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Abstract

A two-part tariff is a pricing scheme that consists
of an up-front lump sum fee and a per unit fee. Var-
ious products in the real world are sold via a menu,
or list, of two-part tariffs—for example gym mem-
berships, cell phone data plans, etc. We study learn-
ing high-revenue menus of two-part tariffs from
buyer valuation data, in the setting where the mech-
anism designer has access to samples from the dis-
tribution over buyers’ values rather than an explicit
description thereof. Our algorithms have clear di-
rect uses, and provide the missing piece for the re-
cent generalization theory of two-part tariffs. We
present a polynomial time algorithm for optimiz-
ing one two-part tariff. We also present an algo-
rithm for optimizing a length-L menu of two-part
tariffs with run time exponential in L but polyno-
mial in all other problem parameters. We then gen-
eralize the problem to multiple markets. We prove
how many samples suffice to guarantee that a two-
part tariff scheme that is feasible on the samples
is also feasible on a new problem instance with
high probability. We then show that computing
revenue-maximizing feasible prices is hard even for
buyers with additive valuations. Then, for buyers
with identical valuation distributions, we present
a condition that is sufficient for the two-part tariff
scheme from the unsegmented setting to be opti-
mal for the market-segmented setting. Finally, we
prove a generalization result that states how many
samples suffice so that we can compute the unseg-
mented solution on the samples and still be guar-
anteed that we get a near-optimal solution for the
market-segmented setting with high probability.

1 Introduction

A two-part tariff (TPT) consists of an up-front lump sum fee
p1 and a fee py for every additional unit purchased. Various
goods and services are priced using such a scheme. For ex-
ample, Keurig sells coffee machines (the up-front fee) that
require proprietary coffee pods (the per unit fee). Another
example is health club memberships, where participants of-
ten are required to pay an up-front fixed membership fee, as
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well as a monthly fee. More generally, a length L menu of
TPTs s alist ((p},pl), ..., (p¥,pk)) of L TPTs, and a buyer
may elect to pay according to any one of the L TPTs (or not
to buy anything). Menus of TPTs are also prevalent: health
clubs, amusement parks, wholesale stores like Costco, cell
phone companies, and credit card companies all frequently
offer various tiers of membership usually consisting of lower
future payments for a larger up-front payment.

In an early analysis of TPTs, Oi [1971] inspires the prob-
lem via Disneyland trying to decide between charging atten-
dees a hefty entrance fee and allowing them free access to
rides, versus charging a nominal entrance fee but requiring
payment for each ride. An even earlier discussion of TPTs
is given by Lewis [1941], where the merits and drawbacks of
TPTs are discussed in contexts such as the telephone system,
gas legislation, and the UK Central Electricity Board.

We study the problem of learning high-revenue menus
of TPTs from buyer valuation data. This can be viewed
as a form of automated mechanism design [Conitzer and
Sandholm, 2002]. In our setting, the seller has access to
samples from the distribution over buyers’ values, but not
an explicit description thereof. This differs from the usual
approach taken by the economic theory literature, and in-
stead takes the sample-based approach to mechanism de-
sign, introduced by Sandholm and Likhodedov [2004; 2005;
2015]. Balcan, Sandholm, and Vitercik [2018] study the sam-
ple complexity of revenue maximization, deriving a broad
characterization of the number of samples needed to ensure
with high probability that a mechanism that achieves high em-
pirical revenue on the samples also generalizes well, that is,
achieves high expected revenue over a freshly drawn sample.
Our main goal is to provide efficient algorithms for finding
menus of TPTs that achieve high empirical revenue over a
given set of samples. Many of the mechanism settings stud-
ied by Balcan et al. have large parameter spaces and require a
number of samples that is exponential in the problem param-
eters to guarantee generalization. However, they show that
the sample complexity of TPTs has only a mild (at most lin-
ear) dependence on the parameters, so it is reasonable to ask
for sample efficient and computationally efficient algorithms
for finding nearly optimal solutions. We present such algo-
rithms, thereby providing the missing, complementary piece
to the results of Balcan et al. Our algorithms also have the
obvious practical uses in designing TPTs and menus thereof.
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1.1 Problem Formulation

