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Abstract

Approval voting provides a simple, practical frame-
work for multi-issue elections, and the most rep-
resentative example among such election rules is
the classic Minisum approval voting rule. We con-
sider a generalization of Minisum, introduced by
the work of Barrot and Lang [2016], referred to
as Conditional Minisum, where voters are also al-
lowed to express dependencies between issues. The
price we have to pay when we move to this higher
level of expressiveness is that we end up with a
computationally hard rule. Motivated by this, we
focus on the computational aspects of Conditional
Minisum, where progress has been rather scarce so
far. We identify restrictions to every voter’s de-
pendencies, under which we provide the first mul-
tiplicative approximation algorithms for the prob-
lem. The restrictions involve upper bounds on the
number of dependencies an issue can have on the
others. At the same time, by additionally requir-
ing certain structural properties for the union of de-
pendencies cast by the whole electorate, we obtain
optimal efficient algorithms for well-motivated spe-
cial cases. Overall, our work provides a better un-
derstanding on the complexity implications intro-
duced by conditional voting.

1

Over the years, the field of social choice theory has focused
more and more on decision making over combinatorial do-
mains. This involves either multi-winner elections (for the
formation of a committee) or elections for a set of issues that
need to be decided upon simultaneously, often referred to as
multiple referenda. As an example of the latter, think of a
local community that needs to decide on possible facilities or
services to be established, based on current available budget.

In this work, we focus on approval voting as a means for
collective decision making. Approval voting offers a simple
and easy to use format for running elections on multiple is-
sues with binary domains, by having each voter express an
approval or disapproval separately for each issue. There is
already a range of voting rules that are based on approval bal-
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lots, including the classic Minisum solution, as well as more
recently introduced methods (see Related Work).

However, the rules most commonly studied for approval
voting are applicable only when the issues under considera-
tion are independent. As soon as the voters exhibit prefer-
ential dependencies between the issues, we have more chal-
lenges to handle. This is not uncommon in practical scenar-
ios: a resident of a municipality may wish to support public
project A, only if public project B is also implemented (which
she evaluates as more important); a group of friends may want
to go to a certain movie theater only if they decide to have din-
ner at a nearby location; a faculty member may want to vote
in favor of hiring a new colleague only if the other new hires
have a different research expertise.

It is rather obvious that voting separately for each issue
cannot provide a good solution in these settings. Instead,
voters should be allowed to express dependencies among is-
sues. Consequently, several approaches have been suggested
to take into account preferential dependencies, see e.g., [Lang
and Xia, 2016]. Nevertheless, the majority of these works are
suitable for rules where voters are required to express a rank-
ing over the set of issues or have a numerical representation
of their preferences instead of approval-based preferences.

Barrot and Lang [2016] introduced a framework for ex-
pressing dependencies, tailored for approval voting elections.
In particular, the notion of a conditional approval ballot was
defined and new voting rules were introduced, that general-
ized some of the known rules in the standard setting of ap-
proval voting. Among the properties that were studied, it
was also exhibited that a higher level of expressiveness im-
plies higher computational complexity. Namely, the Min-
isum solution is efficiently computable in the standard set-
ting but its generalization, referred to as Conditional Min-
isum, was proved to be NP-hard. Beyond NP-hardness,
computational properties were not the main focus of [Barrot
and Lang, 20161, and therefore, it has remained open whether
the problem admits approximation algorithms with favorable
guarantees or even exact algorithms for special cases.

