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Abstract
In fair division of indivisible goods, finding an allo-
cation that satisfies fairness and efficiency simulta-
neously is highly desired but computationally hard.
We solve this problem approximately in polyno-
mial time by modeling it as a bi-criteria optimiza-
tion problem that can be solved efficiently by de-
termining an approximate Pareto set of bounded
size. We focus on two criteria: max-min fair-
ness and utilitarian efficiency, and study this prob-
lem for the setting when there are only a few item
types or a few agent types. We show in both
cases that one can construct an approximate Pareto
set in time polynomial in the input size, either
by designing a dynamic programming scheme, or
a linear-programming algorithm. Our techniques
strengthen known methods and can be potentially
applied to other notions of fairness and efficiency
as well.

1 Introduction
Fair division with its wide range of important applications has
a long research history, see the book chapters by Bouveret et
al. [2016] and Lang and Rothe [2015] for an overview. In
this setting, we are given n agents and m indivisible resources
(or items or goods), and agents express their preferences over
subsets (or bundles) of items by individual value functions.
One of the central tasks is to fairly allocate items to agents in
an efficient manner, as motivated by real-world applications
such as vehicle-request assignment in ridesourcing [Lesmana
et al., 2019], bandwidth allocation [Goel et al., 2001], and
load balancing [Kleinberg et al., 2001].

Various axiomatically justified notions of fairness have
been studied, including envy-freeness (no one wants to swap
her bundle with others), proportionality (every agent receives
a value worth at least a fraction of 1/n of her value for the
whole set of items), and max-min fairness (maximizing the
value of the worst-off agent, i.e., egalitarian social welfare).

Widely used notions of efficiency include utilitarian effi-
ciency (allocations that maximize the sum of the agents’ val-
ues, i.e., utilitarian social welfare) and Pareto optimality (al-
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locations in which no agent can increase her value without
decreasing the value of some other agent). Pareto optimality
is necessary but not sufficient for utilitarian efficiency. We
will focus on max-min fairness and utilitarian efficiency.

It is unfortunate that, due to the conflict of the two criteria,
allocations that are both fair and efficient do not always ex-
ist. This has motivated further research, such as to study the
efficiency loss under fair allocations, which is well captured
by the notion of price of fairness introduced and studied by
Bertsimas et al. [2011] and Caragiannis et al. [2012].

Another remarkable research direction is to look for allo-
cations that satisfy fairness and efficiency only to some ex-
tent [Lesmana et al., 2019; Aziz et al., 2019]. For exam-
ple, Lesmana et al. [2019] study this issue in the context
of ridesourcing request assignments where a set of requests
need to be matched to a set of available vehicles based on
a given weighted bipartite graph. They present an efficient
algorithm for finding an allocation with any desired fairness
and bounded efficiency. For general graphs, however, achiev-
ing such a result is well-known to be computationally hard.

This raises the question of whether one can find in poly-
nomial time good allocations with only a small loss on both
fairness and efficiency. Our goal is to answer this question
by focusing on two special cases: when there are only a few
agent types or a few item types. These two parameters have
been the subject of intensive investigations (see, e.g., [Brânzei
et al., 2016; Bouveret et al., 2017; Jansen and Maack, 2019;
Galil and Megiddo, 1979; Brown, 1979; Krysta et al., 2013;
Bredereck et al., 2019]).

We model the problem of computing fair and efficient al-
locations as a general bi-criteria optimization problem and
identify the set of Pareto-optimal solutions from the perspec-
tive of approximation algorithms—a similar idea was used
by Escoffier et al. [2013]. That is, we study an approxima-
tion of this set, called ε-Pareto set, which includes approx-
imately non-Pareto-dominated solutions: For every feasible
solution π , there is a solution π ′ in the ε-Pareto set that is
better than π within a factor of 1− ε on both criteria. The
purpose of constructing an approximate Pareto set is to help
the decision maker to easily find an allocation satisfying any
specific level of the desired quality of efficiency and fairness.

Our contribution. For any fixed constant ε > 0, we pro-
pose polynomial-time algorithms for generating an ε-Pareto
set, for both studied cases. When the number of item types is
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constant, we propose a dynamic programming algorithm that
runs in time polynomial in the size of the input. Interestingly,
our dynamic programming technique can also be applied to
(exactly) compute allocations that are Pareto-optimal and fair,
w.r.t. other notions of fairness. Notably, the technique can be
employed to solve the open problem of finding a min-max
allocation, as stated by Jansen and Maack [2019]. For the
case when the number of agent types is constant, we give an
approximation scheme whose running time is polynomial in
the size of the instance. Our source of improvement in the
scheme is a novel technique where we significantly extend
the technique used by Jansen and Maack [2019]. In partic-
ular, by a more involved procedure involving finding a basic
solution of nice structure to a mixed integer linear program,
we can round it to an integral solution with only a small loss
on both fairness and efficiency. We believe that this idea is
universally applicable and might be applied to more general
classes of objective functions.

