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Abstract
We present a method for reasoning about fault-
tolerance in unbounded robotic swarms. We in-
troduce a novel semantics that accounts for the
probabilistic nature of both the swarm and pos-
sible malfunctions, as well as the unbounded na-
ture of swarm systems. We define and interpret a
variant of probabilistic linear-time temporal logic
on the resulting executions, including those arising
from faulty behaviour by some of the agents in the
swarm. We specify the decision problem of param-
eterised fault-tolerance, which concerns determin-
ing whether a probabilistic specification holds un-
der possibly faulty behaviour. We outline a verifica-
tion procedure that we implement and use to study a
foraging protocol from swarm robotics, and report
the experimental results obtained.

1 Introduction
Swarm robotics is commonly seen as the key technology
for many forthcoming robotic applications from logistics,
search and rescue, manufacturing and maintenance and be-
yond [Şahin, 2005]. While the technology has shown much
promise, a key difficulty in adopting swarm robotics in either
safety-critical or humans in the loop applications is to give
guarantees on behaviour of the swarm before deployment. A
key difficulty lies in the fact that swarms are often realised by
arbitrarily large collections of robots. While methods such
as model checking [Baier and Katoen, 2008] can be used to
study particular ground instantiations [Dixon et al., 2012],
they cannot be adopted to reason about a system of which the
number of components is unknown. Indeed, this problem is
known to be undecidable [Apt and Kozen, 1986] in general.

The method of parameterised model checking [Bloem et
al., 2015] has been adapted for swarm systems specified by
a variety of AI-inspired specifications [Kouvaros and Lomus-
cio, 2016] and recently extended to capture open systems in
which agents may join and leave at run-time [Kouvaros et al.,
2019] and systems incorporating probabilities [Lomuscio and
Pirovano, 2019].

A key issue to establish before deployment is not just the
correctness of the system, but the extent to which faults oc-
curring at runtime can compromise the system safety. The

method of safety analysis via fault injection and model check-
ing is well established in dependable systems [Bozzano and
Villafiorita, 2007; Bozzano et al., 2017]. Via safety-analysis
the engineer can establish the consequences of particular
faults in the system and identify particular weaknesses or crit-
ical faults which may compromise the system’s safety. The
method also allows engineers to establish the resilience of
the system in adverse circumstances, contributing to the con-
struction of safety arguments in certification.

Safety analysis via fault injection [Ezekiel and Lomuscio,
2017] has been used in AI to establish the resilience of au-
tonomous systems [Ezekiel et al., 2011] and extensions have
been explored in a swarm setting [Kouvaros and Lomuscio,
2017]. However, no method to date has addressed fault in-
jection for probabilistic swarms. Since most swarm protocols
are probabilistic in nature, this makes it impossible to perform
safety analysis on unbounded swarm systems. This paper in-
tends to rectify this shortcoming.

Related Work. Previous work has addressed the verifica-
tion of fault-tolerance in multi-agent systems [Ezekiel and
Lomuscio, 2017; Ezekiel et al., 2011]. In turn this builds
on earlier work on safety analysis [Bozzano and Villafiorita,
2007] that has been successfully adopted in avionics [Boz-
zano et al., 2017]. While this work is relevant, the present
contribution deals with unbounded swarms, where the num-
ber of agents is not known at design time, and, differently,
from these, exhibit probabilistic behaviour.

A considerable body of research has been devoted to
parametrised verification of non-probabilistic systems with-
out any fault injection [Aminof et al., 2018; Aminof et al.,
2016; Bloem et al., 2015]. The work presented here is dis-
tinct in that the systems we consider are probabilistic and we
perform safety analysis by injecting faults into the templates.

Fault-tolerance in systems with an unbounded number of
agents has been considered in a number of different seman-
tics, including some geared to network protocols [John et al.,
2013] and others catering for swarm systems [Kouvaros and
Lomuscio, 2017; Kouvaros et al., 2018]. Note, however, that
none of these semantics can express stochastic behaviour nor
probabilistic specifications as we do here.