Contribution. We focus on algorithmic aspects of the Con-
ditional Minisum voting rule for multi-issue elections with
preferential dependencies. Our main goal is to enhance our
understanding on the complexity implications due to condi-
tional voting for a rule that is known to be efficiently com-
putable in the absence of dependencies. In Section 3, we pro-
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vide the first multiplicative approximation algorithms for the
problem under the condition that for every voter, each issue
can depend on at most a constant number of other issues. In
a convenient graph-theoretic representation, this corresponds
to voters with dependency graph of constant maximum in-
degree. Our family of approximation algorithms achieves a
ratio that degrades smoothly as the in-degree grows larger.
We stress that the problem is NP-hard even when every is-
sue depends on at most one other issue, and for this case, our
result yields a 2.2074-approximation ratio. Interestingly, our
algorithms are based on a reduction to MIN SAT, an optimiza-
tion version of SAT that has rarely been applied in computa-
tional social choice (in contrast to MAX SAT). Moving on, in
Section 4, we focus on special cases that are optimally solv-
able in polynomial time. For this we stick to the (hard) case
of maximum in-degree one. Our main insight is that one can
draw conclusions by looking at the global dependency graph
(taking the union of dependencies by all voters). Restrictions
on the structure of the global graph allows us to identify sev-
eral cases (e.g., trees, cycles, and more generally graphs with
treewidth at most 2), where we can have optimal efficient al-
gorithms. Hence we conclude with a positive confirmation
that Conditional Minisum can combine enhanced expressive-
ness with efficient computation (for exact or approximate so-
lutions) in many cases of well-motivated scenarios.

Related work. Apart from the classic Minisum solution,
many other approval voting rules have been considered, such
as the Minimax solution [Brams et al., 2007], Satisfaction
Approval Voting [Brams and Kilgour, 2010], and other fami-
lies based on Weighted Averaging aggregation [Amanatidis et
al., 2015]. For surveys on the desirable properties of approval
voting, we refer to [Brams and Fishburn, 2010] and [Kilgour,
2010]. None of these rules however allow voters to express
dependencies. The first work that exclusively took this direc-
tion and is most closely related to ours is [Barrot and Lang,
2016]. Namely, three voting rules were proposed for incorpo-
rating such dependencies (including the Conditional Minisum
rule that we consider here) and some of their properties were
studied mainly on the satisfiability of certain axioms. Even if
one moves away from approval-based elections, the presence
of preferential dependencies remains a major challenge when
voting over combinatorial domains. Several methodologies
have been considered achieving various levels of trade-offs
between expressiveness and efficient computation. Some rep-
resentative examples include, among others, sequential vot-
ing [Lang and Xia, 20091, [Airiau et al., 2011], [Dalla Pozza
et al., 2011], [Xia and Conitzer, 2012], compact representa-
tion languages [Boutilier et al., 20041, [Li et al., 2010], [Gon-
zales et al., 20081, or completion principles for partial pref-
erences [Laffond and Lainé, 2009], [Cuhadaroglu and Lainé,
2012]. An extended survey for voting in combinatorial do-
mains can be found at [Lang and Xia, 2016]. See also [Cheva-
leyre et al., 2008] for an informative work on both the pro-
posed solution concepts and their applications in Al

2 Formal Background

Let I = {I1,...,In} be a set of m issues, each of them
associated with a finite domain D;. We only examine the case
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of binary domains so that for every ¢ € [m], D; = {d;,d;}.
Here d; depicts a ballot in favor of the issue, whereas d; is
against it. An outcome is an assignment of a value for every
issue, and let D = Dy x Dy x --- x D, be the set of all
possible outcomes. Letalso V' = {1,...,n} be a group of n
voters who have to decide on a common outcome in D.

Voting format. To express dependencies among issues, we
mostly follow the format described in [Barrot and Lang,
2016]. Each voter 7 € [n] is associated with a directed graph
G; = (I, E;), called dependency graph, whose vertex set co-
incides with the set of issues. A directed edge (I, I;) means
that issue /; is affected by Ij,. We explain briefly how voters
submit their preferences, before giving the formal definition.
For an issue I; with no predecessors in G; (its in-degree is
0), voter ¢ is allowed to cast an unconditional approval ballot,
stating the outcomes of I; that are approved by her. She can
be satisfied with one or with all or with none of the outcomes
in D;. In the case that issue I; has a positive in-degree in
Gi, let {I;,,1;,,...,I;,} C I be all its direct predecessors
(also called in-neighbors). Voter i then needs to specify all
the combinations that she approves in the form {¢ : d}, where
de Dj,andt € D x Dj;, x---x Dj, . Every combination
{t : d} signifies the satisfaction of voter ¢ with respect to issue
1;, when all outcomes implied by ¢ have been realized and the
outcome of I is d. Both cases of zero and positive in-degree
for an issue can be unified in the following definition.