Related work. Finding fair and efficient allocations has
gained a lot of interest in the last decade—see, e.g., the work
of Aumann and Dombb [2015], Bliem et al. [2016], Cara-
giannis et al. [2016], Bei et al. [2019], Suksompong [2019],
and Igarashi and Peters [2019]. Bredereck et al. [2019]
presented fixed-parameter tractable algorithms for comput-
ing envy-free and Pareto-optimal allocations, when param-
eterized by the number of agents and the maximum value of
any item. Their result also holds for various fairness notions
including max-min fairness. Barman et al. [2018] showed
that one can produce an allocation that is envy-free up to one
item and Pareto-optimal in pseudo polynomial time. Aziz et
al. [2019] presented an algorithm for finding an envy-free up
to one item allocation whose utilitarian social welfare satis-
fies a given efficiency goal. Considering max-min fairness
and utilitarian efficiency, Lesmana et al. [2019] obtained an
approximation algorithm for a restricted setting in which ev-
ery allocation forms a perfect matching on a bipartite graph.
Since our focus is on those cases when the number of item
types or the number of agent types are constant, we will give
a short overview of related work. Firstly, the case of one item
type was shown to be tractable for a class of single-objective
optimization problems, including for utilitarian social welfare
maximization (even for concave value functions) by Galil and
Megiddo [1979], and for egalitarian social welfare maximiza-
tion by Brown [1979]. It still remains open if such results can
be extended to the case of few item types. A similar question
has been posed by Jansen and Maack [2019] in the context
of machine scheduling, where the objective is to minimize
the maximum value among all agents. In the same paper, the
authors presented a polynomial-time approximation scheme
(PTAS) for the problem of maximizing egalitarian social wel-
fare, assuming that the number of different types of agents is
fixed. This result significantly improved a previous PTAS de-
signed for the special case when all the agents’ valuations
are identical [Woeginger, 1997]. Very recently, Kones and
Levin [2019] proposed a framework for designing PTASes for
more general classes of machine scheduling problems, which
generalizes the results of Jansen and Maack [2019]. Never-
theless, their technique fails when applied to our problems.

2 Model and Notation
An instance of a fair and efficient allocation problem is of-
ten given by a triple I = (A,O,U), where A = {1,2, . . . ,n}
is the set of agents, O = {1,2, . . . ,m} the set of items, and
U = {u1,u2, . . . ,un} the agents’ valuation functions express-
ing their utilities over the set of items. We restrict our atten-
tion to the class of additive valuation functions which have
been widely used in the context of resource allocation. A val-
uation function is additive if for any subset (bundle) S ⊆ O,
ui(S) = ∑ j∈S ui j, where ui j is agent i’s nonnegative integer
value for item j. We assume that the value of the empty bun-
dle is zero for every agent. Furthermore, by scaling if needed
we can assume that if ui j 6= 0 then ui j ≥ 1, for all i, j. For ease
of presentation, define umax = maxi, j ui j. An allocation of
items among agents is a partition of the set O of items into n
disjoint subsets. We denote an allocation by π = (π1, . . . ,πn),
where πi is the bundle allocated to agent i.
Agent types and item types. The set of agents is divided
into T groupsA1, . . . ,AT such that agents in each group have
the same valuation function. Let [T ] = {1, . . . ,T}. Let nt =
|At | be the number of agents of type t, and ut, j be the value
of item j for any agent inAt . Let ut,O = ∑ j∈O ut, j for t ∈ [T ].
We say that two items j, j′ are of the same type if they have
the same value for every agent i, i.e., ui j = ui j′ . Hence, we
can divide the item set O into q classes such that items in
each class are of same type. We assume that there are m j
(identical) items for each item type j.
Max-min fairness and other fairness notions. The egali-
tarian social welfare (ESW) of an allocation π is defined as
swe(π,I) = minn

i=1ui(πi). If π has maximum egalitarian so-
cial welfare among all allocations, we say that π is max-min
fair (MMF). An allocation is proportional fair (PF) if ev-
ery agent i gets a value of at least her proportional share of
ui(O)/n, and is maximin-share fair (MSF) if every agent gets
a value of at least her share when she can partition O into n
bundles and then has to pick a bundle of smallest value.
Utilitarian efficiency. The utilitarian social welfare
(USW) of an allocation π is defined as swu(π,I) =
∑

n
i=1ui(πi). If π has maximum utilitarian social welfare

among all allocations, π is said to be utilitarian efficient
(UE). Note that if an allocation is utilitarian efficient then it
is Pareto-optimal, but not vice versa. We write swu(π) and
swe(π) if I is clear from the context. We now define Pareto
set and its approximation.
Definition 1 (Pareto set and ε-Pareto set). Given an instance
I, we say that an allocation π dominates an allocation π ′ if
swe(π) ≥ swe(π

′) and swu(π) ≥ swu(π
′), with at least one

inequality being strict. The Pareto set of I, denoted by P(I),
is the set of all allocations that are not dominated by any
other allocation. For ε ∈ (0,1], the ε-Pareto set of I, denoted
by Pε(I), is the set of allocations such that for all alloca-
tions π ′, there is always an allocation π ∈ Pε(I) such that
swe(π)≥ (1− ε)swe(π

′) and swu(π)≥ (1− ε)swu(π
′).