Closest to the work here pursued is a line of work in
which probabilistic systems with a possibly unbounded num-
ber of agents are considered [Lomuscio and Pirovano, 2019;
Lomuscio and Pirovano, 2020]. Note, however, that this work
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does not consider the mechanism of fault injection typical in
safety analysis as we do here. Other work in the parame-
terised verification of probabilistic network protocols [Gra-
ham, 2008; Fournier, 2015] also fails to address faults.

In summary, the work presented here is distinct from the
existing literature in that, to the best our knowledge, it ad-
dresses the safety analysis via fault injection for unbounded
swarm systems that are governed by stochastic behaviour.

2 Background
In this section we introduce some background on probabilis-
tic model checking of swarm systems, along with the notation
that we will use throughout the paper. We follow [Lomuscio
and Pirovano, 2019] in notation.
Discrete Time Markov Chains. We briefly summarise dis-
crete time Markov chains [Kwiatkowska et al., 2007; Baier
and Katoen, 2008; Kemeny et al., 1976].
Definition 1 (DTMC). A discrete-time Markov chain
(DTMC) is a tuple D = 〈S, ι, t, L〉 where S is a finite set of
states, ι ∈ S is a distinguished initial state, t : S×S → [0, 1]
is a transition probability function (with

∑
s′∈S t(s, s

′) = 1
for any s ∈ S) and L : S → P(AP ) is a labelling function
on a set AP of atomic propositions.

A path in a DTMC is a sequence of states s0s1s2 . . . such
that for every i ∈ N it is the case that t(si, si+1) > 0. We use
FPathD and IPathD respectively, to denote the set of all
finite and infinite paths starting from the initial state ι. For
a finite path we define its probability by PD(s0 . . . sn) ,∏n−1
i=0 t(si, si+1). Following [Kemeny et al., 1976], this can

be extended to define a probability on infinite paths. Note that
the probability of an infinite path occurring is uniquely de-
fined by the probabilities of its finite prefixes occurring. For a
measurable set of paths X ⊆ FPathD or X ⊆ IPathD we
define PD(X) ,

∑
ρ∈X PD(ρ).

Markov Decision Processes. We mostly follow the no-
tation used in [Forejt et al., 2011] and refer to [Baier and
Katoen, 2008; Puterman, 1994] for more details.
Definition 2 (MDP). A Markov decision process (MDP) is a
tupleM = 〈S, ι, A, P, t, L〉 where S is a finite set of states,
ι ∈ S is a distinguished initial state, A is a finite set of
actions, P : S → P(A) is a protocol function (such that
P (s) 6= ∅ for all s ∈ S), t : S × A × S → [0, 1] is a transi-
tion function (with

∑
s′∈S t(s, a, s

′) = 1 for any s ∈ S and
a ∈ P (s)) and L : S → P(AP ) is a labelling function on a
set AP of atomic propositions.

Intuitively, a transition from a state s of an MDP occurs
by first non-deterministically selecting some action a ∈ P (s)
and then transitioning to state s′ with probability t(s, a, s′).
MDPs thus give a way of describing systems that include both
probabilistic and non-deterministic choice, unlike DTMCs
which do not capture the latter.

A path in an MDP is a sequence of states and actions
s0a0s1a2 . . . such that for all i ∈ N it is the case that ai ∈
P (si) and t(si, ai, si+1) > 0. We use FPathM (IPathM,
respectively) to denote the set of all finite (infinite, respec-
tively) paths starting from the initial state ι. For a finite path
ρ = s0a0 . . . sn, last(ρ) , sn denotes its last state.

In order to reason about the probability of a path occur-
ring in an MDP, we need a way to resolve the inherent non-
determinism. This is captured by the notion of an adversary.
Definition 3 (Adversary). Given an MDP M = 〈S, ι, A,
P, t, L〉 an adversary for M is a function σ : FPathM ×
A → [0, 1] such that for any finite path ρ ∈ FPathM,
we have σ(ρ, a) > 0 only if a ∈ P (last(ρ)) and∑
a∈A σ(ρ, a) = 1.
We denote by AdvM the set of all adversaries for M.