Definition 1. A conditional approval ballot of a voter i over
issues I {I,...,In} with binary domains, is a pair
B; = (Gi,{A;,j € [m]}), where G; is the dependency
graph of voter i, and for each issue I, A; is a set of condi-
tional approval statements in the form {t : d}, where d € D,
t e erN;(Ij) Dy, and N;(I;) is the (possibly empty) set of
direct predecessors of 1 in G;.

To simplify the presentation of a conditional ballot, when
a voter has expressed a common dependency for the two out-
comes of an issue, we can group them together and write
{t : {d;,d;}}, instead of {t : d;}, {t : d;}. Additionally,
for every issue I; with in-degree 0 by some voter i, a vote in
favor of d; will be written simply as {d; }, since N, (1;) = 0.

An important quantity for parameterizing families of in-
stances in the sequel, is the maximum in-degree of each graph
G;. Namely, for a voter ¢ let A; = max{|N; (I;)],j € [m]}.

Given a voter ¢ with conditional ballot B;, we will denote
by B/ the restriction (i.e., projection) of her ballot on issue
1;. Moreover, a conditional approval voting profile' P (often
referred to simply as a profile for brevity) is a tuple (I, V, B)
where B = (By, Ba, ..., Bp).

Example 1. As an illustration, we consider 3 co-authors of
some joint research, several weeks before a conference sub-
mission deadline, who have to decide on 3 issues: whether
they will work more before the submission on obtaining new
theorems, whether they have enough material to split their
work into two, or even multiple, papers and whether they

"When A; is large for some voter i, the size of a profile might
become exponential. Alternatively, one could aim for a succinct rep-
resentation, e.g., via propositional formulas. We do not examine fur-
ther this issue, since we consider instances with constant in-degree.
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should invite a new co-author to work with them because of
his insights that can help on improving their results. The first
author insists on more work before the submission, addition-
ally he approves the choice of two submissions if and only if
they work more on new theorems. Furthermore, he does not
want to have a new co-author if and only if they split their
work. The second author does not have time for more work
before the deadline, she has no strong opinion on multiple
submissions and approves both alternatives, and she agrees
with inviting a new co-author only if they decide both to work
more for new results and to submit a single paper. The last au-
thor also expresses a dependence for inviting a new co-author
on the other two issues, as described below.

More formally, let I = {I3, I, I} be the aforementioned
issues, and for i = 1,2,3, let G; = (I, E;) be the depen-
dency graph of voter i, so that Ey = {(I1,12), (I2,I5)},
E2 = E3 = {(Il, I3)7 (12, 13)} Let also D1 = {”LU,@},
Dy = {m,m}, D3 = {c,¢}. The voters’ preferences are:

voter 1 | voter2 | voter3
w {w, m, m} {w, m}
w:m wm:¢ | wm: {c,¢}
w:m wm:¢ | wm: {c,c}
m:¢ wm:c | wm:{c7¢c}
m:c wm : ¢ wm : ¢

To measure the dissatisfaction of a voter given an assign-
ment of values to all the issues, we use the following gener-
alization of Hamming distance.

Definition 2. Given an outcome s = (s1, S2,...,8m) € D,
we say that voter 1 is dissatisfied with issue I;, if the projec-
tion of s on N; (I;), say t, satisfies {t : s;} ¢ B]. We denote
as 6;(8) the total number of issues that dissatisfy voter i.
Coming back to Example 1, the values of J;(s) follow.

57; () ‘ wme wme yme ymc wme wmce wmce wmce
voter 1 1 0 1 2 3 2 1 2
voter 2 2 1 1 2 1 0 1 0
voter 3 0 0 1 1 1 1 3 2

Finally, even though there is a similarity between CP-nets
and conditional ballots, Barrot and Lang [2016] highlighted
that they induce different semantics and are incomparable.