We will address the problem of constructing an ε-Pareto
set Pε(I) of bounded size for any given instance I, and for
any fixed constant ε > 0, when the number of item types or
the number of agent types are not part of the input.
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3 Few Item Types
We present a dynamic programming scheme that is the key
ingredient in the construction of an approximate Pareto set. It
can also be used as a subroutine to solve other problems.
Lemma 1. Given an instance I and a value β , one can com-
pute in polynomial time an allocation of maximum utilitarian
social welfare subject to the constraint that the value of every
agent is at least β , if such an allocation exists, assuming that
the number of item types is constant.

Proof. Given (I,β ), we present a dynamic programming
scheme, denoted by DP(I,β ), for finding a required alloca-
tion in terms of a state-transition diagram. A state is defined
as a (q + 1)-tuple of the form S = (i,s1,s2, . . . ,sq), where
i ∈ {0} ∪ [n] and s j ∈ {0} ∪ [m j], for j ∈ [q]. States are
grouped into n+ 1 blocks B0,B1, . . . ,Bn. The first and the
last blocks, B0 and Bn, contain only one state denoted by
Sstart = (0,m1,m2, . . . ,mq) and Send = (n,0,0, . . . ,0), respec-
tively. Block Bi, for i ∈ [n−1], contains all possible (q+1)-
tuples S ensuring that the size of Bi is (m1 + 1) · · ·(mq + 1).
Intuitively, a state s ∈ Bi gives us partial information about an
allocation of items to agents. In particular, it indicates that
agents 1, . . . , i have been allocated items (but we do not know
which items are assigned to which agents), and s1,s2, . . . ,sq
are the number of items of each type that are unallocated
yet at the current state and will be assigned to the remain-
ing agents i+ 1, . . . ,n at the next states. The total number
of states in n+ 1 blocks is (n− 1)(m1 + 1) · · ·(mq + 1)+ 2.
We next define transitions of states between two consecu-
tive blocks as follows. For each i ∈ [n], there is a transi-
tion from a state S = (i− 1,s1,s2, . . . ,sq) ∈ Bi−1 to a state
S′ = (i,s′1,s

′
2, . . . ,s

′
q) ∈ Bi if and only if s j − s′j ≥ 0 holds

for all j ∈ [q], and we set the value of this transition to
w = ∑

q
j=1 ui j(s j− s′j) if w ≥ β and w = −∞, otherwise. By

this transition we mean that agent i is allocated a bundle of
items encoded by the vector (s1− s′1, . . . ,sq− s′q).

One can see that a (simple) path of the constructed state-
transition diagram (a directed acyclic graph) above corre-
sponds to an allocation for I, and vice versa. Our problem is
therefore equivalent to computing a longest path (i.e., the path
of maximum total value) in the diagram, which can be done
via dynamic programming. If the path is of positive value,
DP(I,β ) returns a corresponding allocation π satisfying the
conditions in the lemma, otherwise it returns “NO,” meaning
that there is no such allocation. Regarding the running time
of DP, note that the number of states is bounded by O(nmq),
and for each state we have at most mq outgoing transitions.
Therefore, the overall complexity of DP is O(nmO(q)), which
is polynomial in n and m, as q is constant.

Using Lemma 1 we can now prove the following theorem.
Theorem 1. Given an instance I, one can compute in poly-
nomial time a setPε(I) for any fixed constant ε ∈ (0,1], when
the number of item types is constant.

Proof. Let I be an instance and ε be a constant in (0,1]. To
prove the claim in the theorem, we describe a polynomial-
time algorithm as follows. The idea is to enumerate all pos-
sible lower bounds LB on the egalitarian social welfare of an

allocation, that is, LB ∈ {0,1,1+ ε,(1+ ε)2, . . . ,(1+ ε)k},
where k = blog1+ε{mini ui(O)}c. For each value of LB, we
run the dynamic program DP(I,LB) from Lemma 1 to return
an allocation π of maximum utilitarian social welfare (if there
exists one), respecting the constraint on lower bound LB.

We include such an allocation π into Pε(I), for every LB.
One can see that |Pε(I)| ≤ k+2. This together with the poly-
nomial running time of DP(I,LB) implies that our algorithm
runs in time polynomial in the size of the instance.