Note that when a choice of adversary σ is fixed, the non-
determinism in the MDPM is resolved, and we can describe
the behaviour of the resulting system by a DTMC. We denote
this DTMC byMσ (see, e.g., [Forejt et al., 2011] for details).
Probabilistic Swarm Systems. We now summarise the se-
mantics of probabilistic parameterised interleaved interpreted
systems (PPIISs). Here we will also follow the notation used
in [Lomuscio and Pirovano, 2019].

A PPIIS is composed of an agent template, which defines
the behaviour of one of the agents and an environment which
gives the behaviour of the rest of the system.
Definition 4 (Probabilistic agent template). A probabilistic
agent template is a tuple T = 〈S, ι, Act, P, t〉 where:

• The set S is a set of agent local states.
• ι ∈ S is a distinguished initial state.
• Act = A ∪ AE ∪ GS is the non-empty set of actions

that can be performed by the agent. These may either
be asynchronous actions, agent-environment actions or
global-synchronous actions. Note the sets are disjoint,
so each action only has one type. Each type of ac-
tion gives a different communication pattern between the
agents according Definition 6.

• The agent’s protocol function P : S → P(Act) defines
which actions are enabled at a given state.

• The agent’s transition function t : S ×Act×S → [0, 1]
describes the evolution of the agent’s state: given a local
state s, an action a, and a local state s′, t returns the
probability that upon performing action a in state s the
agent will transition to state s′. Notice we require that
for every l ∈ S, a ∈ P (l) we have

∑
l′∈S t(l, a, l

′) = 1.
The agent template can be seen as an MDP with addi-

tional labels on the actions for synchronisation purposes with
other agents and the environment. The environment E =
〈SE , ιE , ActE , PE , tE〉 is similarly defined (see [Lomuscio
and Pirovano, 2019] for details).
Definition 5 (PPIIS). A probabilistic parameterised inter-
leaved interpreted system (PPIIS) is a tuple S = 〈T,E,L〉,
where T is a probabilistic agent template, E is an environ-
ment and L : S × SE → P(AP ) is a labelling function for a
set of atomic propositions AP .

A PPIIS is an abstract description capturing an unbounded
collection of concrete MDPs that are obtained by fixing a
number of agents n ∈ Z+. We denote the agents by Agtn ,
{1, . . . , n}. The instantiated, or concrete, MDPs have states,
which we call global states, of the form g = 〈s1, . . . , sn, se〉
where s1, . . . , sn ∈ S and se ∈ SE . We denote by Sn the set
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of all such states, and use g.i to denote the state of agent i, and
g.E to denote the state of the environment. The set of global
actions is given by Actn , GS ∪AE ∪ ((A∪AE)×Agtn).

Definition 6 (Global protocol). The global protocol Pn :
Sn → P(Actn) is defined by a ∈ Pn(g) if and only if one
of the following holds:

• (Global-synchronous). (i) a ∈ GS; (ii) for all i ∈ Agtn,
a ∈ P (g.i); (iii) a ∈ PE(g.E).

• (Asynchronous environment). (i) a ∈ AE; (ii) a ∈
PE(g.E).

• (Asynchronous agent). (i) a = (a′, i) ∈ A × Agtn; (ii)
a′ ∈ P (g.i).

• (Agent-environment). (i) a = (a′, i) ∈ AE ×Agtn; (ii)
a′ ∈ P (g.i); (iii) a′ ∈ PE(g.E).

Thus, global-synchronous actions must be enabled for
all agents and the environment, asynchronous ones just
for the agent or environment performing them, and agent-
environment ones for the environment and agent performing
them. The restrictions above are intended to limit the un-
decidability of the resulting verification problem; they were
originally introduced in [Kouvaros and Lomuscio, 2016] to
study non-probabilistic systems.

We now define the global transition function, which de-
scribes the outcome of performing a global action.

