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Abstract
The problem of real-time autonomous energy man-
agement is an application area that is receiving
unprecedented attention from consumers, govern-
ments, academia and industry. This paper show-
cases the first application of deep reinforcement
learning (DRL) to real-time autonomous energy
management for a multi-carrier energy system. The
proposed approach is tailored to align with the na-
ture of the energy management problem by pos-
ing it in multi-dimensional continuous state and ac-
tion spaces, in order to coordinate power flows be-
tween different energy devices, and to adequately
capture the synergistic effect of couplings between
different energy carriers. This fundamental contri-
bution is a significant step forward from earlier ap-
proaches that only sought to control the power out-
put of a single device and neglected the demand-
supply coupling of different energy carriers. Case
studies on a real-world scenario demonstrate that
the proposed method significantly outperforms ex-
isting DRL methods as well as model-based con-
trol approaches in achieving the lowest energy cost
and yielding a representation of energy manage-
ment policies that adapt to system uncertainties.

1 Introduction
1.1 Background and Motivation
Energy systems worldwide are facing major flexibility chal-
lenges driven by the limited system ability to provide secure
and economical supply-demand balance in face of the large-
scale integration of renewable energy sources and their inher-
ent variability. In this respect, it is increasingly recognized
that integrated optimization and management of multi-carrier
energy systems (MCES) represents a key opportunity to pro-
vide the required flexibility to support cost-effective evolution
to smart low carbon future. This is enabled by their signifi-
cant yet untapped potential to shift supply and demand across
energy carriers by exploiting different forms of energy stor-
age, compared to traditional energy systems whose carriers
are operated independently [Mancarella, 2014].

∗Contact Author

At the residential level, with the increasing prevalence of
distributed energy resources and advanced metering and com-
munication infrastructure, end-users rely on autonomous en-
ergy management systems (AEMS) to actively control their
generation, conversion, consumption and storage of energy
in real-time, in order to reduce their demand placed onto the
grid and their costs. Therein, substantial socio-environmental
benefits emerge as a result of the reduced carbon emission.

An integrated solar photovoltaic (PV) and electricity en-
ergy storage (EES) system serves to compensate the mis-
match between the time-varying and uncertain PV generation
and electricity demand (ED) as well as making some revenue
by injecting surplus PV to the electrical grid (EG). Mean-
while, the increasing adoption of electric vehicles (EV) by
end-users is observed, driven by their ability to store elec-
trical energy in their batteries, enabling the temporal decou-
pling between the absorption of energy from EG and its actual
consumption for travelling purposes. Furthermore, coupling
the operation of an electric heat pump (EHP), a gas boiler
(GB) and a thermal energy storage (TES) introduces oppor-
tunities for an energy-shifting arbitrage between electricity
and gas to supply electricity and heat to the end-users, which
is particularly useful in face of intermittent RES. Further-
more, TES enables redistribution of heat demand (HD) and
production across time which contributes to greater energy-
shifting flexibility. In view of such complex interactions and
inter-dependencies between different energy carriers as well
as the multi-source system uncertainties, developing an effec-
tive AEMS plays an crucial role in uncovering the flexibility
potential and harvesting the real-world benefits of the MCES.

1.2 Related Work
Energy management of the MCES has been traditionally ad-
dressed with model-based control approaches. A centralized
operation cost minimization problem is solved to determine
the optimal schedule of various kinds of controllable energy
sources, loads and storage devices [Bozchalui et al., 2012;
Rastegar and Fotuhi-Firuzabad, 2015; Moghaddam et al.,
2016; Basit et al., 2017]. This optimization problem gen-
erally requires full knowledge of the operational model and
parameters of the MCES, and the energy usage schedules
are determined using forecasted parameters, such as the en-
ergy demand, price patterns, EV user’s commuting behavior
and weather-dependent PV production. However, such de-
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terministic optimization models fail to account for the in-
herent uncertainties associated with these parameters. To
this end, stochastic programming approaches are employed
to schedule different energy devices [Pazouki et al., 2014;
Vahid-Pakdel et al., 2017; Sedighizadeh et al., 2018]. A
scenario-based method is used to model the uncertainties.
However, it poses significant challenges to identify appropri-
ate probability distributions and construct a representative set
of scenarios for all the involved uncertain parameters since
they are influenced by various exogenous factors which are
independent to the energy management strategy. Further-
more, the scale of the optimization problem increases dras-
tically with the number of scenarios, resulting in significant
computational burden [Conejo et al., 2010]. An alternative
approach consists in applying distributed control techniques.
The alternating direction method of multipliers algorithm is
adopted for energy usage scheduling of smart buildings and
energy internet [Zhang et al., 2017]. A consensus-based algo-
rithm is employed in [Li et al., 2016] for energy management
of a combined heat and power system. However, the con-
vergence to the optimal solution for both algorithms is only
guaranteed assuming convex operating characteristics of the
system and a very large number of iterations is generally nec-
essary before a good measure of convergence can be obtained.