Voting rule. In this work, we study a generalization of the
classic Minisum solution in the context of conditional ap-
proval voting. We refer to this rule as Conditional Minisum
(cMs), and it outputs the outcome that minimizes the total
number of dissatisfactions over all voters (wmc for the profile
presented in Example 1). Formally, the algorithmic problem
that our work deals with is as follows.

CONDITIONAL MINISUM (CMS)

Given: A voting profile P with m binary issues and n
voters casting conditional approval ballots.
Output: A boolean assignment s* = (s7,...,s%,) to

all issues that achieves minsep ;¢ 0 (s)-
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3 Approximation Algorithms

It is well known that a Minisum solution can be efficiently
computed when there are no dependencies [Brams et al.,
2007]. In contrast to this, CMS is NP-hard even when there
is only a single dependence per voter, i.e., when every voter’s
dependency graph has just a single edge [Barrot and Lang,
2016]. Given that hardness result, it is natural to resort to the
framework of approximation algorithms. The only known re-
sult from this perspective is an algorithm with a differential
approximation ratio of 4.34/(m > s 21NV ()l 4-4.34) for the
case of a common acyclic dependency graph, so that for each
voter ¢ and issue j, N (j) = N; (j) [Barrot and Lang, 2016].
However, differential approximations (we refer to [Demange
et al., 1998] for the definition) form a less typical approach in
the field of approximation algorithms. Instead, we focus on
the more standard framework of multiplicative approximation
algorithms, as treated also in common textbooks [Vazirani,
2003], [Williamson and Shmoys, 2011]. We say that an al-
gorithm for a minimization problem achieves a multiplicative
ratio of a > 1, if for every instance I, it produces a solution
with cost at most « times the optimal. We stress that a dif-
ferential approximation ratio for minimization problems does
not in general imply any multiplicative approximation ratio
[Bazgan and Paschos, 2003].

Our main contribution in this section is the first class of
multiplicative approximation algorithms for CMS under the
condition of bounded in-degree in every voter’s dependency
graph. To this end, we make use of approximation algorithms
for the MIN k-SAT problem, a minimization version of SAT,
where we are given a set of m clauses in k-CNF and we
search for a boolean assignment so as to minimize the total
number of satisfied clauses. Interestingly, minimization ver-
sions of SAT have rarely been applied in the context of com-
putational social choice, see e.g., [Lang er al., 2018]. The
use of MAX SAT is much more common, but for the case of
CMS, it does not seem convenient to exploit algorithms for
maximisation versions of SAT, by following an analogous ap-
proach as in the proof of Theorem 1 below. We defer further
discussion to the full version of our work.

We first present a result for profiles where A; < 1 for ev-
ery voter . This is already a superclass of the case that was
proved NP-hard in [Barrot and Lang, 2016], as we also allow
for cycles. We later generalize to profiles of bounded A;.

Theorem 1. If the dependency graph of every voter has
maximum in-degree at most 1, an «-approximation algo-
rithm for MIN 2-SAT yields a 2a-approximation algorithm for
CMS. In particular, we can have a polynomial time 2.2074-
approximation for CMS.

Proof. Consider an instance P of cMs, with n voters, and
with the stated properties. We present a reduction to MIN 2-
SAT that preserves the approximation up to a factor of 2.

Let I = {I1,...,I,} be the set of issues. We first create
a logical formula C};, for every voter 7 € V, and every issue
I; € I, which indicates the cases where voter 4 is not satis-
fied with the outcome on I;. For every issue I, recall that
D; = {dj,d;} is its domain, and z; will be the correspond-
ing boolean variable in the construction of Cj;.
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For this we consider two cases. The first and easier case
is when for a voter ¢, and issue I, N;(I;) = ). All possible

forms of Bf are depicted in the first row of Table 1, whereas
the corresponding formula is shown in the second row.

| {d;} d;} {d%dj}

Table 1: The formula when issue I; has no predecessor in G;.