Definition 7 (Global transition function). The global transi-
tion function tn : Sn × Actn × Sn → [0, 1] is defined by
tn(g, a, g′)

,



tE(g.E, a, g′.E)×
∏n
i=1 t(g.i, a, g

′.i) if a ∈ GS
tE(g.E, a, g′.E) if a ∈ AE

and ∀i ∈ Agtn : g.i = g′.i

t(g.i, a′, g′.i) if a = (a′, i) ∈ A×Agtn and
∀j ∈ Agtn \ {i} : g.j = g′.j

tE(g.E, a′, g′.E) if a = (a′, i) ∈ AE ×Agtn and
×t(g.i, a′, g′.i) ∀j ∈ Agtn \ {i} : g.j = g′.j

0 otherwise

We can now define the MDP S(n) encoding the global be-
haviour of n agents and an environment.

Definition 8 (Concrete system). Given a PPIIS S and an
n ∈ Z+, the concrete system of n agents is defined by S(n) =
〈Sn, ιn, Actn, Pn, tn, Ln〉, where ιn = 〈ι, . . . , ι, ιE〉, the la-
belling function Ln : Sn → P(AP × Agtn) is defined by
Ln(g) , {(p, i) ∈ AP × Agtn : p ∈ L(g.i, g.E)}, and the
other components are defined as in Definitions 6 and 7.

In [Lomuscio and Pirovano, 2019], it is observed that the
concrete system is always a valid MDP. The properties we
wish to check on this family of MDPs are expressed in a vari-
ant of PLTL [Forejt et al., 2011], which we define below.

Definition 9 (PLTL). For p ∈ AP and i ∈ Z+, the proba-
bilistic LTL logic is defined by the following BNF:

φ ::= Pmax
./x [ψ] | Pmin

./x [ψ] for x ∈ [0, 1] and ./∈ {≤, <,≥, >}
ψ ::= > | (p, i) | ¬ψ | ψ ∧ ψ | Xψ | ψ U ψ

We say a formula is m-indexed if it refers to agents with
index at most m (i.e., any atomic proposition is of the form
(p, i), where i ≤ m).

Definition 10 (Satisfaction). Given a concrete swarm system
S(n) and φ an m-indexed formula, where n ≥ m, the satis-
faction of φ on S(n) is inductively defined as follows:

S(n) |= Pmax
./x [ψ] iff sup

σ∈AdvM
P({ρ ∈ IPathS(n)σ : ρ |= ψ}) ./ x

S(n) |= Pmin
./x [ψ] iff inf

σ∈AdvM
P({ρ ∈ IPathS(n)σ : ρ |= ψ}) ./ x

Satisfaction for path formulae is defined as usual in LTL.

The parameterised model checking problem is concerned
with checking whether a specification holds in concrete sys-
tems built on arbitrarily large number of agents.

Definition 11 (Parameterised Model Checking). Given a
PPIIS S and an m-indexed PLTL formula φ, the pa-
rameterised model checking problem involves establishing
whether it is the case that S(n) |= φ for all n ≥ m. We
write S |= φ if this is the case.

Notice that this problem is a probabilistic extension of a
problem that is known to be undecidable [Apt and Kozen,
1986]. Thus, it is also undecidable in general. However, a
partial decision procedure was put forward for it in [Lomus-
cio and Pirovano, 2019].

3 Swarm Safety Analysis via Fault Injection
Parameterised model checking can be used to establish the
correctness of, or establish bugs in a swarm protocol [Lomus-
cio and Pirovano, 2018]. However, certifying the absence of
bugs is often not sufficient to guarantee safety of a swarm
protocol nor to entirely understand the resulting run-time be-
haviour. For this, it is also important to establish the extent to
which runtime malfunctions, or faults, affect the overall per-
formance of the swarm. Some faults may break some overall
swarm specifications; in other cases, the swarm may actually
be resilient to particular malfunctions. Understanding these
weaknesses or strengths can inform designers and deployers.