In our model, the seller has K units of a good to sell among
n buyers j € {1,...,n} via a menu of TPTs. Each buyer
is described by his valuation function v; : {1,..., K} = R
over the K units. So, v;(q) is the value that buyer j assigns
to getting ¢ units of the item. (We implicitly assume that each
buyer’s value for getting nothing is zero.) We assume that
buyers act in a utility maximizing manner: when presented
with a menu ((pi,pd), ..., (pl,p%)) of TPTs, buyer j with
valuation function v; : {1,..., K} — R will choose to buy ¢
units priced by tariff r to maximize v;(q)—(p’ +¢-p5), buying
0 units if there are no values of ¢ and r that make the above
expression non-negative. Given one sample of buyers v =
(v1,...,vy), when faced with menu p, say buyer j purchases
quantity g; of tariff r;. Then the revenue of p with respect to
v, denoted Rev, (p), is D7, 1(g; > 1) - (pY +q; - py).!

However, the model above allows for the possibility that
the total quantity 2;;1 g; is larger than K. To deal with this
issue, we will usually stipulate that the seller offers a menu
p that is feasible (that is, the total quantity purchased is at
most K) for each sample he sees (and we show that doing so
ensures with high probability that the menu p is also feasible
on a freshly drawn potential future sample).

We also study the case where each buyer belongs to one
of M markets, in which case a TPT pricing scheme is of the
form (p1,...,par), where buyers in market m are offered
menu p,,. Revenue is defined similarly, which we denote by
Rev,(p1,---,pun). For aset of samples S = {v!,... vV},
the empirical revenue of p with respect to S is denoted by
Revs(p) = + Zf\;l Rev,i(p), and similarly for the market-
segmented case.

We now state the formal generalization guarantee of Bal-
can, Sandholm, and Vitercik [2018] for the mechanism class
of length-L menus of TPTs for selling K units to n buyers
partitioned into M markets. Let D be some unknown distri-
bution over n-tuples of buyer valuations and markets. For any
0 < g,8 < 1, there exists an Nppr(e,d) € N such that for
all N > Nppr(e,0), it holds with probability at least 1 — &
over the draw of S = {v!,... o™} ~ DN that for every

M-tuple (p1, . ..,pnm) of length L menus of TPTs,
[Revs(p1,...,Pm) — Evan[Revy(P1, ..., Pm)| < e.
The sample complexity Nrpr(e,0) is at most

O¢ s(MLlog(nKL)), where we have hidden the de-
pendence on ¢ and 4 as is typical in learning theory. This
follows from the piecewise structure of the class of revenue
functions: there is a partition of the TPT parameter space
R2EM by hyperplanes into not-too-numerous regions such
that empirical revenue is linear over each region (this notion
is formalized in the main result of Balcan et al. [2018]).

The overarching goal of our paper is to efficiently find TPT
pricing schemes that maximize empirical revenue over a set
of samples—which by the above uniform convergence result
is highly likely to be nearly optimal in terms of expected rev-
enue as well. The number of samples needed to guarantee

"We use boldface p € R?" to abbreviate a menu of L TPTs. It is
understood, then, that p and p5 denote p2,—1 and ps,, respectively.
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generalization only depends at most linearly in the problem
parameters, so computationally efficient algorithms for em-
pirical revenue maximization in this setting will be sample
efficient as well.

1.2 Summary of the Contributions of this Paper

In Section 2 we give efficient algorithms for finding the em-
pirical revenue maximizing menu of TPTs when the menu
length is a fixed constant. Our main result here is an
O(N3K?3) algorithm when L = 1 in the single buyer setting,
that generalizes to an O(n>N3K?) algorithm in the multi-
buyer setting (Section 2.1). We then give an (NK)°) al-
gorithm for the setting where L > 1 (Section 2.2). This
algorithm exploits the geometric structure of the problem—
buyers’ valuations partition the parameter space into several
convex polytopes, and revenue maximization over each poly-
tope reduces to solving a linear program.