We now prove that for every allocation π , there is always
an allocation π ′ ∈ Pε(I) such that swe(π

′) ≥ (1− ε)swe(π)
and swu(π

′)≥ (1−ε)swu(π). Indeed, the first case swe(π) =
0 is easy to see because the allocation π ′ returned by DP(I,0)
is UE. Suppose that swe(π) 6= 0. Let ` be a nonnegative
integer such that swe(π) ∈ [(1 + ε)`,(1 + ε)`+1). Hence,
π must correspond to some path in the diagram considered
by DP(I,(1 + ε)`). Let π ′ be the allocation returned by
DP(I,(1+ ε)`). It must then hold that swu(π) ≤ swu(π

′).
Moreover, from swe(π)< (1+ ε)`+1 and swe(π

′)≥ (1+ ε)`

and as ε ∈ (0,1], we have that swe(π
′)> (1+ ε)−1swe(π) or

swe(π
′)> (1− ε)swe(π).

The dynamic programming above can be applied to com-
pute other fair and Pareto-optimal allocations as shown in the
theorem below. The proof is omitted due to space limitations
and can be found in the full version of the paper.
Theorem 2. Given that the number of item types is con-
stant, one can compute in polynomial time a fair and Pareto-
optimal allocation (if there exists one), w.r.t. either one of the
following fairness criteria: MMF, PF, and MSF. Also, com-
puting a min-max allocation can be done in polynomial time.

4 Few Agent Types
In this section, we present a linear-programming algorithm
for constructing an ε-Pareto set for an instance I where the
number of different agents is small. We make use of some of
the ideas from the PTAS for finding max-min fair allocations
by Jansen and Maack [2019].
Theorem 3. For any constant ε ∈ (0,1], one can construct
an ε-Pareto set in time polynomial in the size of the instance,
when the number of agent types is constant.

Proof. Fix ε ∈ (0,1] and let α = ε/5 and τ = (1−α)/2, Algo-
rithm 1 computes an ε-Pareto set for I. The lemma below
indicates that it suffices to focus on allocations of some spe-
cial structure. The proof, which is omitted here due to space
limitations, is similar to that of Alon et al. [1998].

Lemma 2. Given an allocation π , one can find an alloca-
tion π ′ such that: i) swu(π

′,I) = swu(π,I) and swe(π
′,I)≥

swe(π,I); ii) for each agent type t, there is a value ξt such
that: if there is some agent who receives an item of value
≥ ξt then it is the only one she received. Moreover, every
agent who did not get any such item has a value ∈ ( 1

2 ξt ,2ξt).

The construction of an ε-Pareto set is described in Algo-
rithm 1. The basic idea is to enumerate a bounded number of
possible values of ξt and the corresponding egalitarian social
welfare θt ∈ ( 1

2 ξt ,2ξt), for every t ∈ [T ], and try to find (if
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Algorithm 1 PARETO-SET

1: Let π̄ be an allocation maximizing swu(π̄,I)
2: Pε(I)←{π̄}; Define Xt for t ∈ [T ]
3: for each ξ = (ξ1, . . . ,ξT ) ∈ X = X1×·· ·×XT do
4: W ← 2(2+ log1−α α2) ·T ; d← dW/αe
5: Q← {{D1, . . . ,DT}| Dt ⊆O, |Dt | ≤ d, t ∈ [T ]}
6: Define Θt for t ∈ [T ]
7: for each valid D = {D1, . . . ,DT} ∈ Q do
8: for each θ ∈Θ = Θ1×·· ·×ΘT do
9: Round item values

10: Compute an optimal BFS of MILP[ξ ,θ ], de-
noted by (x∗,y∗) (if there exists one)

11: Round (x∗,y∗) to an integer solution (x̄∗,y∗)
via solving a totally unimodular LP

12: Convert (x̄∗,y∗) into π∗ using Algorithm 2
13: Pε(I)←Pε(I)∪{π∗}
14: Return Pε(I)

there exists one) an allocation of maximum utilitarian social
welfare, w.r.t. these values.
Enumerating possible values regarding USW. For each
t ∈ [T ], consider a setXt = {1,1+α, . . . ,(1+α)blog1+α ut,Oc}.
Each ξt ∈ Xt represents a possible (approximate) average
value of agents in a subset A ⊆ At such that every agent in
At \A gets only one item of value at least ξt . For each vec-
tor ξ = (ξ1, . . . ,ξT ), Algorithm 1 performs Steps 4–13, which
are described in detail below.
Classifying items into groups. For each agent type t, we
classify items inO into large items (having value bigger than
α2ξt and less than ξt ), small items (having value at most
α2ξt ), and huge items (having value at least ξt ). Next, we
guess at most d = dW/αe huge items of value at least ξt that
are assigned to agents of this type (W is some constant that is
specified in line 5 of Algorithm 1 and Lemma 3). Let Dt be
the set of these guessed items. We call D = {Dt}t∈[T ] a valid
guess if {Dt}t∈[T ] are disjoint subsets. Given a valid guess
D, huge items that are not in Dt and have values bigger than
min j∈Dt ut, j should not be allocated to agents of type t.
Enumerating possible values regarding ESW. For each
t ∈ [T ], given a value ξt , the algorithm considers a set Θt of
possible values of the minimum value over all agents of type t
in the domain (τξt , ξt/τ), Θt = {τξt ,

