > δ.

For every b ∈ B, let Vb = {b} × U , Eb = (Vb, C,
{Av}v∈Vb) denote the subelection on the voters Vb, and let
degW (b) := |W ∩ (N(b) × [L])| where N(b) denote the set
of neighbours of b. For every a ∈ A, let Wa ⊆ [L] denote
{σ ∈ [L] | (a, σ) ∈W}. Finally, let D = 10ϑt.

We divide the set B into three sets:
• Let B1 denote the set of b ∈ B s.t. degW (b) > D.
• Let B2 denote the set of b ∈ B such that degW (b) 6 D

and, for all distinct neighbours a1, a2 of b and all σ1 ∈
Wa1 , σ2 ∈Wa2 , we have π(a1,b)(σ1) 6= π(a2,b)(σ2).
• Let B3 = B \ (B1 ∪B2).

We will next argue that |B3| > Ωt,ε(|B|), which will then
allow us to “decode” back the assignment to the Label Cover
instance L. To do so, we start by bounding the contribution of
B1 to scrEw(W ). The main idea is that when degW (b) is large,

the “average score per candidate” becomes small, which gives
the following upper bound on the desired quantity:
Proposition 16.

∑
b∈B1

scrEbw (W ) 6 0.2ε · |V |.
Next, we bound the score contribution from B2, using the

auxiliary lemmas shown in the previous subsection.
Proposition 17.

∑
b∈B2

scrEbw (W ) 6 (αw + 0.7ε) · |V |.

Proof. Let us fix b ∈ B2. Let a1, . . . , at be its (ordered)
neighbours. For each κ ∈ [R], let τκ = |{(a, σ) ∈ W | a ∈
N(b), π(a,b)(σ) = κ}|. Moreover, if τκ 6= 0, let iκ denote the
index i ∈ [t] of the neighbour s.t. π(ai,b)(σi) = κ for some
σi ∈Wi. (Due to our definition of B2, there is a unique such
i.) If τκ = 0, let iκ =⊥.

Recall that a voter (b,u) approves a candidate (ai, σ) iff
u ∈ Pπ(ai,b)

(σ),i, or equivalently uπ(ai,b)
(σ) = i. Hence, the

number of candidates in W approved by (b,u) ∈ Vb is∑
i∈[t]

∑
σ∈Wai

1[uπ(ai,b)
(σ) = i] =

∑
κ∈[R]

τκ · 1[uκ = iκ],

where 1 is an indicator function. Hence, we may rearrange
scrEbw (W ) as

|U| · E
u1,...,uR∼[t]

[
w1 + · · ·+ w∑

κ∈[R] τ
κ·1[uκ=iκ]

]
.

Observe that 1[u1 = i1], . . . ,1[uR = iR] are i.i.d. Ber(1/t)
random variables. Moreover,

∑
κ∈[L] τ

κ = degW (b) 6 D =

10ϑt. By our choice of t, we may apply Lemma 13 to get

scrEbw (W ) 6 |U| · E
[
w1 + · · ·+ wPoi(degW (b)/t)

]
+ γ.

By summing this over b ∈ B2,
∑
b∈B2

scrEbw (W ) is at most

|U| ·
∑
b∈B2

(
E
[
w1 + · · ·+ wPoi(degW (b)/t)

]
+ γ
)

6 |U| · |B| ·
(

E

[
w1 + · · ·+ w

Poi
(∑

b∈B degW (b)

|B|t

)]+ γ

)
= (αw + 0.7ε) · |V |,

where the inequality comes from Lemma 14, and the equality
from

∑
b∈B degW (b) = |B| · t, |U| · |B| = |V | and from our

choice of γ.

From the two propositions above and our assumption that
scrEw(W ) > (αw+ε)·|V |, we must have

∑
b∈B3

scrEbw (W ) >
0.1ε · |V |. It is obvious to see that scrEbw (W ) 6 degW (b) ·
|Vb|/t, which is at most D · |V |/(t · |B|) for b ∈ B3. Thus,

|B3| >
0.1ε · |V |

D · |V |/(t · |B|)
=

0.1εt|B|
D

=
0.01ε|B|

ϑ
. (4)

Now, consider the following (random) assignment: for every
a ∈ A such that Wa 6= ∅, let φ(a) be a random element
of Wa. By definition, each b ∈ B3 has distinct neighbours
a1, a2 and σ1 ∈ Wa1 , σ2 ∈ Wa2 such that π(a1,b)(σ1) =
π(a2,b)(σ2). Hence, the probability that φ weakly satisfies
such b is at least 1

|Wa1
|·|Wa2

| > 1
D2 , where the inequality

follows from degW (b) 6 D. Thus,

E
φ
[weak-val(φ)] >

|B3|
|B| ·D2

(4)
>

0.01ε

ϑ ·D2
=

0.0001ε

ϑ3t2
= δ.