In contrast, reinforcement learning (RL) is a model-free
control approach that consists of an agent (AEMS) gradu-
ally learning the optimal control policy by utilizing experi-
ences acquired from its repeated interactions with the envi-
ronment (MCES). RL also makes no assumption regarding
the convexity of the operating characteristics of the MCES.
In other words, the AEMS does not require prior informa-
tion on the model dynamics of the MCES and considers the
latter as a black box. In the big data era, RL can utilize
the increasing volume of data collected from smart meters
and perform successive interpretation of data to learn optimal
management strategies and thereby coping with the uncer-
tainties that are encapsulated in the data. The trained model
can be deployed to deliver real-time control on timescales of
milliseconds. Furthermore, RL enables a representation of
the control actions to be constructed that generalizes to pre-
viously unseen situations. In this context, previous works
have employed Q-learning (QL) for optimal demand re-
sponse [Liang et al., 2013; Wen et al., 2015] and control
of an integrated PV and EES system [Berlink et al., 2015;
Kim and Lim, 2018]. However, QL suffers severely from the
curse of dimensionality. The discretization of both state and
action spaces may distort the feedback that the agent receives
regarding the influence of its actions on the environment and
adversely affect the feasible action space, resulting in sub-
optimal policies. This challenge is aggravated in the setting
of the examined problem, since both state of the environment
(e.g. PV output, the energy content of the EES) and agent’s
actions (e.g. charging / discharging schedule of EES) are not
only continuous but also multi-dimensional.

In view of these limitations, more recently, the deep Q
network (DQN) method is applied to determine home en-
ergy management decisions considering a heating, ventila-
tion and air conditioning system [Wei et al., 2017], shiftable
loads [Mocanu et al., 2019], EV [Wu et al., 2018; Wan et

al., 2019] and an integrated renewable energy and EES sys-
tem [Chen and Su, 2018]. DQN employs a deep neural net-
work (DNN) to approximate the Q-value function. Despite
the generalization capability of DQN to multi-dimensional
continuous state space, its performs sub-optimally in prob-
lems with continuous action spaces, because the employed
DNN is trained to produce discrete Q-value estimates rather
than continuous actions [Lillicrap and et al., 2016]. For in-
stance, only seven discrete power levels are assumed for the
EV charging in [Wan et al., 2019] and the action of the EES
is limited to three options: fully charging, fully discharging
or idle in [Chen and Su, 2018]. This substantially limits the
flexibility potential of energy storage devices and thus hin-
ders the effectiveness of DQN in addressing the examined
problem, since the energy management decisions are multi-
dimensional and continuous. To this end, the deep policy
gradient (DPG) method is adopted in [Mocanu et al., 2019;
Ye et al., 2019]. DPG also employs a DNN, but instead of es-
timating the Q-value function, it directly estimates the prob-
ability of taking an action at a specific state. However, the
underlying energy management actions considered in [Mo-
canu et al., 2019] are limited to discrete on / off status of
different loads while their actual energy consumption sched-
ules are determined by solving a cost minimization problem,
which implies that the employed management strategy is not
model-free and discrete in nature. Furthermore, DPG gener-
ally suffers from high variance in its gradient estimates which
results in slow convergence [Silver et al., 2014].

1.3 Contributions
This paper attempts to fill the knowledge gap and address the
fundamental limitations of previous approaches through the
following novel contributions:

- A novel autonomous energy management strategy is pro-
posed for a residential MCES by applying the prioritized deep
deterministic policy gradient (PDDPG) method. This ap-
proach is model-free and requires neither the knowledge of
the system modeling of the MCES nor any forecasted exoge-
nous information, as opposed to traditional model-based ap-
proaches. To the best of the authors’ knowledge, and accord-
ing to the up-to-date literature review conducted in [Mason
and Grijalva, 2019], this is the first time that this approach has
been used to address the optimal energy management prob-
lem of an MCES.

- In contrast with earlier works which all target a single and
isolated energy carrier and only sought to control the power
output of a single energy device, the energy management of
a MCES constitutes a more challenging task as it necessitates
monitoring and managing the activity of each device in the
MCES so as to adequately capture the synergistic effects of
the couplings between different energy carriers.

- Furthermore, as opposed to previous works which largely
simplify the energy management problem employing discrete
control RL method, the proposed approach conforms to the
nature of the energy management problem by setting it up
in multi-dimensional continuous state and action spaces and
properly accounting for the effect of non-convex operating
characteristics of the MCES.

- The value of the proposed real-time energy manage-
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Figure 1: (a) Schematic representation of the MCES and (b) con-
nections and power input / output of energy devices. The black solid
and dashed arrows highlight mutually exclusive power flows.

ment strategy is validated through numerous numerical ex-
periments in a real-world scenario accounting for uncertain-
ties stemmed from the supply / demand sides of the MCES.