τξt
1−α

, . . . , τξt
(1−α)p }, where

p = blog1−α τ2c. It is argued later that it is not necessary to
consider values that do not belong to this domain.
Rounding item values (line 10 of Algorithm 1). The value
of item j w.r.t. agents of type t ∈ [T ] is rounded down to

ût, j = (1−α)dlog1−α(ut, j/α2ξt)e ·α2
ξt . (1)

Observation 1. By the rounding step (1) we get a new in-
stance Î = (A,O, Û) with the same agents and items but dif-
ferent valuation functions. Moreover, for every t and j, it
holds that ût, j ≥ (1−α) ·ut, j.

For every t ∈ [T ], let Ht , Lt , and St , respectively, be the sets
of huge, large, and small rounded item values. We bound the

size of Lt as follows. Since every large item has a value less
than ξt , from (1) it follows that the number of large rounded
item values (w.r.t. agent type t) must be at most log1−α α2.

Configurations. For t ∈ [T ], we encode a bundle of items
of values in Lt as an |Lt |-dimensional vector κ = (κv)v∈Lt ,
called a configuration, where κv denotes the number of items
of value v. The value of a configuration (or a bundle) κ for
an agent of type t is defined as ût,κ = ∑v∈Lt v ·κv. For a value
θt ∈Θt , define

Ct
≥θt

= {κ = (κv)v∈Lt | θt ≤ ût,κ < ξt/τ} and

Ct
<θt

= {κ = (κv)v∈Lt | ût,κ < θt}.

We call Ct
<θt

and Ct
≥θt

the sets of small and big configura-
tions, respectively. Let Ct = Ct

≥θt
∪Ct

<θt
. We show that |Ct |

is bounded by a constant. Indeed, by the fact that the value
of every large item is bigger than α2ξt and the value of every
configuration is less than ξt/τ, it follows that α2ξt ·∑v∈Lt κv ≤
∑v∈Lt v · κv < ξt/τ. Therefore, ∑v∈Lt κv ≤ 1/(τα2). This to-
gether with the claim that |Lt | ≤ log1−α α2 implies the con-
stant size of Ct , as α and τ are constant.

Mixed integer linear program (line 11 of Algorithm 1).
Now, given the vectors ξ =(ξ1, . . . ,ξT ), θ =(θ1, . . . ,θT ), and
D = {Dt}t∈[T ], we formulate a mixed integer linear program,
denoted by MILP[ξ ,θ ], as follows. MILP[ξ ,θ ] consists of
both fractional and integer variables, and three classes of lin-
ear constraints, which are defined next. We use the following
variables x = (xt, j)t∈[T ], j∈[m] and y = (yt,κ)t∈[T ],κ∈Ct , where

• xt, j ∈ [0,1]: denotes the fraction of item j assigned to
agents of type t. Some variables xt, j are set to be either
0 or 1 according to our guessing of Dt ,

• yt,κ ∈ N: denotes the number of configurations κ ∈ Ct

that are assigned to agents of type t.

Let Ot,v = { j ∈ O|ut, j = v} and Gt = ∪v∈HtOt,v, for t ∈ [T ].
The objective of MILP[ξ ,θ ] is to maximize

f (x,y) = ∑
t∈[T ]

(
∑
j∈Gt

ût, jxt, j + ∑
κ∈Ct

yt,κ ût,κ + ∑
v∈St

v ∑
j∈Ot,v

xt, j

)
subject to the following classes of constraints. In the first
class of constraints, we require that, for every type t ∈ [T ],
the total number of configurations and huge items assigned to
agents of this type is exactly the number of agents:

∑κ∈Ct yt,κ +∑ j∈Gt
xt, j = nt . (2)

For the second class of constraints, we first ensure that every
item j ∈ O is assigned to exactly one agent type:

∑t∈[T ]xt, j = 1. (3)

For every t ∈ [T ] and for every v ∈ Lt , we must have that the
total number of items of value v that are assigned to the group
of agents At is at least the total number of items of the same
value used in the chosen configurations:

∑ j∈Ot,v
xt, j ≥∑κ∈Ct κv · yt,κ . (4)
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The third class of constraints guarantees that, for t ∈ [T ], the
total value of the small configurations and small items as-
signed to agents of type t is at least θt times the number of
agents owning small configurations:

∑κ∈Ct
<θt

yt,κ ût,κ +∑v∈St
v∑ j∈Ot,v

xt, j

≥
(

nt −∑ j∈Gt
xt, j−∑κ∈Ct

≥θt
yt,κ

)
·θt . (5)

An optimal basic (fractional) solution (BFS) to MILP[ξ ,θ ],
if there exists one, is denoted by (x∗,y∗). We now show how
to convert it into an allocation with the desired properties.