In Section 3 we generalize the problem to multiple mar-
kets. We prove how many samples suffice to guarantee that a
two-part tariff scheme that is feasible on the samples is also
feasible on a new problem instance with high probability.
We then show that computing revenue-maximizing feasible
prices is hard even for buyers with additive valuations. Then,
for bidders with identical valuation distributions, we present
a condition that is sufficient for the two-part tariff scheme
from the unsegmented setting to be optimal and feasible for
the market-segmented setting. Finally, we prove a general-
ization result that states how many samples suffice so that we
can compute the unsegmented solution on the samples and
still be guaranteed that we get a near-optimal solution for the
market-segmented setting with high probability.

1.3 Additional Related Research

(Menus of) two-part tariffs have been studied in eco-
nomics [Feldstein, 1972; Ng and Weisser, 1974; Leland
and Meyer, 1976; Murphy, 1977; Maskin and Riley, 1984;
Wilson, 1993; Armstrong and Vickers, 2001; Sundararajan,
2004; Shi et al., 2009]. The approach taken by much of the
economic literature on this topic is rather different from the
perspective we pursue: most work aims to find closed-form
solutions for revenue maximizing two-part tariff menus, and
in attempting to do so often places various (strong) restric-
tions on the setting. For example, Kolay and Shaffer [2003]
derive closed forms for the profit-maximizing length-two
menu of two-part tariffs when there are exactly two types
of buyers. Bagh and Bhargava [2013] derive further closed-
form results when valuations come from a finite discrete dis-
tribution. They moreover consider three-part tariffs—which
has an additional quantity allowance after which the per-unit
price takes effect. Schlereth et al. [2010] study some algo-
rithmic aspects of finding revenue-maximizing TPTs. They
cast the revenue-maximization problem as a mixed integer
linear program and compare the performance of a few dif-
ferent heuristic solution algorithms. We can also write a
mixed integer linear program to solve revenue maximiza-
tion in our setting, but the algorithms we pose are more ef-
ficient. Other works consider two-part tariff pricing in rela-
tion to, for example, uncertainty [Lambrecht ez al., 2007; Png
and Wang, 2010], opportunism [Marx and Shaffer, 2004],
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and other practical buyer behavior [Narayanan er al., 2007;
Iyengar et al., 2008]. To our knowledge, all prior work in
economics considers continuous models, where quantity pur-
chased is a continuous parameter and valuations are continu-
ous and differentiable functions of quantity. Our setting con-
siders a discrete and finite model, which is what gives rise to
the interesting algorithmic challenges we tackle. In addition,
the various examples of TPT pricing in the real world previ-
ously mentioned involve discrete quantities of goods, so our
model is arguably a more realistic description of TPT pricing.
TPTs have received some recent attention in computer sci-
ence as well. Chawla and Miller [2016] study a form of TPTs
(that is different from ours) in the context of finding simple
mechanisms that yield (multiplicative) approximations to op-
timal revenue. However, they assume that the seller knows
the distribution over buyers’ values, and the mechanism de-
sign is tuned to that distribution. Notions of menu complexity
and market segmentation have also been studied by computer
scientists, though in different contexts [Babaioff ez al., 2017;
Hart and Nisan, 2019; Cummings et al., 2020].

To our knowledge, the only prior work that studied the
model of TPTs that we address is that of Balcan et al. [2018].
However, they only studied sample complexity rather than al-
gorithms. We take this a step further and solve the learning
problem efficiently in terms of computation.

2 Algorithms for Optimal TPT Structures

In this section we study the computation of TPT
structures that maximize empirical revenue over the
given set of samples. We are given a set of sam-
ples S {vt,..., vV}, where each sample v’

(vi(1),...,01(K)),..., (v (1),...,v5(K)). That is, each
sample gives a value for each buyer for each number of
units bought. In the sample-based mechanism design liter-
ature, it is standard to assume a complete valuation draw

like this in each sample. We also use the shorthand Uj»

(vi(1),...,v%(K)). In the first subsection we discuss com-
putation of a single TPT and in the next subsection computa-
tion of a menu of multiple TPTs. In both sections we discuss
the single-buyer case for simplicity, and then in the third sub-
section we present the generalization to the multi-buyer case.