2 Energy Management as an MDP
A finite Markov decision process (MDP) with discrete time
step is applied to formulate the energy management problem.
The time interval between two adjacent steps is one hour. The
AEMS constitutes the agent, while the residential MCES rep-
resents the environment, featuring an integrated electricity,
heat and gas systems, as depicted in Figure 1 (a). The elec-
tricity system is composed of the EG, a PV, an EES and an
EV. The heat system consists of an EHP, a GB and a TES.
The MCES is also connected to the gas grid (GG) for the op-
eration of GB. The objective of AEMS is to optimally manage
the energy usage schedules of all devices in each carrier of the
MCES so as to minimize the total cost for the end-user.

State. The state st at time step t is defined as a 12-
dimensional vector st = [Et, t, P

ev

t , E
tr
t , P

d
t , λt, P

pv
t ],

where Et = [Eest , E
ev
t , E

ts
t ] represent the energy contents

of the EES, EV and TES, these are endogenous state fea-
tures which are affected by agent’s actions; t denotes the step
identifier; P

ev

t indicates the maximum charging / discharg-
ing limit1 of EV; Etrt represents the electrical energy require-
ments2 of EV for travelling purposes; P dt = [P edt , Phdt ] rep-
resent ED and HD; λt = [λe−t , λe+t , λgt ] represent electric-

1P
ev
t is equal to a fixed charging / discharging limit when EV is

parked at home (assuming home-charging) and 0 otherwise.
2Etr

t is equal to a fixed energy consumption level (dependent to
the distance travelled) when EV is traveling and 0 otherwise.

ity buy / sell prices and gas price; and P pvt denotes the PV
production. These are exogenous state features which are de-
coupled from agent’s actions and are characterized by inher-
ent variability and uncertainty. Note that, our approach takes
into account the consumer preference by incorporating the
EV user’s commuting behavior as exogenous state features.

Action. Given the state st, the actions at of the AEMS at
time step t is defined as a 11-dimensional vector at = [a

esc/d
t ,

a
evc/d
t , a

tsc/d
t , aest , a

ev
t , a

ts
t , a

gg,gb
t , agb,tst , apv,hpt , apv,edt ,

aes,edt ]. As illustrated in Figure 1 (b), the blue dashed arrows
indicate the action that manages the respective power input /
output for each device of the MCES.

Specifically, aesc/dt , aevc/dt and atsc/dt ∈ {0, 1} represent
the charging (1) / discharging (0) status of the EES, EV and
TES, these actions represent the inherent non-convex operat-
ing characteristics of energy storage devices [Ye et al., 2014],
ensuring that they operate exclusively either in the charg-
ing or discharging mode; aest , aevt and atst ∈ [0, 1] repre-
sent the charging / discharging power of EES, EV and TES
as a percentage of their maximum limits P

es
, P

ev

t and P
ts

;
agg,gbt ∈ [0, 1] represents the gas input of GB as a percent-
age of its maximum limit P

gb
; agb,tst ∈ [0, 1] represents the

charging power of TES from GB as a percentage of the total
charging power of TES P tsct ; apv,hpt and apv,edt ∈ [0, 1] rep-
resent the power flow from PV to EHP and to ED both as a
percentage of P pvt ; and aes,edt ∈ [0, 1] represent the discharg-
ing power of EES to supply ED as a percentage of its total
discharging power P esdt .

State transition. The state transition from st to st+1 is gov-
erned by a function: st+1 = F (st, at, ωt). The transition
may be not only affected by the action at but also influenced
by the randomness ωt existed in some state features. In the
examined problem, the transitions for P

ev

t , Etrt , P dt , λt and
P pvt are subject to variability and uncertainties. Identifying
probability distributions to accurately capture such random-
ness can be very challenging since they are affected by many
factors, such as EV user’s commuting behaviour, pricing pro-
cess of the utility, and the weather conditions. To resolve this
issue, a model-free approach is proposed to learn the transi-
tion for such features from real-world data-set using machine
learning techniques. On the other hand, the transitions for
Eest , Eevt and Etst are directly affected by energy manage-
ment actions. After executing actions at, the state transitions
of these features as well as the resultant power flows indicated
in the MCES (Figure 1 (b)) can be derived according to the
operational constraints that characterize the MCES. For space
limitation reasons, these derivations are not presented here.

Reward. The reward rt resultant from the energy manage-
ment decisions at is set to be equal to the negative operation
cost Ct of the MCES as given by:

Ct = λe−t P
eg,(ed+hp+ev)
t + λgtP

gg,gb
t − λe+t P pv ,eg

t (1)

where the three terms represent, respectively, the cost of pur-
chasing electricity from EG, purchasing gas from GG, and
the revenue from from selling excess PV production to EG.
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Performance and value functions. At each time step,
the agent employs a policy π to interact with the MDP
and emit a trajectory of states, actions and rewards:
s1, a1, r1, s2, a2, r2, ... over S × A × R. The return Rt =∑T
l=t γ

(l−t)rl is the discounted reward where γ ∈ [0, 1] is the
discount factor. The agents’ goal through RL is to construct
a policy that maximizes the cumulative discounted reward,
denoted by the performance function J(π) = E[R1|π] =
Es∼ρπ,a∼π[r], where ρπ denotes the discounted state distri-
bution. The Q-value function Qπ(s, a) = E[R1|s1 = s, a1 =
a;π] forms an estimation of the discounted reward.