Bl | 0
Ci' ‘ .’L’j\/fj ‘ fj

On the other hand, if /; has an in-neighbor (it can have only
one by our assumptions), say I, € I, we set C; equal to the
disjunction of all combinations of outcomes on issues I; and
I, that dissatisfy voter ¢ with respect to ;. To illustrate this
construction, we describe an example with 4 voters, 2 issues
I = {1, I,} and for every voter i, G; = {I,{I),I;}}. The
preferences for issue I; are shown in Table 2. Namely, for
i = 1,2,3,4, the first cell in the i-th row depicts B] from
which Cj; can be obtained as the disjunction of the ticked
expressions in the remaining of the ¢-th row.

B (xx Axj) (2 AT5) (T Azy) (T AT)
0 v v v 4
{di, : d;} v v v
{dk : di}’
{dy:d,} v v
{de s d;}, v
{di : dj}, {dy - dj}

Table 2: For ¢ = 1,2, 3,4 the formula C}; is the disjunction of the
ticked expressions in the ¢-th row.

Claim 1. Considering an outcome (s1, . . ., Sy, ) for the issues
and the corresponding assignment to the variables, voter i is
dissatisfied with I; if and only if the formula C;; is true.

The constructed formula Cj; is in DNF. To continue, we
will need to make a conversion to CNF, which is easy to do
given its small size as per the following lemma. Its proof
(based on a case analysis), along with some proofs of subse-
quent results have been omitted due to space constraints.

Lemma 1. The formula C;; for each voter i € V, and each
issue I; € I, can be written in CNF with at most 2 clauses,
and where each clause contains at most 2 literals.

Using Lemma 1 to convert each C;; to CNF, we can now

create a MIN 2-SAT instance P’ by the multiset’ of all clauses
appearing in the Cj;’s, i.e., appearing in the formula

c= A Ci (1)
i€V, 1€l

In the instance P’, we aim for a truth assignment minimiz-
ing the number of satisfied clauses in C. Hence, our construc-
tion gives rise to the following algorithm for cMs.

2Some clauses may happen to appear more than once in the final
formula but there is no harm in keeping such duplicates.
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Algorithm 1

1: Create P’ from P using Lemma 1 and Equation (1).
2: Run an a-approximation of MIN 2-SAT on P’.
3: Set the value of I; in P to the value of z; in P’.

>Input: P

Lemma 2. Let OPT(P) and OPT(P’) be the values of the
optimal solutions for the instances P and P’ of CMS and MIN
2-SAT respectively. Then OPT(P') < 20PT(P).

To conclude the proof of Theorem 1, let SOL(P’) be the
cost of the solution to P’ produced in step 2 of Algorithm
1, which equals the number of satisfied clauses in C' by the
truth assignment of the a-approximation algorithm. This cor-
responds to a solution for CMS and let SOL(P) be its total
cost. We note that the total number of distinct pairs (3, j) for
which voter i is dissatisfied by issue I; can be no more than
the number of the satisfied clauses of C, since each C;; cor-
responds to a pair of a voter and an issue (and by Lemma 1,
even two clauses could correspond to the same pair). Hence,
together with Lemma 2, we have the following implications:

SOL(P) < SOL(P') < o - OPT(P') < 2a - OPT(P)

Thus every a-approximation algorithm for MIN 2-SAT yields
a 2a-approximation algorithm for cMS. Finally, to obtain
the claimed approximation ratio of Theorem 1, we just need
to use the algorithm by Avidor and Zwick [2005], which
achieves a factor of 1.1037 for MIN 2-SAT. O

Suppose now that for every voter i, A; < 2. If we follow
the approach in the proof of Theorem 1, it is simply a matter
of boolean algebra to check that, in analogy to Lemma 1, we
can write any resulting C;; in CNF with at most 4 clauses,
each containing at most 3 literals, for every i € V,I; € 1.
We can then proceed, with a lemma similar to Lemma 2, and
finally use the 1.2136-approximation algorithm for MIN 3-
SAT [Avidor and Zwick, 2005] to obtain a ratio of 4.8544.

In fact the same approach can be further generalized, as
long as the maximum in-degree in every voter’s graph is
bounded by a constant? k. In that case, the approach of Theo-
rem 1 yields CNF formulas with &k + 1 literals and at most 2*
clauses for each voter. Hence, by using the 2-approximation
algorithm for MIN SAT by [Marathe and Ravi, 1996] (it ap-
plies to MIN k-SAT for any k), we have the following result.