2.1 An Efficient Algorithm for a Single TPT

In this subsection we give a polynomial-time algorithm
to solve the empirical revenue maximization problem in
the case where we can offer only one two-part tariff,
that is, the menu length L 1. Because in this
section we are presenting the single-buyer case for sim-
plicity, we do not include the buyer subscript in the
valuations.  So, our input is S {ot . ol
(W 1), 0 (K)), .., (0N (1), ... N (KD},

We observe the following, which is key for our algorithm.

Lemma 1. Suppose (p1,p2) is a TPT that maximizes em-
pirical revenue over S. Then, the line with y-intercept p,
and slope py passes through a point (q,v'(q)) for some
ie{l,...,N}tandqe {1,...,K}.

Proof. Consider a TPT line with y-intercept p; and slope
po that does not pass through any such point. Let d > 0
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be minimal such that the TPT line with y-intercept p; + d
and slope py passes through such a point. For any buyer j,
argmax, v’ (q) — (p1 + p2q) = argmax, v’ (q) — (p1 +d +
p2q), so any buyer who was purchasing a nonzero quantity
q when faced with (p1, p2) continues to purchase quantity ¢
when faced with (p; +d, p2). Any buyer who purchased noth-
ing when faced with (p;,p2) clearly continues to purchase
nothing. Hence the TPT (p; + d, p2) generates strictly more
revenue than (p1,ps). O

Now, for each point (¢, v¢(q)), we demonstrate that to find
the revenue-maximizing tariff line it suffices to search over
a set of at most NK tariff lines passing through (g, v%(q)).
Suppose we have a tariff line passing through (o, v% (qo)),
at which buyer ¢ buys quantity g;. Let us compute the slope
po of such a tariff line at which ¢ prefers to buy quantity ¢
over ¢;. We have

v'(q) — (v (qo)+p2(q — q0))

>yi<qi) — (v"(qo) + p2(gi — q0))

= py 20" (q:) — v (9))/ (i — @)-

For i,q,q" let i, 4,(i,q,q") = % denote the
slope where buyer 7 switches preferences between quantity
q and ¢’ (this has no dependence on i and ¢g, but for no-
tational consistency we leave the subscript). We must also
account for the case where buyer i switches preferences be-
tween quantity ¢ and purchasing nothing, for which a similar
calculation gives o, 4, (4,¢,0) = W.

The algorithm works by “hinging” a TPT at every point of
the form (g, v%(q)), and then increases the slope of the tariff
line at increments determined by the o values—these incre-
ments represent thresholds at which some buyer starts buying
a different quantity. As the slope of the hinged tariff line in-
creases, the quantity purchased by a given buyer changes at
most K times, and hence there are at most N K slope thresh-
olds to check—between any two thresholds the average rev-
enue is linear in the TPT since the quantities purchased are
constant, and so the maximum revenue must be attained at
one of these thresholds. See Figure 1 for an illustration. We
write down the precise algorithm as Algorithm 1.

Theorem 1. Algorithm 1 finds the single tariff (p1,p2) that

maximizes empirical revenue over a sample set of size N in
O(N3K?) time.

Proof. That the algorithm finds the maximum revenue TPT
follows from the fact that if po < p) are two consecutive
slopes checked by the algorithm, the average revenue is linear
as the slope varies between p, and pf, (revenue is linear since,
by construction, the quantities purchased by each buyer are
constant for slopes varying between po and p}) and hence it
suffices to compute revenue at the endpoints. Lemma 1 shows
that the empirical revenue maximizer passes through a point
(q,v*(q)), and since Algorithm 1 checks all slope thresholds
for TPTs passing through each such point, we are guaranteed
to find the TPT yielding the maximum empirical revenue.
We now count the number of steps taken by Algorithm 1.
Line 2 involves /N K iterations, Line 4 involves [V iterations,
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Figure 1: Three iterations of the single tariff algorithm from a given
hinge point. The points displayed represent the valuations of three
buyers (differentiated by the rendering style of the points) over four
units. If, for example, p5, p5 € (pél> , pf)), then the quantities pur-
chased by each buyer remain the same for the tariffs with slopes p5

and p5 hinged at the given point.