3 Proposed Energy Management Strategy
As discussed in Section 1.2, despite the wide popularity of
adopting QL and DQN for energy management problems in
the most recent smart grid literature, these approaches suf-
fer from the curse of dimensionality to some extent, since
they necessitate discretization of the state and / or the action
spaces. However, the discretization of the state space may
distort the feedback that the agent receives regarding the im-
pact of its actions on the environment while the discretiza-
tion of the action space may adversely affect the feasible ac-
tion space, resulting in sub-optimal policies. Furthermore,
although DPG can be used for continuous control, the gra-
dient estimator of DPG generally suffers from low sampling
efficiency and high variance in its gradient estimates which
results in slow convergence [Konda and Tsitsiklis, 2000].

Aiming at addressing these limitations, the PDDPG
method [Ye et al., 2020] features an actor-critic architecture
and employs two DNNs for different purposes [Lillicrap and
et al., 2016]. The critic network Qθ takes as input a state
st and action at and outputs a scalar estimate of the Q-value
function Qθ(st, at). The actor network µφ takes as input a
state st and implements the policy improvement task which
updates the policy with respect to the estimated Q-value func-
tion and outputs a continuous action µφ(st). Learning the
Q-value function in addition to the policy serves to signifi-
cantly reduce the variance in the gradient estimates compared
to DPG and consequently promises better convergence prop-
erties.

Concerning policy improvement, the common approach
adopted in QL and DQN is a greedy maximization of the Q-
value function. However, greedy policy improvement tends to
be intractable in multi-dimensional continuous action spaces
as it necessitates maximizing the Q-value function globally
at every time step. Instead, the proposed method employs
the actor network µ to generate an action µφ(st+1) for the
next state. The critic network then implements the policy
evaluation task, appraising the policy by producing an esti-
mate of the Q-value function with TD learning. Rather than
globally maximizing Qθ(st, at), the critic calculates gradi-
ents ∇aQθ(st, at) which indicate directions of change of ac-
tion resulting in higher estimated Q-values. These gradients
are computed via back-propagation through the critic, which
is more computational efficient than solving an optimization
problem in continuous action space.

Analogous to DQN, PDDPG incorporates target network
and the experience replay [Mnih and et al., 2015] as mech-

anisms to stabilize the training process. In the former, an
online and a target network are used to separate the Q-value
update and the target Q-value evaluation. The weights of the
target networks are updated by having them slowly track-
ing the online networks to constrain the target values to
change slowly so as to improve the stability of the learn-
ing process. In the latter, the sequentially generated train-
ing experiences are stored in a replay buffer and sampled to
train the DNNs, diminishing the temporal correlations ex-
isted in the replayed experiences. To further enhance the
sampling efficiency, the prioritized experience replay [Schaul
et al., 2016] method is employed which prioritizes learning
from experiences corresponding to higher absolute TD er-
ror which promises both improved policy and faster learning
speed. When prioritized sampling a minibatch of N transi-
tions {(sn, an, rn, sn+1)}Nn=1, the actor is updated by apply-
ing the policy gradient theorem [Silver et al., 2014]:

∇φJ(µφ) = N−1
∑
n∇aQθ(sn, µφ(sn))∇φµφ(sn) (2)

Then, by defining the absolute TD error |δn|, the critic is up-
dated by minimizing the loss function Lθ,

|δn| = |rn + γQθ′(sn+1, µ
′
φ(sn+1))−Qθ(sn, an)| (3)

Lθ = N−1
∑
nWnδ

2
n (4)

where Wn represents the weighting factors related to the
probability of sampling experience n based on |δn|.

4 Case Studies
4.1 Experiment Setup and Implementation
A real-world scenario developed by the UK government
[Pudjianto et al., 2013] is used to train and evaluate the pro-
posed energy management strategy. The data is provided over
a yearly horizon and hourly resolution. The electricity buy
price follows the time-of-use tariff structure provided in [Hy-
dro, 2019], partitioned into summer and winter periods (Fig-
ure 2). The sell price is set as the UK feed-in tariff [Ofgem,
2019]. The gas price is provided by a major UK gas sup-
plier [E.ON, 2019]. The average driving patterns of the EV
is taken from [UK Department for Transport, 2018]. Based
on which, the EV is assumed to make two journeys per day,
each is defined by a start time, end time and electrical energy
requirement. The EV is assumed connected to EG during the
period between the end of their second and the start of their
first journey. The technical parameters of EES, TES, EHP
and GB are taken from [Pudjianto et al., 2013].
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Figure 2: Time-of-use tariff structure.
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The one-year data-set is split into training, validation and
test sets. In each month, the first 20 days are used for training,
and the remaining days are selected for performance evalua-
tion. The values of most of the hyperparameters associated
with the design and training of the neural networks and the
design of the PER have been gathered from [Lillicrap and et
al., 2016] and [Schaul et al., 2016], respectively. We found
that the discount rate and the mini-batch size have the greatest
impact on the algorithm performance. To tune these hyperpa-
rameters, we split the training data and used the first 15 days
for training and the last 5 days for validation.