Theorem 2. Ifthe dependency graph of every voter has max-
imum in-degree at most a constant k, there is a polynomial
time 2%+ -approximation algorithm for CMS.

Finally, regarding tightness, we can show that Algorithm
1 cannot produce an approximation better than 2 (by creating
instances that make Lemma 1 tight on the number of clauses).
Therefore, a small gap between 2 and 2.2074 still remains.
For the algorithms described in Theorem 2, by using similar
constructions, we can show that their approximation ratio can
be no better than 2* when the in-degree is at most k. We defer
further discussion for the full version of our work.

3For non-constant in-degree, the conversion from DNF to CNF
in Lemma 1 may take exponential time.
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4 Optimal Algorithms

In the current section, we identify special cases of the prob-
lem where exact optimal solutions can be found in polyno-
mial time. In doing this, we stick to the assumption that every
voter has maximum in-degree at most 1 in her graph. Since
this already makes the problem NP-hard, one needs to con-
sider further restrictions that admit efficient algorithms. In
our quest to define tractable cases, we realized that it is con-
venient to focus on the union of all the dependency graphs:

Definition 3. The global dependency graph of a profile
(1,[n], B) is the graph (I, ¢,y E:). i.e., we take the union
of the edges in every voter’s dependency graph.

To see how to exploit the global dependency graph, it is in-
structive to inspect the NP-hardness proof for CMS in [Barrot
and Lang, 2016]. Their proof holds for instances where each
dependency graph G; is acyclic, and the in-degree of every
issue in G; is at most one. Examining the profiles created
in that reduction, we notice that no restrictions can be stated
for the form of the global dependency graph corresponding to
the produced instances. Observe for example that an acyclic
dependency graph for every voter does not necessarily lead
to an acyclic global dependency graph. Furthermore, if each
G, is of bounded degree, this does not imply a constant upper
bound for the maximum degree of the global graph.

Our insight is that it may not be only the structure of each
voter’s dependency graph that causes the problem’s hardness,
but in addition, the absence of any structural property on the
global dependency graph. Motivated by this, we investigate
conditions for the global dependency graph, that enable us to
obtain the optimal solution in polynomial time. Our findings
reveal that this is indeed feasible for certain interesting classes
of graphs, as summarized in Theorem 3.

We first exhibit a property that allows us to reduce the so-
lution of certain instances to the solution of instances with
smaller sets of issues. Given a directed graph (V, E), the
neighborhood of a vertex u is the set of its in-neighbors and
out-neighbors: N(u) = {v € V : (u,v) € Eor (v,u) € E}.

Lemma 3. Consider a profile P, where for every voter 1,
A; < 1, and let G be the global dependency graph of P.
If G has a vertex y with |N(y)| < 2, we can modify P in
polynomial time to a profile P' (maintaining that every voter
has maximum in-degree at most 1) with global dependency
graph H, such that V(H) = V(G) \ {y}, and cMS on P is
reduced to optimally solving CMS on P’.

Proof. Fix aprofile P = (I, [n], B) with the aforementioned
properties. For notational convenience in the proof, for every
issue z € I, we let {z, 1} be its domain, and recall that B
denotes the projection of voter ¢’s ballot on issue x.

We will first introduce a cost function that helps us decom-
pose the total number of disagreements by an assignment of
values to issues. Namely, for any directed edge (x,y) in the
global dependency graph, and every assignment of values,
say x;, y;, to these two issues, we let ¢(z;,y;) = |[{v € [n] :
(z,y) € E(Gy),{z; : y;} ¢ BY}|. In words c(z;,y;) is the
number of voters who have expressed a conditional vote for
issue y, dependent only on z, and at the same time are dissat-
isfied with issue y, by the assignment (x;, y;). In addition, we
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set c(y;) = Hv € [n] : Ny(y) = 0,y; ¢ BY}|. Thus, c(y;)
is the number of voters who have expressed an unconditional
vote on y, and are dissatisfied with the value y;.