To conduct a formal analysis of these aspects we construct
a faulty PPIIS, Sχ = 〈Tχ, E, Lχ〉, from a non-faulty one
S = 〈T,E,L〉 as follows. To model faults, we assume that
the local states L of an agent are defined by a set of in-
teger, Boolean, and enumerate (over a domain E) variables
V AR = BV ar ∪ IV ar ∪ EV ar, i.e. L = (b : BV ar →
{⊥,>}) × (i : IV ar → Z) × (e : EV ar → E). We denote
by F the set of all possible faults. Various studies have been
conducted in safety analysis to identify the faults normally of
interest [Bozzano and Villafiorita, 2007]. We here consider
the most widely used faults by assuming that F contains:

• For every x ∈ BV ar, a fault invert(x) that inverts the
value of x and a fault setB(x, k) (where k ∈ {⊥,>})
that sets the value of x to k.

• For every y ∈ IV ar, a fault up(y) that increments the
value of y, a fault down(y) that decrements the value
of y, and a fault setI(y, k) (where k ∈ Z) that sets the
value of y to k.
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• For every z ∈ EV ar, a fault setE(z, v) (where v ∈ E)
that sets the value of z to v.

More formally, F is given by:

F ,{invert(x), setB(x, k) : x ∈ BV ar, k ∈ {>,⊥}}
∪ {up(y), down(y), setI(y, k) : y ∈ IV ar, k ∈ Z}
∪ {setE(z, v) : z ∈ EV ar, v ∈ E}

Given a fault f ∈ F and a state s ∈ L, we will denote by
(s)f the result of applying f to s. Formally:

((b, i, e))f =



(bx 7→¬b(x), i, e) if f = invert(x)

(bx 7→k, i, e) if f = setB(x, k)

(b, iy 7→i(y)+1, e) if f = up(y)

(b, iy 7→i(y)−1, e) if f = down(y)

(b, iy 7→k, e) if f = setI(y, k)

(b, i, ez 7→v) if f = setE(z, v)

where gx 7→y denotes the function obtained by replacing the
value of g at x with y.

Having formalised the types of possible faults, we now de-
fine when they can occur and how likely they are. We encode
this in the notion of a fault profile, which defines the probabil-
ity of each fault occurring when performing a certain action
from a certain state.

Definition 12 (Fault profile). A fault profile is a function χ :
S×Act×(F∪{X})→ [0, 1]. The expression χ(s, a, f) = p
represents that when action a is performed from state s, there
is a probability of p that fault f occurs. χ(s, a,X) gives the
probability of a fault not occurring when performing action
a from state s. We assume that for all s ∈ S and a ∈ Act we
have

∑
f∈(F∪{X}) χ(s, a, f) = 1.

Note that the above restricts our swarms to having at most
one fault at each time-step. We now define the behaviour of
a faulty agent. This will augment the state of the agent with
extra variables that allow us to write specifications involving
whether the agent has exhibited faults.

Definition 13 (Faulty agent). Given an agent template T =
〈S, ι, Act, P, t〉 and a fault profile χ : S×Act×(F∪{X})→
[0, 1], we define a faulty agent template Tχ = 〈Sχ, ιχ, Act,
Pχ, tχ〉 as follows:

• Sχ = S × {⊥,>} × {⊥,>}, where the first Boolean
variable encodes whether the agent has ever exhibited a
fault and the second whether the agent exhibited a fault
in the previous transition.

• ιχ = (ι,⊥,⊥) is a new initial state,

• Pχ : Sχ → P(Act) is given by Pχ((s, f, i)) , P (s).

• tχ : Sχ ×Act× Sχ → [0, 1] is defined by:

((s, f, i), a, (s′, f ′, i′)) 7→
t(s, a, s′)χ(s, a,X) if f = f ′ and i′ = ⊥∑
x∈F ,s̄∈S:(s̄)x=s′ t(s, a, s̄)χ(s, a, x) if f ′ = i′ = >

0 otherwise

The definition above includes both non-faulty transitions
(corresponding to i′ = ⊥) in which the value of f is not
affected, and faulty transitions (i′ = >) in which f is set
to >. Note that transitions where f = > and f ′ = ⊥ are
not allowed; so once an agent has exhibited faulty behaviour,
it is labelled as faulty for the rest of the run of the system.
However, faulty agents may still carry out correct transitions.