To demonstrate the value of PDDPG, we compare it with
DQN and DPG. Their implementations are briefly discussed
as follows. In order to apply DQN, we discretize all the action
dimensions, apart from the first three, in three integer values
representing 0%, 50%, and 100% energy usage. It should be
noted that although the action space can be discretized with
a higher granularity, it leads to an exponential growth of the
number of actions, and the resultant DQN is impractical to
train. In order to model continuous control, we represent the
probability distribution of agent’s action with a normal distri-
bution, and predict the mean and variance of it with a DNN.

4.2 Performance Evaluation
In this section, the proposed PDDPG approach is evaluated
and compared with several benchmark solutions, including
DQN, DPG, as well as three model-based approaches. The
first one employs a "theoretical" optimal controller which
minimizes the daily energy cost, assuming full knowledge of
the model and parameters of the MCES and perfect forecast
of the uncertain parameters. This controller formalizes the
problem as a mixed-integer linear program (MILP), the opti-
mal solution of which can be regarded as a lower bound on
the cost, indicating how far from the optimum the model-free
DRL controllers are. The second one is an hourly (“myopic”)
MILP which solves an hourly energy cost minimization prob-
lem that neglects the time-coupling operating characteristics
of all energy storage devices. The third one resorts to model
predictive control (MPC) [Kou et al., 2015]. At each time
step, the MPC computes the control action by solving a cost
minimization over a rolling horizon of 8 hours, and only the
first element of the obtained control sequence is implemented.
An LSTM network is used to forecast the exogenous system
parameters. We train each DRL method for 2× 104 episodes
for 10 different random seeds. Each episode represents a ran-
dom day from the training set and consists of 24 time steps.
We assess the quality of the energy management strategy ev-
ery 200 episodes during training by evaluating it on the test
set. Figure 3 illustrates the average daily cost over the 125
test days for the examined three DRL methods with 10 seeds.
The mean and the standard deviation of the average daily cost
over the 10 seeds are illustrated through the solid lines and
the shaded areas, respectively, in Figure 3. The cumulative
daily energy costs of the test 125 days under PDDPG and all
examined baseline methods are presented in Figure 4.

As illustrated in Figure 3, among the model-free DRL
approaches, PDDPG improves its policy in a stable fash-
ion and eventually only PDDPG manages to converge to a
near-optimum solution with a decreasing standard deviation.
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Figure 4: Cumulative daily costs of PDDPG and all the baseline
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PDDPG significantly outperforms benchmark DRL methods,
achieving the lowest average daily cost 520.95 pence and the
smallest standard deviation 3.48 pence at convergence. In rel-
ative terms, PDDPG achieves 16.75% / 5.20% lower average
daily cost and 25.32% / 44.10% lower standard deviation over
DQN / DPG, respectively. PDDPG and DPG both outperform
DQN towards the objective of cost saving. This is attributed
to their ability to model multi-dimensional continuous action
space, in contrast to the naïve discretization approach em-
ployed in DQN. DPG and PDDPG allow the AEMS to repre-
sent more accurate information from the entire action space
and thus discover more cost-effective management strategy
by exploiting it. Furthermore, PDDPG exhibits advantageous
convergence properties compared to DPG in terms of the ob-
tained average daily cost and learning stability. Its superior
performance could be explained by i) PDDPG implements
a critic, which estimates the Q-value function and appraises
each action that the agent takes. In contrast, DPG lacks the
policy evaluation step, resulting in high variance in its gra-
dient estimates and ii) PDDPG incorporates the PER mecha-
nism which more frequently replays experiences correspond-
ing to higher TD-error, improving the learning performance.

As depicted in Figure 4, the costs obtained by the four
benchmark approaches, DPG (blue solid line), MPC-LSTM
(magenta dashed line), Hourly-MILP (cyan dashed line),
and DQN (green solid line) are 7.24%, 10.08%, 15.83%,
and 21.71% higher than the theoretical optimum, respec-
tively. Among the model-based baselines, neglecting the
time-coupling operating characteristics of EES, TES and EV,
hourly MILP corresponds to the highest average daily cost.
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Figure 5: (a) balancing of ED, (b) usage of PV generation, (c) bal-
ancing of HD and (d) EV charging/discharging pattern for the exam-
ined summer day under PDDPG.

The cost under MPC-LSTM is second highest as a result of
accumulated forecasting errors of the exogenous parameters.
In comparison, PDDPG (red solid line) achieves an average
cost that is only 1.84% higher than the theoretical optimum
(black dashed line), outperforming significantly both model-
free DRL and model-based baselines.