Line 9 involves at most NV K iterations (since each buyer starts
by purchasing K units, and can change quantities at most K
times as the slope p, increases), computing the minimization
in Lines 10 and 11 requires at most N K steps, and computing
revenue in Line 14 requires IV steps. So the total run time is
ONK(N + NK(NK + N))) = O(N3K3). O

We ran Gurobi (the fastest general-purpose mixed integer
program solver) to find the revenue-maximizing single TPT
for a single buyer (after formulating this problem as an in-
teger program), and Algorithm 1 beat it dramatically. For
example, averaged over 10 runs on randomly generated in-
stances with K = 5 units and N = 600 samples, our al-
gorithm returned the revenue-maximizing TPT in under 23
minutes while Gurobi took over 3.5 hours.

2.2 An Algorithm for Multiple TPTs

In this subsection we give an algorithm for optimizing a menu
of two-part tariffs. In most applications, for practical reasons,
the length of the menu cannot be very long, so L is a small
constant (typically 2 or 3). We present an algorithm that is
exponential in L but still polynomial in N and K. It can be
viewed as a generalization of the single tariff algorithm. The
geometric structure of the problem is the same as in Balcan et
al. [2018], but we exploit it to get algorithms while they use
it to prove sample complexity bounds.

Theorem 2. There is an algorithm that finds the empirical
revenue maximizing leng,'th L menu of tariffs over a sample
set of size N in (NK)OW) time.

Proof. Forinput valuations v',. .. vV, let H;(q,q',r,7") de-
note the hyperplane
v'(q) = (p1 +a-ph) =v'(¢") = (] +d - ph),

where if g (or ¢') is 0, the LHS (or RHS) is replaced by 0.
Consider the collection of hyperplanes H consisting of these
(at most N (K L)?) hyperplanes for each ¢,¢’ € {0,..., K},
ro’ € {1,...,L}, i € {1,...,N}. Itis a basic combi-
natorial fact that H partitions R?L into at most |H[>L <
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Algorithm 1 Single TPT for a Single Buyer

Input: Set of samples S = {v!,... vV}
Output: TPT (p;, p2) maximizing empirical revenue over S
1: Initialize MaxRev < 0.
2: for (i,q) € {1,...,N} x{1,...,K} do
3: p2 <0
forje{1,...,N} do
if v/ (K) > vi(q) then
¢; < K (This makes the typical assumption that
each buyer’s valuation is nondecreasing in quan-
tity. If that is not the case, one can in this line sim-
ply loop over quantities for each buyer separately
in order to find the utility-maximizing quantity
for that buyer.)
else
qj < 0
repeat
P2 + min @iq(7,95,4")

4
5:
6.

SN

1 §%,q" < argmina;g(j, g5, ")
7.’
12:

13:

qj* < q*

p1v'(q) —q-p2 -

14: MaxRev < max{MaxRev, Revs(p1,p2)}
15:  until no update is found

16: return revenue maximizing (pi, p2)

N2L 4L regions (each region is a connected component of
R2L\ Ui . rrHi(g, ¢, 7, 7") and is an intersection of at
most |#H| halfspaces). The average revenue over the set of
samples is linear within each such region, since the quantity
purchased by each buyer remains constant within each region,
so the maximum revenue within a region C' can be found by
solving the following linear program: if buyer ¢ purchases
quantity ¢;(C) € {0,..., K} of tariff r,(C) € {1,...,L}
within C, the maximum revenue in C is

N
1 rs(C) ri(C)
_ . > . i ) Ll .
glggNgl(qz(C)_l) @+ a(0) - py )

Each linear program involves 2L real variables, and |H| <
N K? constraints. So, it can be solved in poly(N, K, L) time.