Lemma 3. A basic solution (x∗,y∗) to MILP[ξ ,θ ] has at
most W = 2(2+ log1−α α2) ·T fractional components.

Proof. It suffices to prove the x∗ has at most W fractional
components. Since the number of nontrivial constraints of
MILP[ξ ,θ ] is h = 2T + ∑t∈[T ] |Lt |+ m, x∗ has at most h
positive components. Consider the family of constraints
(3). In each of these constraints, there are only two cases:
(i) there is exactly one positive component x∗t, j = 1, and
(ii) there are at least two nonintegral components. Denote
by `1 and `2, respectively, the number of constraints (3)
in each case. Then we have that `1 + `2 = m. The to-
tal number of positive components of x∗ is at least `1 +
2`2 = 2m− `1. By an earlier argument, we must have that
2m− `1 ≤ h = 2T + ∑t∈[T ] |Lt |+ m or, equivalently, `1 ≥
m− 2T −∑t∈[T ] |Lt |. Therefore, the number of nonintegral
components of x∗ is at most h−

(
m−2T −∑t∈[T ] |Lt |

)
=

2
(
2T +∑t∈[T ] |Lt |

)
≤ 2

(
2+ log1−α α2

)
·T , as |Lt | is upper-

bounded by log1−α α2.

Converting (x̄∗,y∗) into an allocation. We first show how
to round (x∗,y∗) to an integer solution (x̄∗,y∗). We need only
to round x∗ (or, more precisely, the fractional components
of x∗) since y∗ is already integral. We find a nonnegative
basic (integer) solution to the following linear program (LP):

∑ j∈Gt
zt, j = nt −∑κ∈Ct y

∗
t,κ , t ∈ [T ],

∑t∈[T ] zt, j = 1, j ∈ O,

∑ j∈Ot,v
zt, j ≥ ∑κ∈Ct κvy∗t,κ , t ∈ [T ],v ∈ Lt ,

∑ j∈Ot,v
zt, j ≥ b∑ j∈Ot,v

x∗t, jc, t ∈ [T ],v ∈ St ,

in which we set zt, j = x∗t, j for all t, j such that x∗t, j is integral.
One can see that LP has the form of Ax≥ b, where A has only
0- or 1-entries while b is an integer vector. Furthermore, every
column of A contains exactly two nonzero entries. Hence, A
is a totally unimodular matrix, making every basic solution
of LP integral. It is well-known that a basic solution z∗ of LP
can be found in polynomial time. We set x̄∗t, j = z∗t, j if x∗t, j is
fractional, and x̄∗t, j = x∗t, j otherwise. One can check that the
obtained solution (x̄∗,y∗) fulfills the constraints (2), (3), and
(4), though it may violate the constraints (5). We will show
later that this violation does not affect much the quality of
the rounded solution. Finally, we apply Algorithm 2 for each
t ∈ [T ] to convert (x̄∗,y∗) into an allocation.

Algorithm 2 CONVERT(x̄∗,y∗,At)

1: Allocate item j to group At if x̄∗t, j = 1, for all j, and fol-
low the next steps to assign items to agents in this group.

2: Huge items: we allocate each huge item to at most one
agent such that nobody gets more than one huge item.

3: Large items: agents who have not received any huge item
are assigned exactly one configuration each, and we fur-
ther allocate large items to each of them based on y∗t,κ .

4: Small items: we greedily allocate small items among
groups of agents having a configuration of value less than
(1− 3α)θt . Pick an arbitrary agent from this group and
assign small items to her (one-by-one) until her value ex-
ceeds (1− 3α)θt . Remove the last item assigned to her
and repeat this process with the remaining agents and re-
maining items. At the end of the process, if there still re-
main some items, we allocate them arbitrarily to agents.