To further investigate the performance of PDDPG in cop-
ing with the MCES uncertainties, we deploy the trained
model and analyse the obtained energy usage schedules of
the MCES for a typical summer and winter day selected in the
125 test days, as shown in Figures 5 and 6, respectively. The
summer day (Figure 5) is characterized by abundant PV gen-
eration and small HD. PDDPG learns to supply the majority
of ED from PV and EES discharge; as such, the end-user only
imports energy from EG during a few off-peak hours, leading
to a significant cost saving. The majority of the peak PV gen-
eration is stored in EES (which discharges at night to supply
ED when PV production is low or none) instead of selling to
EG because electricity buy price at night is still higher than
the sell price. EV is charged at lowest-priced early morning
hours to fulfill its energy requirement to travel. Furthermore,
PDDPG learns to exploit the flexibility offered by multiple
supply sources and storage devices so as to supply HD at zero
energy cost. Specifically, EHP is controlled to take advantage
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Figure 6: (a) balancing of ED, (b) usage of PV generation, (c) bal-
ancing of HD and d) EV charging/discharging pattern for the exam-
ined winter day under PDDPG.

of the abundant PV generation and the EES discharge to sup-
ply HD; additionally, the operation of TES is coupled with
EHP which enables a redistribution of HD across time, di-
minishing the need of EHP to source any electricity from EG.

The winter day (Figure 6), on the other hand, is character-
ized by scarce PV generation and large HD. As a result, the
overall energy import from EG and GG are both increased.
Nevertheless, PDDPG can adaptively adjust to the winter
condition towards the cost-saving objective by making very
efficient use of the limited PV generation during the mid-day
periods to supply ED and HD (through EHP and TES), and
also charge a significant amount of PV to EES, which later
discharges at peak ED and HD periods where the electric-
ity buy price is also at its highest. Additionally, apart from
fulfilling EV’s traveling energy requirement, more energy is
charged to the EV battery during off-peak periods and dis-
charged to supply ED before the first and after the second
EV journey when the buy price adopts its mid-peak value
and the PV generation is absent, significantly shaving the
ED peak. Furthermore, during the periods where the elec-
tricity buy price is relatively low, and driven by the consider-
ably higher conversion efficiency of EHP (compared to GB),
PDDPG learns to source the supply of HD from EHP. During
the periods where electricity buy price is at its peak, it makes
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efficient use of i) GB to convert gas to heat and ii) TES to
charge from EHP during the off-peak periods and discharge
to supply HD at these periods.

4.3 Value of Continuous Energy Management
This section analyzes in more depth the physical significance
of PDDPG to model continuous actions in the context of the
examined problem by comparing to the DQN method. Figure
7 illustrates the energy scheduling decisions of the MCES ob-
tained using DQN for the examined summer day.

Due to the discretization of actions aest and apv,hpt , the end-
user imports more energy from EG, leading to a higher cost
of 238.86 pence (PDDPG: 26.00 pence) for supplying ED.
DQN also makes inefficient use of the bountiful PV produc-
tion compared to PDDPG with only a small amount of PV
supplied to EHP and charged to EES, but a significant amount
sold to EG. Consequently, to meet the majority of HD, EHP is
required to purchase a significant amount of electricity from
EG, leading to a sharp cost increase of 80.50 pence (PDDGP:
0) for supplying HD. Furthermore, TES can only charge / dis-
charge at peak HD periods resultant from the discretisation
of action atst , limiting its flexibility in redistributing HD in
time. Lastly, due to the discretisation of action aevt , EV needs
to charge for 3 hours at the maximum limit (3kW) to fulfill
its daily traveling energy requirement (6.6kWh), as indicated
in Figure 5(d), contributing to a higher cost of 58.50 pence
(PDDGP: 41.75 pence) for EV charging.

Overall, although the MCES obtains a higher revenue from
selling PV surplus to EG, the daily energy cost of DQN
(239.96 pence) is approximately 3.68 times as high as the one
of PDDPG (65.22 pence). Furthermore, the end-user’s total
energy demand placed on the grids of DQN (42.19kWh) is
around 4.05 times as high as the one of PDDPG (10.42kWh).
It can be concluded that learning in discrete action space may
result in sub-optimal management strategies where the non-
convex operating characteristics of different storage devices
and complex interactions between different energy carriers
must be taken into account. On the other hand, PDDPG pre-
serves all the relevant information concerning the entire ac-
tion space, and thus is capable of learning more cost-effective
management strategies.

5 Conclusions
This paper showcases the first application of PDDPG to real-
time autonomous energy management for a MCES. The prob-
lem is formalised as a MDP which takes into account the un-
certainties stemming from both the supply and demand sides
of the MCES. The proposed approach is model-free and data-
driven, which does not rely on knowledge of the system mod-
eling of the MCES and any forecasted exogenous informa-
tion. The proposed approach respects the nature of the ex-
amined problem by posing it multi-dimensional continuous
state and action spaces, enabling the AEMS to receive accu-
rate feedback regarding the impact of its energy management
strategy on the status of the MCES, and devise more cost-
effective strategies by exploiting the entire action domain,
also accounting for the effect of non-convex operating char-
acteristics of the MCES.
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Figure 7: (a) balancing of ED, (b) usage of PV generation, (c) bal-
ancing of HD and (d) EV charging/discharging pattern for the exam-
ined summer day under DQN.