Observe that faulty agents are well-defined agents.
Observation 1. Let χ : S × Act × (F ∪ {X}) → [0, 1] be
a fault profile and T = 〈S, ι, Act, P, t〉 a non-faulty agent.
Then, it is the case that for any l = (s, f, i) ∈ Sχ and a ∈
Act we have

∑
l′∈Sχ t

χ(l, a, l′) = 1.
We can now define faulty swarm systems.

Definition 14 (Fully Faulty Swarm System). Given a fault
profile χ : S × Act × (F ∪ {X}) → [0, 1] and a non-
faulty PPIIS S = 〈T,E,L〉, the (fully) faulty PPIIS Sχ =
〈Tχ, E, Lχ〉 is constructed by taking Tχ as in Definition 13,
and Lχ : Sχ×SE → P(AP ∪{faulty, injected}) defined:
((s,f, i), sE) 7→

{faulty, injected} ∪ L(s, sE) if i = >
{faulty} ∪ L(s, sE) if i = ⊥ and f = >
L(s, sE) otherwise

Notice that the environment does not exhibit any faults. We
add two additional atomic propositions to the language: faulty
and injected, tracking whether an agent has ever exhibited
faulty behaviour and whether it exhibited faulty behaviour at
the previous time step, respectively. These atomic proposi-
tions allow us to express a number of specifications such as:

Pmax≤0.5 [G¬(faulty, 0)]

which expresses that the probability of an agent ever exhibit-
ing a fault does not exceed 0.5.

We can also express probabilistic variants of properties of-
ten considered in fault-tolerance literature. For instance:

Pmax>0.9 [G((injected, 0)→ Fφ)] (Recoverability)
expresses that with high probability even if an agent exhibits
a fault the swarm can still satisfy φ at some point in the fu-
ture. This expresses a notion of resilience of the agents in the
swarm w.r.t. the faults and the specification φ. Note that φ
may depend on the state of other agents or the environment,
and thus can express a property of the whole swarm system
rather than just of agent 0.

Finally, the new atomic propositions allow us to limit spec-
ifications to agents which have not exhibited faulty behaviour.
For instance:

Pmax>0.9 [G(¬(faulty, 0)→ φ)]

expresses that with high probability whenever an agent is not
faulty, the agent can satisfy the formula φ.

4 Model Checking Faulty PPIIS
In this section we define and solve the parameterised fault-
tolerance problem which concerns assessing whether a proba-
bilistic swarm is resilient w.r.t. possible faults given as above.
Before doing so, we extend the notion of swarm systems of
the previous section by introducing a probability that an agent
may be faulty.
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Definition 15 (Probabilistically Faulty Swarm System).
Given a PIIS S = 〈T,E,L〉, a fault profile χ : S × Act ×
(F ∪ {X}) → [0, 1] and a faultiness probability p ∈ [0, 1],
we define the probabilistically faulty swarm system Sχp =
〈Tχp , Eχp , Lχp 〉 as follows.

The faulty agent template Tχp = 〈Sχp , ιχp , Actχp , Pχp , tχp 〉 is
given by:

• Sχp = S∪Sχ∪{ιχp , ιf , ι′f , ιn, ι′n}, defined by considering
all the faulty and non-faulty states, as well as five fresh
states used for initialisation below.

• ιχp , the new initial state.

• Actχp = Act ∪ {init, g, g′} where init ∈ A and g, g′ ∈
GS, defined by introducing a fresh asynchronous action
init and fresh global-synchronous actions g and g′, used
for initialisation.

• Pχp : Sχp → P(Actχp ) is given by:

s 7→



{a} if s = ιχp
{g} if s ∈ {ιf , ιn}
{g′} if s ∈ {ι′f , ι′n}
P (s) if s ∈ S
Pχ(s) if s ∈ Sχ

• tχp : Sχp ×Actχp × Sχp → [0, 1] is given by:

(s, a, s′) 7→



p if s = ιχp , a = init, s′ = ιf
1− p if s = ιχp , a = init, s′ = ιn
1 if s = ιf , a = g, s′ = ι′f

or s = ι′f , a = g′, s′ = ιχ

or s = ιn, a = g, s′ = ι′n
or s = ι′n, a = g′, s′ = ι

t(s, a, s′) if s, s′ ∈ S
tχ(s, a, s′) if s, s′ ∈ Sχ
0 otherwise

The environment Eχp = 〈Sχp,E , ι
χ
p,E , Act

χ
p,E , P

χ
p,E , t

χ
p,E〉 is

defined by:
• Sχp,E = SE ∪ {ιχp,E , ι′}, defined by adding two states to
SE used for initialisation.