Moreover, there is a simple algorithm with run time
poly(N?F K*L) which outputs a representation of each re-
gion determined by H as a 0/1 vector of length |#|, where
the kth entry determines on which side of the kth hyperplane
of H the region lies on. The high-level idea is to sequentially
add each hyperplane to the list of regions maintained so far
(starting with the entire Euclidean space R?%), iterating over
the current regions and checking whether the added hyper-
plane intersects each region—updating the list of regions if
so. See [Xu, 2020] for a more detailed description of enumer-
ating the regions formed by a collection of hyperplanes (in
a totally different context). Our algorithm solves the afore-
mentioned linear program for every such region and picks the
solution that yields highest empirical revenue. O

In the single TPT (L = 1) case, Algorithm 1 is more ef-
ficient than the algorithm presented in Theorem 2. This is
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because the former is a direct combinatorial algorithm that
does not require solving LPs.

2.3 Generalization to Multiple Buyers

While our algorithms in the two subsections above were pre-
sented in the single buyer setting, they directly extend to the
multi-buyer setting as follows.

Algorithm 1 generalizes by feeding in not just NV valuations
but all n NV valuations. The only change to the algorithm itself
is that in Step 12 we check that the allocation is feasible, that
is, not more than the total quantity K is bought among the
buyers in any sample ¢ € {1, ..., N}; if more is bought, then
the assignment on that line is skipped because that pricing so-
lution is infeasible. (Another nuance is that the initialization
in Lines 2-8 might not be feasible, but that is fine.)

Similarly, in our multi-TPT algorithm, whenever we are
about to solve an LP corresponding to some region deter-
mined by the set of hyperplanes, we first check that the re-
gion is feasible in the sense that the total quantity bought by
buyers in any one sample is at most K.

Remark. Suppose buyers have additive valuations, that is,
v"(q1+q2) = v*(q1) +v*(g2) for any quantities ¢; +¢o < K.
Then, the revenue maximization problems considered in this
section become trivial. In particular, the run time dependence
on K and L vanishes. This can be seen due to the fact that
price(q) := min, p] + ¢ - p} is a piece-wise linear increasing
concave function. An additive buyer’s valuation function is
simply a line with positive slope passing through the origin,
as v'(q) = vi(1+---+1) = ¢- v(1). Hence, the difference
v%(q) — price(q) is always maximized when ¢ = K, that is,
buyers are always only interested in the entire / -unit bundle.
Thus, revenue is determined by a single price, that of the en-
tire bundle, and the seller simply can try every possible price
in {v!(K),...,vNV(K)}, due to Lemma 1.

3 Market Segmentation

We now consider a setting in which each buyer belongs to one
of M markets &7, ..., Xj;—determined by attributes such
as geographic location, income level, etc. The seller sets M
length L-menus of TPTs (py, . .., pas), where buyers in mar-
ket m are allowed to purchase according to p,,.

The seller wants to offer a TPT menu for each market so
that the overall solution across markets is feasible, that is, that
the sum of the demands of the markets does not exceed K.
We show that any solution that is feasible for each sample in
a large enough sample set is with high probability a feasible
solution for any future sample.

Proposition 1. Let N > Nppr(e, ). With probability at
least 1—6 over the draw of S ~ DY, ifp1, ..., pu is feasible
for S,

P%[(pl, ..., PMm) is feasible forv] > 1 — €.
Proof. Consider the class of 0/1 valued indicator functions

{fo(P1,...,pnm)} indicating whether (p1,...,pas) is fea-
sible for v. For a single sample 7, consider the set of hyper-
planes of the form

V(@)= (P1,m(i.5) F4 D2 m(i, ) = v;‘(q/)_(p;,m(i,j)"'ql'p;,m(i,j))
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for each j,q,q¢',r, 7', where m(i, ) is the market to which
buyer j in sample ¢ belongs. These hyperplanes partition the
tariff space R2“M into at most (n(K L)?)?LM regions such
that the indicator is constant within each region. Thus, by
Theorems 2.2 and C.1 of Balcan et al. [2018], for a sample
set S of size at least Ny pr(e, d), it holds with probability at
least 1 — ¢ that for all py,...,pum,

Pu)| e

\fs(P1s- - Par) — Evunlfu(pr,. .-
(P

So, if (p}
fs(P?,...,p3;) =1, we have

Elf.(pf....,P5)] = Pr(fu(pf,...

with probability at least 1 — § over the draw of S and v.

g .