Case studies on a real-world scenario have provided nu-
merous new and valuable insights around the value of the pro-
posed energy management strategy. Quantitative results have
demonstrated that PDDPG manages to converge to a near-
optimum solution and achieves a significantly higher cost
savings for the MCES compared with existing model-free
DRL as well as model-based baselines. Furthermore, PDDPG
enables representation of real-time energy management poli-
cies to be constructed that can adaptively cope with system
uncertainties towards the cost-saving objective and general-
ize well to previously unseen situations.

References
[Basit et al., 2017] Abdul Basit, Guftaar A. S. Sidhu, Anzar Mah-

mood, and Feifei Gao. Efficient and Autonomous Energy Man-
agement Techniques for the Future Smart Homes. IEEE Trans.
on Smart Grid, 8(2):917–926, 2017.

[Berlink et al., 2015] Heider Berlink, Nelson Kagan, and Anna
H. R. Costa. Intelligent Decision-Making for Smart Home En-
ergy Management. J. Intell. Robot. Syst., 80(1):331–354, 2015.

[Bozchalui et al., 2012] Mohammad C. Bozchalui, Syed A.
Hashmi, Hussin Hassen, Claudio A. Canizares, and Kankar
Bhattacharya. Optimal Operation of Residential Energy Hubs

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

345



in Smart Grids. IEEE Trans. on Smart Grid, 3(4):1755–1766,
2012.

[Chen and Su, 2018] Tao Chen and Wencong Su. Local Energy
Trading Behavior Modeling with Deep Reinforcement Learning.
IEEE Access, 6:62806–62814, 2018.

[Conejo et al., 2010] Antonio J Conejo, Miguel Carrión, Juan M
Morales, et al. Decision Making Under Uncertainty in Electricity
Markets, volume 1. Springer, 2010.

[E.ON, 2019] E.ON. Fix Online v27 Gas Tariff, 2019.
[Hydro, 2019] London Hydro. Smart Meters and Time-of-Use

Rates, 2019.
[Kim and Lim, 2018] Sunyong Kim and Hyuk Lim. Reinforcement

Learning Based Energy Management Algorithm for Smart En-
ergy Buildings. Energies, 11(8):1–19, 2018.

[Konda and Tsitsiklis, 2000] Vijay R Konda and John N Tsitsiklis.
Actor-critic algorithms. In Proc. NIPS, pages 1008–1014, CO,
USA, 2000.

[Kou et al., 2015] Peng Kou, Deliang Liang, Lin Gao, and Feng
Gao. Stochastic coordination of plug-in electric vehicles and
wind turbines in microgrid: A model predictive control approach.
IEEE Trans. on Smart Grid, 7(3):1537–1551, 2015.

[Li et al., 2016] Yu-Shuai Li, Hua-Guang Zhang, Bo-Nan Huang,
and Fei Teng. Distributed Optimal Economic Dispatch Based on
Multi-Agent System Framework in Combined Heat and Power
Systems. Appl. Sci., 6(10):308, 2016.

[Liang et al., 2013] Yong Liang, Long He, Xinyu Cao, and Zuo-
Jun Shen. Stochastic Control for Smart Grid Users with Flexible
Demand. IEEE Trans. on Smart Grid, 4(4):2296–2308, 2013.

[Lillicrap and et al., 2016] Timothy P. Lillicrap and et al. Continu-
ous Control with Deep Reinforcement Learning. In Proc. ICLR,
pages 1–14, San Juan, US, 2016.

[Mancarella, 2014] Pierluigi Mancarella. MES (Multi-Energy Sys-
tems): An Overview of Concepts and Evaluation Models. En-
ergy, 65:1–17, 2014.

[Mason and Grijalva, 2019] Karl Mason and Santiago Grijalva. A
Review of Reinforcement Learning for Autonomous Building
Energy Management. Comput. Electr. Eng., 78:300–312, 2019.

[Mnih and et al., 2015] Volodymyr Mnih and et al. Human-
Level Control Through Deep Reinforcement Learning. Nature,
518(7540):529–533, 2015.

[Mocanu et al., 2019] Elena Mocanu, Decebal C. Mocanu,
Phuong H. Nguyen, Antonio Liotta, Michael E. Webber,
Madeleine Gibescu, and Johannes G. Slootweg. On-Line Build-
ing Energy Optimization Using Deep Reinforcement Learning.
IEEE Trans. on Smart Grid, 10(4):3698–3708, 2019.