This completes our proof of Theorem 12.
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5 Conclusion
In this work, we provide an approximation algorithm and
hardness of approximation for w-THIELE rules, which are
tight for the natural class of geometrically dominant rules.
Many popular Thiele rules, such as PROPORTIONAL AP-
PROVAL VOTING and p-GEOMETRIC, belong to this class.
While our results resolve the approximability for these Thiele
rules, many interesting questions still remain open.
Tight (in)approximability for other Thiele rules. An im-
mediate open question from our work is whether there is a
simple tight characterization of the approximability of w-
THIELE rules for any (not necessarily geometrically domi-
nant) w. Regarding this, recall that Barman et al. [2020] gives
such a tight bound for w = (1, . . . , 1, 0, . . . ). Their ratio is
not of the form (1). Furthermore, we note that the hardness
results of Barman et al. [2020] need to rely on the Unique
Games Conjecture (UGC), not just P 6= NP as in our work.
These highlight the challenges in generalizing our results to
larger families of w.
Performance of the greedy algorithm. As touched upon
earlier, a well-studied algorithm for w-THIELE (and its gen-
eralization) is the greedy algorithm, in which at each step the
candidate whose inclusion maximizes the total utility increase
is added to the committee. This is repeated until k candidates
are selected. The greedy algorithm is very efficient and hence
maybe preferred over LP-based algorithms in practice. Theo-
retically, the greedy algorithm is known to provide (1− 1/e)-
approximate solution for w-THIELE for any w [Nemhauser
et al., 1978; Skowron et al., 2016]. An interesting direc-
tion is to determine the exact approximation guarantees of
the greedy algorithm for specific w, such as PROPORTIONAL
APPROVAL VOTING and p-GEOMETRIC. On this front, we
manage to show the following:
Theorem 18. For any Thiele sequence w = (1, p, w3 . . . ),
the approximation ratio of the greedy algorithm for w-
THIELE is at most 1

1−p ·
(
1− 1

e1−p

)
.

An important consequence of the above theorem is that,
for any geometrically dominant w = (1, p, w3, . . . ) such that
w is not p-GEOMETRIC, the approximation ratio guarantee
by our LP-based algorithm is strictly better than that of the
greedy algorithm. It remains open whether this also holds for
p-GEOMETRIC and other non-geometrically dominant w.
Extensions to OWA-Winner and Participatory Budgeting.
Skowron et al. [2016] studied the w-OWA-Winner problem,
which is a generalization of w-THIELE rule that allows each
voter to assign any utility to a candidate (in approval ballots
the utility was 0 or 1). They, using a result of Nemhauser
et al. [1978], gave an (1 − 1/e)-approximation algorithm for
all non-increasing OWA vectors w. We note that the greedy
algorithm of Khuller et al. [1999] also gives an (1 − 1/e)-
approximation for the OWA-Winner problem with a knap-
sack constraint (instead of a cardinality constraint) due to
analysis of Sviridenko [2004]. Knapsack constraint models
an issue of Participatory Budgeting (PB) where candidates
are projects with assigned costs. Only specific sequences of
weights were considered, e.g., (1, 0, , . . . ), (1, 1, , . . . ) and
(1, 1/2, 1/3, . . . ) [Talmon and Faliszewski, 2019; Fluschnik et

al., 2019]. It is interesting whether we can get better than
(1 − 1/e)-approximation algorithm for OWA-Winner using
our results or if they can be extended by replacing cardinality
constraint with a knapsack constraint (but keeping approval
ballots as this is the most popular way of balloting—indeed,
general non-increasing sequences of weights with approval
ballots model projects substitution [Jain et al., 2020]). We
note here that our hardness results in Theorems 1 and 18 also
hold for OWA-Winner and PB.
Minimization variants. One can consider the minimiza-
tion version of the problem, i.e., minimizing dissatisfaction
instead of maximizing utility. Such a minimization variant,
coming from computational social choice, has already been
considered for several Thiele rules. Most of them assume
that voters and candidates lie in a metric space, and dissat-
isfaction of a voter from a candidate is equal to the distance
between them (not necessarily 0 or 1). The most popular ob-
jective function is minimizing the sum of distances of the vot-
ers to the closest chosen candidate, i.e., w = (1, 0, . . . ). This
problem is called k-Median and can be approximated within
2.675-ratio [Byrka et al., 2017]. Hardness of approximation
for k-Median is known to be 1 + 2/e [Guha and Khuller,
1999], even in FPT wrt. k time, in which the gap has been
closed [Cohen-Addad et al., 2019]. The minimization ver-
sion of w-THIELE rules is called OWA k-Median for which
93-approximation was shown [Byrka et al., 2018]. For some
specific w, better approximation ratios have been achieved.
For instance, when w`(i) = (1, , . . . , 1, , 0, . . . ) (i.e., ` ones
followed by zeros), the problem is called `-Fault Tolerant k-
Median and a 4-approximation algorithm is known [Swamy
and Shmoys, 2008]. When w(i) = 1/i, the problem is called
Harmonic k-Median and a 2.36-approximation algorithm ex-
ists [Byrka et al., 2018]. Surprisingly, this last result does not
assume that the function of dissatisfaction is a metric. There
are still many approximation gaps for the minimization vari-
ants of w-THIELE rules that should be studied.
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