• ιχp,E , the new initial state.

• Actχp,E = ActE ∪ {g, g′} where g, g′ ∈ GS, defined by
adding two fresh global-synchronous actions.

• Pχp,E : Sχp,E → P(Actχp,E) is given by:

s 7→


{g} if s = ιχp,E
{g′} if s = ι′

PE(s) if s ∈ SE

• tχp,E : Sχp,E ×Act
χ
p,E × S

χ
p,E → [0, 1] is given by:

(s, a, s′) 7→


1 if s = ιχp,E , a = g, s′ = ι′

or s = ι′, a = g′, s′ = ιE
tE(s, a, s′) if s, s′ ∈ SE
0 otherwise

(a) The agent template.

(b) The environment.

Figure 1: The PPIIS for a probabilistically faulty swarm system. The
bold states represent ones where the atomic proposition starting
holds. The g and g′ actions are global-synchronous ones, whilst the
init action is asynchronous.

The valuation function Lχp : Sχp × Sχp,E → P(AP ∪
{starting, faulty, injected}) is defined by:

(s, sE) 7→


Lχ((s, sE)) if s ∈ Sχ, sE ∈ SE
L((s, sE)) if s ∈ S, sE ∈ SE
{starting} if sE = ι′

∅ otherwise

Intuitively, the original swarm is extended with an initiali-
sation phase where each agent asynchronously uses the init
action to determine whether it will be faulty with probability
p. Following this, the global-synchronous action g takes the
system to a state where our new atomic proposition starting
holds. Finally, the global-synchronous action g′ starts the sys-
tem. This initialisation process is depicted in Figure 1. Note
that the definition above results in a valid PPIIS.
Observation 2. Consider a PIIS S = 〈T,E,L〉, a fault
profile χ : S × Act × (F ∪ {X}) → [0, 1] and a
faultiness probability p ∈ [0, 1]. Then, we have that∑
l′∈Sχp t

χ
p (l, a, l′) = 1 for all l ∈ Sχp and a ∈ Actχp . We

also have
∑
l′E∈S

χ
p,E

tχp,E(lE , aE , l
′
E) = 1 for all lE ∈ Sχp,E

and aE ∈ Actχp,E .
We are interested in assessing whether an unbounded prob-

abilistic swarm is resilient w.r.t. a specification when sub-
jected to probabilistically faulty agents. To do so, we formu-
late the following decision problem.
Definition 16 (PFTP). Given a PIIS S , a PLTL formula
φ = P

max/min
./x [ψ], a fault profile χ, and a p ∈ [0, 1], the

parameterised fault-tolerance problem (PFTP) concerns an-
swering the parameterised model checking problem (Defini-
tion 11) for Sχp |= P

max/min
./x [G((starting, 0) → Xψ)]. If

this holds, we write S |=χ
p φ.

Definition 16 allows us to recast the PFTP via a simpler
parameterised model checking query for the amended swarm
system under a revised specification.
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Algorithm 1 PFTP Decision Procedure
Input: A swarm system S , PLTL formula φ =

P
max/min
./x [ψ], fault profile χ, and a p ∈ [0, 1]

Output: Whether or not S |=χ
p φ

1: Construct Sχp via Definition 15

2: Return Sχp |= P
max/min
./x [G((starting, 0)→ Xψ)]

Given the above, we can introduce a simple procedure for
checking the PFTP. This is presented in Algorithm 1. Note
that the decision problem of line 2 can be resolved with
tools for verification of probabilistic swarms [Lomuscio and
Pirovano, 2019]. Note also that the procedure is incomplete,
as the query on line 2 may not terminate. As we will see in
the next section a number of concrete swarm protocols can
effectively be checked irrespective of the theoretical undecid-
ability of the underlying problem.