[Moghaddam et al., 2016] Iman G. Moghaddam, Mohsen Saniei,
and Elaheh Mashhour. A Comprehensive Model for Self-
Scheduling an Energy Hub to Supply Cooling, Heating and Elec-
trical Demands of a Building. Energy, 94:157–170, 2016.

[Ofgem, 2019] Ofgem. Feed-In Tariff (FIT) Rates, 2019.
[Pazouki et al., 2014] Samaneh Pazouki, Mahmoud-Reza Haghi-

fam, and Albert Moser. Uncertainty Modeling in Optimal Oper-
ation of Energy Hub in Presence of Wind, Storage and Demand
Response. Int. J. Elec. Power., 61:335–345, 2014.

[Pudjianto et al., 2013] Danny Pudjianto, Marko Aunedi, Predrag
Djapic, and Goran Strbac. Whole-Systems Assessment of the
Value of Energy Storage in Low-Carbon Electricity Systems.
IEEE Trans. on Smart Grid, 5(2):1098–1109, 2013.

[Rastegar and Fotuhi-Firuzabad, 2015] Mohammad Rastegar and
Mahmud Fotuhi-Firuzabad. Load Management in a Residential
Energy Hub with Renewable Distributed Energy Resources. En-
ergy and Buildings, 107:234–242, 2015.

[Schaul et al., 2016] Tom Schaul, John Quan, Ioannis Antonoglou,
and David Silver. Prioritized Experience Replay. In Pro. ICLR,
pages 1–21, San Juan, US, 2016.

[Sedighizadeh et al., 2018] Mostafa Sedighizadeh, Masoud Es-
maili, and Nahid Mohammadkhani. Stochastic Multi-Objective
Energy Management in Residential Microgrids with Combined
Cooling, Heating, and Power Units Considering Battery Energy
Storage Systems and Plug-in Hybrid Electric Vehicles. J. Clean.
Prod., 195:301–317, 2018.

[Silver et al., 2014] David Silver, Guy Lever, Nicolas Heess,
Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deter-
ministic Policy Gradient Algorithms. In Proc. ICML, pages 1–9,
Beijing, China, 2014.

[UK Department for Transport, 2018] UK Department for Trans-
port. National Travel Survey, 2018.

[Vahid-Pakdel et al., 2017] MJ Vahid-Pakdel, Sayyad Nojavan,
B Mohammadi-Ivatloo, and Kazem Zare. Stochastic Optimiza-
tion of Energy Hub Operation with Consideration of Thermal En-
ergy Market and Demand Response. Energy Convers. Manag.,
145:117–128, 2017.

[Wan et al., 2019] Zhiqiang Wan, Hepeng Li, Haibo He, and Danil
Prokhorov. Model-Free Real-Time EV Charging Scheduling
Based on Deep Reinforcement Learning. IEEE Trans. on Smart
Grid, 10(5):5246–5257, 2019.

[Wei et al., 2017] Tianshu Wei, Yanzhi Wang, and Qi Zhu. Deep
Reinforcement Learning for Building HVAC Control. In Proc.
DAC, pages 1–7, Austin, USA, 2017.

[Wen et al., 2015] Zheng Wen, Daniel O’Neill, and Hamid Maei.
Optimal Demand Response Using Device-Based Reinforcement
Learning. IEEE Trans. on Smart Grid, 6(5):2312–2324, 2015.

[Wu et al., 2018] Di Wu, Guillaume Rabusseau, Vincent Francois-
lavet, Doina Precup, and Benoit Boulet. Optimizing Home En-
ergy Management and Electric Vehicle Charging with Reinforce-
ment Learning. In Proc. ALA, pages 1–8, Stockholm, Sweden,
2018.

[Ye et al., 2014] Yujian Ye, Dimitrios Papadaskalopoulos, and
Goran Strbac. Factoring flexible demand non-convexities in elec-
tricity markets. IEEE Trans. on Power Syst., 30(4):2090–2099,
2014.

[Ye et al., 2019] Yujian Ye, Dawei Qiu, Jing Li, and Goran Str-
bac. Multi-period and multi-spatial equilibrium analysis in im-
perfect electricity markets: A novel multi-agent deep reinforce-
ment learning approach. IEEE Access, 7:130515–130529, 2019.

[Ye et al., 2020] Yujian Ye, Dawei Qiu, Mingyang Sun, Dimitrios
Papadaskalopoulos, and Goran Strbac. Deep reinforcement
learning for strategic bidding in electricity markets. IEEE Trans.
on Smart Grid, 11(2):1343–1355, 2020.

[Zhang et al., 2017] Huaguang Zhang, Yushuai Li, David Wen-
zhong Gao, and Jianguo Zhou. Distributed optimal energy
management for energy internet. IEEE Trans. Ind. Informat.,
13(6):3081–3097, 2017.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

346


	Introduction
	Background and Motivation
	Related Work
	Contributions

	Energy Management as an MDP
	Proposed Energy Management Strategy
	Case Studies
	Experiment Setup and Implementation
	Performance Evaluation
	Value of Continuous Energy Management

	Conclusions