.,P3y) is any feasible solution for S, that is,

,p%)zl]Z]_f{—:,
O

It turns out that market segmentation introduces substantial
computational hurdles to revenue maximization. Even when
bidders are additive (which removes the parameters L and K
from the problem as remarked in the previous section), the
problem of setting a feasible price for each market in an em-
pirical revenue maximizing way is NP hard. Since additive
buyers either purchase the entire bundle of K units or noth-
ing, each menu is reduced to a single price, so the seller’s
problem is to set prices py, . . ., pas for each market. Any so-
lution must be feasible for the set of samples, which means at
most one buyer can purchase the full K units in each sample.

Theorem 3. Consider a set of samples S = {v',... vV}
where each buyer belongs to one of M markets. Even if all
buyers have additive valuations, there is no algorithm that
finds feasible prices p1, . . ., pyr that maximize empirical rev-
enue over S in time polynomial in M and N, unless P = NP.

Proof. We reduce from Maximum Weight Independent Set.
Given an instance G = (V, E) of Maximum Weight Inde-
pendent Set (without loss of generality assume G has no iso-
lated vertices), label the vertices V' = {v1,...,v,}, and let
w; = weight(v;). Let p; = ng‘(f‘) We will have n markets
X1, ..., &,, corresponding to the vertices of G.

For each (v;,v;) € E, we introduce a sample consisting of
a buyer in market X; with value p; and a buyer in market X
with value p; (ensuring that no feasible pricing solution can
simultaneously offer p; to market X; and p; to market X;). So
we have a total of |E/| samples. Clearly, any feasible revenue
maximizing solution involves offering market X; either price
p;, or something higher than p; (so that no buyer in market X;
across any of the samples makes a purchase).

Our construction yields a one-to-one correspondence be-
tween independent sets in G and feasible n-tuples of prices:
an independent set / C V' with weight W =} _; w; cor-
responds to a pricing solution where if v; € I, market X;
is offered p;, and if v; ¢ I, market X; is offered something
higher than p;. For a vertex v; in the independent set, there
are precisely deg(v;) samples containing a buyer in market
X; who makes a purchase at price p;, so the average rev-
enue obtained by the pricing solution corresponding to [ is
\%I > .1 deg(v) - pi = W, by the choice of p;. This com-
pletes the (clearly polynomial time) reduction. O
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Remark. This hardness is inherent to the limited supply set-
ting. If the seller has unlimited supply, and K is instead the
maximum quantity any buyer is willing to purchase, we can
find the empirical revenue maximizing market-segmented so-
lution in M (nNK)©®) time simply by running the proce-
dure described in the previous section restricted to each mar-
ket in turn. This finds the empirical optimum over each mar-
ket, and without capacity constraints, this is a feasible solu-
tion and thus the optimal market-segmented solution as well.

3.1 Buyers with Identically Distributed Valuations

To circumvent the hardness of feasible empirical revenue
maximization over worst case instances, we now study a set-
ting where each buyer’s valuation vector is drawn from the
same distribution. Each market is of a certain prescribed size,
and buyers are indistinguishable across markets. An example
of a natural real-world market segmentation that potentially
satisfies this is segmentation based on geographic location.
For example, there may be no reason to believe that the av-
erage buyer in San Francisco values a gym-membership plan
any differently than the average buyer in Pittsburgh. We show
that under certain conditions, it is optimal to treat every buyer
equally—regardless of whether they come from a large mar-
ket or a small market. This immediately yields a simple al-
gorithm in which we solve the non-segmented version of the
problem, and reuse the solution for the segmented version.