Correctness of Algorithm 1. One needs to prove that, for a
given feasible allocation π , there is an allocation π∗ ∈ Pε(I)
such that swe(π

∗,I) ≥ (1− ε)swe(π,I) and swu(π
∗,I) ≥

(1− ε)swu(π,I). By Lemma 2, one can transform π into
some allocation π ′ of the desired structure, without decreas-
ing the egalitarian social welfare of the former one while
keeping the utilitarian social welfare unchanged. If some
agent gets nothing in π then swe(π,I) = 0. Therefore, this
allocation must be dominated by π̄ ∈ Pε(I). Hence, we now
consider the case when every agent gets at least one item in π .
From π ′ one can easily determine the value ξt for every
t ∈ [T ], and let θt = mini∈At ui(π

′
i ) ∈ ( 1

2 ξt ,2ξt). Let ξ ∗t be
a lower bound of ξt such that ξ ∗t ≤ ξt < (1 + α)ξ ∗t . This
lower bound is considered at Step 3 of Algorithm 1. Also,
let Gt be the set of huge items assigned to agents of type t by
allocation π ′. Then a setDt of the d highest-value huge items
in Gt is considered by the loop in line 7 of Algorithm 1. If
|Gt | ≤ d, Dt is exactly Gt . Let θ̂t = mini∈At ûi(π

′
i ). From (1)

it follows that (1−α)θt ≤ θ̂t ≤ θt . Hence, θ̂t ∈ ( 1−α

2 ξt ,2ξt)

or θ̂t ∈ (τξ ∗t , ξ ∗t /τ), where τ = (1−α)/2. Then there must be a
lower bound θ ∗t ∈ (τξ ∗t , ξ ∗t /τ) of θ̂t , considered by the loop
at line 8 of Algorithm 1, such that θ ∗t ≤ θ̂t <

θ∗t
1−α

. Let
ξ ∗ = (ξ ∗1 , . . . ,ξ

∗
T ) and θ ∗ = (θ ∗1 , . . . ,θ

∗
T ). Now the Algo-

rithm 1 tries to solve the MILP[ξ ∗,θ ∗] to obtain some allo-
cation with the desired properties as claimed in Lemma 4.

Lemma 4. There exists an integer solution to MILP[ξ ∗,θ ∗].
Also, a rounded solution of an optimal BFS to MILP[ξ ∗,θ ∗]
corresponds to an allocation π∗ such that swu(π

∗,I)≥ (1−
ε)swu(π,I) and swe(π

∗,I)≥ (1− ε)swe(π,I).

Proof. The construction of an integer solution to
MILP[ξ ∗,θ ∗] from π ′ is not difficult to verify, and we
omit it here due to lack of space. We now prove the second
part of the lemma. Let (x∗,y∗) be an optimal BFS of
MILP[ξ ∗,θ ∗] returned by Step 10 of Algorithm 1, and
(x̄∗,y∗) be its rounded solution. One can see that (x̄∗,y∗)
satisfies all the constraints because of the LP constraints,
except (5).
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In the following we will show how much the rounding step
(line 11 of Algorithm 1) violates the constraints (5). Due to
the last family of constraints of LP, it holds that ∑ j∈Ot,v x̄∗t, j ≥
∑ j∈Ot,vx∗t, j− 1. Let Lt = ∑v∈St v∑ j∈Ot,v x∗t, j. For every agent
type t and for every item value v, we have that:

∑
v∈St

v ∑
j∈Ot,v

x̄∗t, j ≥ Lt − ∑
v∈St

v ≥ Lt −α
2
ξ
∗
t · ∑

k∈N
(1−α)k

= Lt −αξ
∗
t . (6)

The second inequality follows from the definition of St .
Consider the constraints (5). Let Kt = nt −∑ j∈Gt x∗t, j −

∑κ∈Ct
≥θt

y∗t,κ . Since (x∗,y∗) satisfies (5), from (6) we have:

∑κ∈Ct
<θt

y∗t,κ ût,κ +∑v∈St
v∑ j∈Ot,v

x̄∗t, j ≥ Ktθ
∗
t −αξ

∗
t

≥ Ktθ
∗
t − (α/τ) ·θ ∗ ≥ Kt · (1−3α)θ ∗t , (7)

since ξ ∗t < θ∗t /τ and τ = (1−α)/2 > 1/3 for α < 1/3.
Let Ut = ∑ j∈Gt ût, j x̄∗t, j +∑κ∈Ct y∗t,κ ût,κ +∑v∈St v∑ j∈Ot,v x̄∗t, j.

For every t, it suffices to consider the case when |Gt |> d, and
thus Dt ⊂ Gt . Let s = argmin j∈Dt

ut, j and G′t ⊆ Gt be the set
of items j for which x∗t, j was fractional but rounded down to
0 by the rounding (line 11 of Algorithm 1). By Lemma 3, we
have that |G ′t | ≤W . Hence,

∑
j∈Gt

ût, j x̄∗t, j ≥∑
Gt

ût, jx∗t, j− ∑
j∈G′t

ût, jx∗t, j ≥ ∑
j∈Gt

ût, jx∗t, j−W · ût,s

≥ ∑
j∈Gt

ût, jx∗t, j−
W
|Dt |
· ∑

j∈Dt

ût, j ≥ (1−α)∑ j∈Gt
ût, jx∗t, j. (8)

From (6) and (8) one can show, for every t ∈ [T ], that

Ut ≥ (1−3α)

(
∑
j∈Gt

ût, jx∗t, j + ∑
κ∈Ct

y∗t,κ ût,κ + ∑
v∈St

v ∑
j∈Ot,v

x∗t, j

)
.