5 Implementation and Evaluation
We implemented the method described in the previous sec-
tions in a Java toolkit called PSV-F (Probabilistic Swarm
Verifier for Faulty systems), built on top of PSV-CA [Lo-
muscio and Pirovano, 2019], which in turn uses PRISM
4.0 [Kwiatkowska et al., 2011] as its underlying probabilistic
model checker. The source code for this and the model we
consider below are released as open-source [PSV-F, 2020].

Like PSV-CA, our toolkit takes in a swarm file describ-
ing the behaviour of agents and the environment, and a file
describing the specifications to check. In addition, PSV-F
takes as input a file containing the list of faults that may oc-
cur in the system along with their relative conditions (actions
being performed, states of the agent, and fault probabilities).

Upon invocation, PSV-F incorporates the faults into the
model and invokes PSV-CA to verify the desired specifica-
tion. Note that since the underlying decision procedure is
partial, this call in principle may not receive an answer.

To evaluate the usefulness of our tool we consider the
swarm foraging protocol [Campo and Dorigo, 2007; Liu and
Winfield, 2010] that has previously been verified in a proba-
bilistic setting without any faults in [Lomuscio and Pirovano,
2019]. We extend this analysis to introduce a fault.

The protocol has agents in four possible states: resting in a
nest, searching for food, reaching some food, and returning to
the nest with food. Resting robots may decide with probabil-
ity 0.5 to begin searching for food. Robots searching for food
may find some with probability 0.3. After two time-steps of
failed searching, the robot goes back to resting. If a robot lo-
cates food, it moves towards it, picks it up, brings it back to
the nest, then goes back to resting.

We inject one fault into the system encoding the fact that
whenever a robot tries to move and is carrying food, it may
drop the food with some probability pf . If it does this, it will
return to the nest with no food. As in the original analysis we
check the specification pattern Pmax

≤p [F<kdeposited2], where
deposited2 is an atomic proposition that holds if at least two
units of food have been deposited in the nest and k is a param-
eter indicating the number of steps. The specification bounds

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
0

0.2

0.4

0.6
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p

pf
0

0.4
0.8
1

Figure 2: For different fault probabilities pf and time-steps k, the
maximum value of p for which Pmax

≤p [F
<kdeposited2] holds.

the maximum probability pwith which the agents can deposit
at least two units of food within k time-steps.

Intuitively the probability p depends on the fault proba-
bility pf . By using PSV-F we can ascertain this relation
precisely; importantly this analysis holds for any number of
agents in the system as the analysis is based on parameterised
model checking. We conducted this analysis and recorded
in Figure 2 the maximum p for which the property holds for
different values of k and pf . The abstraction that PSV-CA
generated had 2× 106 states and 46× 106 transitions. Inject-
ing the faults was instantaneous, constructing the model took
approximately 400 seconds and the specification was checked
in approximately 5 seconds.

By analysing the results obtained, we deduce that the
higher the probability of the fault, the lower the probability of
success of the protocol. However, even systems with faulty
agents can achieve the objective with high probability as long
as sufficient time-steps are considered. Note also that, as ex-
pected, if pf = 1 (i.e., agents always drop the food they are
holding upon moving), then the goal is never achieved. The
analysis above allows us to conclude that the foraging pro-
tocol displays a degree of resilience against the fault consid-
ered. This, however, decreases when the probability of faults
increases. Note that, while these results are in line with our
intuition, they could not previously be obtained formally.

6 Conclusions
We have introduced a method for injecting faults into proba-
bilistic swarm systems and presented an implementation built
from an existing toolkit for verifying such systems. To the
best of our knowledge, this gives the first method and toolkit
that enables the assessment of resilience to faults of swarm
systems that are unbounded in size. We used these to assess
the resilience of a foraging protocol; other protocols are likely
to be analysable in a similar way. Another possible extension
we have not pursued here is to consider more than one fault
occurring at each time-step. We leave this for future work.
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