Let us now consider the following three cases for issue y:

Case 1: If IN(y)| = 0, all votes for issue y are unconditional.
Let P’ be the profile that results after deleting vertex y. Then
OPT(P) = OPT(P’) 4+ OPT(y) where the optimal choice for
y is the value that causes the least number of disagreements.

Case 2: If |[N(y)| = 1, to get rid of vertex y, we keep track
of the optimal choice for y under the possible values for its
in-neighbor, say x. WLOG, we examine the case where both
directed edges (z,y), (y, ) appear in G. If one of these edges
is not present, one just needs to adjust accordingly Equation
(2) below. The fact that y does not have any dependencies
with any issue other than z, allows us to compute its optimal
value, given an assignment for z. Namely, for i € {0,1},
we compute and store the following quantity along with the
corresponding value of y.

(i)

min {c(yx) + c(zi, y) + c(yr, i)} (2)

ke{0,1}

In case the minimum is achieved in (2) by both values of y,
we can select one of them, according to some consistent tie-
breaking rule. Hence, at the moment, we know how to set y,
if we are given the value of z. Also, it is important to note
that even if vertex x has in-degree higher than 2 in G, we
have assumed that the maximum in-degree in every voter’s
dependency graph is at most one, and no voter would need
to look at the value of y in combination with other issues to
decide if she is satisfied with . Thus we can leave y aside
without causing any problems.

To proceed we produce a new profile P’, from P as fol-
lows: (i) We delete issue y from I and from the dependency
graphs. For every voter we also delete her expressed pref-
erences for y, whether conditional or not. (ii) For every
i € {0,1}, we introduce ¢*(z;) new voters who are dissat-
isfied only with the assignment z; of z, and are satisfied with
any assignment on other issues.

It is easy to see that the global dependency graph of the
newly created profile P’ is exactly G without y and its ad-
jacent edges. To complete the proof we have to argue that
the value of the optimal solution in P’ is the same as in the
original instance. We defer this argument to Claim 2.

Case 3: If [N (y)| = 2, suppose that issue y is connected to
issues x and z. As in Case 2, WLOG, assume that all edges
(z,y), (y,x), (y, 2), (z,y) appear in the global dependency
graph. The fact that there are no dependencies between y and
any issues other than x and z, allows us to compute the opti-
mal alternative for y, given an assignment of values to issues
x and z. In analogy to Equation (2), for every 4,j € {0,1},
we compute and store a quantity which expresses the mini-
mum number of disagreements that can be caused by issue y,
when we fix x to x; and z to z;. Namely, c*(z;, ;) equals

k?ﬁéﬁ}{c(%) +c(@i, yr) +c(yr, Ti) +c(25, yr) +c(yr, 25) }-

We now produce a new profile P’ from P as follows:

e We delete y from [ and from the dependency graphs. We
delete also each voter’s expressed preferences for y.
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e For every voter who had a conditional ballot on z, de-
pendent on y, we replace it with the unconditional ballot
{zo, 1}, i.e., the voter is now satisfied with any out-
come on x. We do the analogous replacement for voters
who had a conditional ballot on z dependent on y.

For every i, j € {0, 1}, we introduce c*(x;, z;) new vot-
ers, who have a conditional ballot for issue z, dependent
on . They are dissatisfied only with (z;, z;) and satis-
fied with any assignment on other issues.

It turns out that the global dependency graph of P/, say H,
is obtained from G by deleting y and its adjacent edges, and
by adding the edge (z, 2), if it was not already present. The
proof can now be completed by the following claim.

Claim 2. For the constructions of Cases 2 and 3, every solu-
tion of P corresponds to a solution of P’ with the same cost
and vice versa. Hence OPT(P) = OPT(P').

To argue about complexity, observe that we add at most
O(n) new voters in moving from P to P’. Also when we
solve P’, to get an assignment for issue y of P, we need to re-
member either the values arg min ¢*(«;) from (2) or in Case
3, the values arg min c¢*(x;, z;). O

Remark. One can generalize the construction of Lemma 3
Sor vertices y with |N(y)| = 3. But the resulting profile P’
may end up with voters of maximum in-degree two in their
dependency graph. This prohibits a repeated use of Lemma 3,
that we need in the sequel for obtaining optimal algorithms.