Now the integer solution (x̄∗,y∗) is converted into an al-
location π∗ by line 12 of Algorithm 1. By converting, we
have that swu(π

∗, Î) = ∑t∈[T ]Ut ≥ (1−3α) f (x∗,y∗) ≥ (1−
3α)swu(π

′, Î) ≥ (1− 4α)swu(π,I). The third inequality is
due to the fact that π ′ can be converted into a feasible solution
to MILP[ξ ∗,θ ∗], whose value is equal to the utilitarian social
welfare of π ′ w.r.t. Î.

We now prove that swe(π
∗,I) ≥ (1− 5α)swe(π,I). No-

tice that the assignment of small items at Step 4 of Algo-
rithm 2 is doable due to (7). Let A′t be the set of agents who
received configurations of values less than (1−3α)θ ∗t due to
this algorithm, for all t ∈ [T ]. Let i be such an agent. By the
greedy assignment, the small items are assigned to her until
her value exceeds (1−3α)θ ∗t . Suppose that j is the last item
assigned to her. Then it must be that the value of the agent
before getting the last item is at least (1− 3α)θ ∗t − ût, j ≥
(1− 3α)θ ∗t − α2ξ ∗t > (1− 3α)θ ∗t − 2α2

1−α
θ ∗t ≥ (1− 4α)θ ∗t ,

for α < 1/3. The first inequality is because j is a small
item and the second inequality follows from the fact that
1−α

2 ξ ∗t ≤ θ ∗t . Therefore, swe(π
∗, Î)≥mint∈[T ]{(1−3α)θ ∗t }.

Note that θ ∗t ≥ (1−α)θ̂t ≥ (1−α)2θt ≥ (1−2α)θt . Hence,

swe(π
∗, Î)≥mint∈[T ]{(1−3α)(1−2α)θt} ≥mint∈[T ]{(1−

5α)θt}= (1−5α)swe(π
′,I)≥ (1−5α)swe(π,I).

Note that by rounding down item values, it holds that
ui(π

∗
i ) ≥ ûi(π

∗
i ) for all i. Hence, swe(π

∗,I) ≥ swe(π
∗, Î) ≥

(1 − 5α)swe(π,I), and swu(π
∗,I) ≥ swu(π

∗, Î) ≥ (1 −
4α)swu(π,I).

Finally, by choosing α = ε

5 we have completed the proof
of Lemma 4.

Complexity analysis of Algorithm 1. It is not difficult to
see that the overall running time of Algorithm 1 is upper-
bounded by T = O(P1 ·P2 ·P3 ·P4) in which P1, P2, and P3,
respectively, are the sizes of the sets X , Q, and Θ, while P4
is the amount of time needed for solving MILP[ξ ,θ ] and for
solving the linear program LP. We have that P1 = O(logT (m ·
umax)), P2 is at most |H1|d × ·· · × |HT |d = O(mT (W

α
+1))

(which is polynomial in m since T , W , and α are constants),
and P3 = O(1). To estimate P4, note that MILP[ξ ,θ ] has
many variables but a constant number of integer ones and
thus can be solved in time polynomial in the size of input
(see Lenstra [1983]). In addition, computing a basic (integer)
solution to LP can be also done in polynomial time. Hence,
T is a polynomial in the size of I. This completes the proof
of Theorem 3.

5 Conclusions
We have studied the problem of computing approximately
max-min fair and utilitarian efficient allocations for addi-
tive valuation functions. In particular, we have modeled
the problem as a bi-criteria optimization problem and pre-
sented two polynomial-time algorithms for constructing ap-
proximate Pareto sets, in two special but nontrivial settings
when there are a few agent types or there are a few item
types. Our first algorithm is based on a dynamic program-
ming scheme that has been shown to be very useful in solv-
ing other fair and efficient allocation problems. In fact, one
of our results regarding finding min-max allocations for the
constant-item-type case answers an open problem raised by
Jansen and Maack [2019] in the context of machine schedul-
ing. Our second algorithm is achieved by applying a linear-
programming method, which can be seen as a significant ex-
tension of Jansen and Maack’s method. We believe that our
technique can be potentially applied to a wider class of re-
source allocation problems with more general objectives, e.g.,
the ones considered by Alon et al. [1998]. This would be an
interesting direction for future work. Another idea is to see
whether we can obtain similar results to what we have done
in this paper with respect to the criterion of envy-freeness.
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Lang, and Ariel Procaccia, editors, Handbook of Compu-
tational Social Choice, chapter 12, pages 284–310. Cam-
bridge University Press, 2016.

[Bouveret et al., 2017] Sylvain Bouveret, Katarı́na
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