Suppose there are a total of n buyers across markets,
and an «,, fraction of these buyers belong to market X,,.
For simplicity, we assume that the seller receives zero rev-
enue on instances on which the chosen solution is in-
feasible. Suppose the optimal solution (p3,...,p%;) =
argmax, o Ey[Revy(p1,...,pm)] satisfies the prop-
erty that in expectation, buyers from market A, con-
tribute an «,, fraction of the total revenue. That is,
Ey[Revy)x,, (P))] = am - Ey[Rev, (P71, ..., pj,)] for each
m. In this case, we can reuse the non-segmented solu-
tion. For a randomly drawn v, let F denote the event that
fo(P}, ... p}y) = 1. We have that

E,[Revy x,, (Pr,)] = Ev [Revyx,, (pr,) | ] - PrlF]
=E,[ > Revy,(pn) | F]- Pr[F]

Vm €EXm, v

= amnE,[Rev,, (pr) | F]-Pr[F],

so E,[Rev,,, (pf,) | F] = L Ey[Rev,(p},...,p}y) | F| for
each m. Thus, we can set p] = - - - = pJ,,, and hence we only
need to search for an optimal solution in the non-segmented
case that we then offer to every market. The empirical rev-
enue maximizing menu of TPTs p in the non-segmented case
can be computed in (nN K )P(X) time, as in the previous sec-
tion. Finally, we provide the generalization guarantee for us-
ing the unsegmented solution in the market-segmented case.

Theorem 4. Let N > Nppr(e,d). In the above setting, with
probability at least 1 — & over the draw of S ~ DV,

[Revs(p,... E,[Revy(p1,. ..

max Pl < 2¢,

7p)_(p17--<7pM)

where p is the empirical revenue maximizing solution when
all the markets are combined.
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Proof. Let p* denote the expected revenue maximizer in
the non-segmented case, so by the previous discussion,
(p*,...,p"*) is also the expected revenue maximizer in the
segmented case. Theorem C.1 of Balcan et al [2018] yields
|Revs(p) — Ey[Revy(p)]], |Revs(p*) — Ey[Rev, (p*)| < &
with probability at least 1 — § over the draw of S. As
Revg(p) > Revg(p*) and E,[Rev, (p*)] > Ey[Rev,(p)],
applying the triangle inequality yields the result. O

4 Conclusions and Future Research

TPTs are a frequently-used pricing scheme in many applica-
tions. In this paper we studied efficient algorithms for find-
ing revenue-maximizing TPT pricing schemes in the setting
where the buyers’ valuation distributions are given via sam-
ples. These algorithms have clear direct uses. They also pro-
vide the missing piece in the recent generalization theory for
TPTs [Balcan et al., 2018], which also uses samples of val-
uations as the input, and whose generalization approach is
based on revenue-maximizing TPT schemes, but which did
not provide any algorithms for computing such schemes.

We presented a polynomial algorithm for the case of op-
timizing one TPT. We also presented an algorithm for opti-
mizing length-L menus of TPTs with complexity exponential
only in L and polynomial in the other problem parameters.

We then generalized the problem of designing TPT
schemes to multiple markets. We first proved how many sam-
ples suffice to guarantee that a TPT scheme that is feasible on
the samples is also feasible on a new problem instance with
high probability. We then showed that computing revenue-
maximizing feasible prices is hard even for buyers with ad-
ditive valuations. Then, for bidders with identical valuation
distributions, we presented a sufficient condition for the TPT
scheme from the unsegmented setting to be optimal and fea-
sible for the market-segmented setting. Finally, we proved a
generalization result that states how many samples suffice so
that we can compute the unsegmented solution on the samples
and still be guaranteed that we get a near-optimal solution for
the market-segmented setting with high probability.

Several interesting open questions arise from our work.
Can the (N K)©") algorithm in Theorem 2 be improved? In
particular, can the exponential dependence on L be improved,
or is the problem NP-hard? Moreover, the algorithm given in
that theorem is fairly general purpose, and is not restricted to
menus of TPTs. Can our method be used to develop efficient
algorithms for other mechanism design settings? In the realm
of market segmentation, are there interesting structural con-
nections between the distributions over buyers’ valuations in
each market and potential polynomial time algorithms?
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