We can now obtain positive results for concrete classes of
graphs. We first introduce some more graph-theoretic termi-
nology. Given a directed graph G, we refer to its undirected
version as the undirected graph G produced after we remove
the orientation of every edge of GG. Furthermore, if for a pair
of vertices x, y, both (x,y) and (y, x) are present in G, then

we just keep a single edge (x,y) in G.

In the next theorem, we identify a class of instances that
admit an optimal solution in polynomial time, based on the
undirected version G of the global dependency graph G of a
given profile. Namely, the class consists of instances where
G has treewidth at most 2. The treewidth is a parameter iden-
tifying how close to a tree a graph looks like. For the exact
definition, we refer to [Robertson and Seymour, 1986]. The
class of instances captured by our result includes paths, trees,
cycles, series-parallel graphs, or any collection of such con-
nected components. Further interesting classes that are in-
cluded are cactus graphs, and ladder graphs.

Theorem 3. Ifthe dependency graph of every voter has max-
imum in-degree at most 1 and the undirected version of the
global dependency graph has treewidth at most 2, then CMS
is optimally solvable in polynomial time*.

Proof. Let G be the undirected version of the global depen-
dency graph of a given profile. WLOG we may assume that
G is connected, since otherwise we could solve for each con-
nected component separately.

*We are grateful to the anonymous IJCAI *20 reviewers for sug-
gesting the condition on the treewidth, which yields a generalization
of the results we claimed in the previous version of this work.

309

For the case where G has treewidth at most 1, then G is
a tree and hence, it is possible to apply Lemma 3, so as to
delete leaves sequentially until the remaining graph consists
only of a single vertex. An optimal pick for that vertex is now
possible and by backtracking, we can deduce the outcome for
every issue in the optimal solution.

If G has treewidth equal to 2, there exists at least one ver-
tex y with | N (y)| < 2 [Bodlaender, 1998], and hence, we can
apply Lemma 3 again. The operations performed, when ap-
plying Lemma 3, to reduce the problem to a smaller instance
cannot increase its treewidth (they involve deletions and con-
tractions of edges and vertices). Thus, by successively ap-
plying the described procedure on the remaining instance, we
end up with a graph of constant size (or even a single vertex),
where CMS can be computed efficiently. O

We argue that some of the graph classes captured by The-
orem 3 are meaningful in multi-issue elections with logically
dependent issues. First, consider the case where the global
dependency graph is a path with all edges oriented in the same
way. We can think of the issues as ordered on a line, which
is very natural when there is sequential dependence along a
series of decisions. For an example, a municipality may need
to decide on 3 issues: what public project to implement (say
a park or a stadium), in which location to do it (dependent
on the type of project, since each location can have differ-
ent features), and how to connect it with existing means of
public transportation (via a new bus stop or metro stop, de-
pendent on location). Similarly, when the global dependency
graph forms a directed tree oriented from the root towards the
leaves, we again have a hierarchy regarding dependencies.
E.g., a star graph oriented towards the leaves can arise when
the senior partners of a firm have to decide on the location
for a new subsidiary. This choice prominently affects a set of
other decisions like the suppliers, marketing strategies, etc.

5 Conclusions and Future Work

We advocate that CMS combines a higher level of expressive-
ness with efficient algorithms for several cases of interest. We
find the assumption of bounded in-degree as a motivated start-
ing point for studying the computational properties of CMS,
with several open questions remaining unresolved. Obtaining
improved approximation ratios or inapproximability bounds
for the cases we studied would provide further insights. It is
a very interesting question whether efficient algorithms exist
for any constant treewidth of the global dependency graph.
Since we only provided a sufficient but not necessary con-
dition for efficient algorithms, identifying parameters other
than the treewidth, that would lead to optimal algorithms is
also an intriguing topic. Finally, one can consider other ob-
jective functions, such as the Conditional Minimax rule, de-
fined in [Barrot and Lang, 2016] or even non-binary domains.
Algorithmic results there still remain elusive.
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