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Abstract
Nguyen et al. [2016] introduced altruistic hedonic
games in which agents’ utilities depend not only
on their own preferences but also on those of their
friends in the same coalition. We propose to extend
their model to coalition formation games in gen-
eral, considering also the friends in other coalitions.
Comparing the two models, we argue that exclud-
ing some friends from the altruistic behavior of an
agent is a major disadvantage that comes with the
restriction to hedonic games. After introducing our
model, we additionally study some common stabil-
ity notions and provide a computational analysis of
the associated verification and existence problems.

1 Introduction
We consider coalition formation games where agents have
to form coalitions based on their preferences. For hedonic
coalition formation games, Dimitrov et al. [2006] proposed
the friends-and-enemies encoding with friend-oriented pref-
erences which involves a network of friends, a (simple) graph
whose vertices are the players and where two players are con-
nected by an edge exactly if they are friends of each other.
Players not connected by an edge consider each other as en-
emies. Under friend-oriented preferences, player i prefers a
coalition C to a coalition D if C contains more of her friends
than D, or C and D contain equally many friends but C con-
tains fewer enemies than D. This is a special case of the
additive encoding [Aziz et al., 2013]. For more background
on these two compact representations, see Section 2 and the
book chapter by Aziz and Savani [2016].

Based on friend-oriented preferences, Nguyen et al. [2016]
introduced altruistic hedonic games where agents gain util-
ity not only from their own satisfaction but also from their
friends’ satisfaction. However, Nguyen et al. [2016] specif-
ically considered hedonic games only, which require that an
agent’s utility only depends on her own coalition. In their in-
terpretation of altruism, the utility of an agent is composed of
the agent’s own valuation of her coalition and the valuations
of all this agent’s friends in this coalition.

Inspired by the idea of altruism, we extend their model to
coalition formation games in general. However, we propose a
model where agents behave altruistically to all their friends,
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Figure 1: A network of friends

not only to the friends in the same coalition. Not restricting
to hedonic games, we aim to capture a more natural notion
of altruism where none of an agent’s friends is excluded from
her altruistic behavior. To become acquainted with this idea
of altruism, consider the following coalition formation game,
represented by the network of friends in Figure 1.

Considering coalition structures Γ = {{1, 2, 3}, {4}} and
∆ = {{1, 2, 4}, {3}}, it becomes clear that player 1 is indif-
ferent between coalitions {1, 2, 3} and {1, 2, 4} under friend-
oriented preferences as both coalitions contain one of her
friends and one of her enemies. Under altruistic hedonic pref-
erences [Nguyen et al., 2016], however, player 1 behaves al-
truistically to her friend 2 (who is friends with 3 but not with
4) and therefore prefers {1, 2, 3} to {1, 2, 4}. Now, consider
Γ′ = {{1}, {2, 3}, {4}} and ∆′ = {{1}, {2, 4}, {3}}. Intu-
itively, one would still expect 1 to behave altruistically to her
friend 2. However, it becomes obvious that under any hedo-
nic preference (which requires that player 1’s preference only
depends on her own coalition), player 1 would be indifferent
between Γ′ and ∆′. To model a global level of altruism, we
release the restriction to hedonic games and introduce altru-
istic coalition formation where agents behave altruistically to
all their friends, independently of their current coalition.

Related Work. Coalition formation games, as considered
here, are closely related to the subclass of hedonic games
which has been broadly studied in the literature, addressing
the issue of compactly representing preferences (some repre-
sentations are listed in Section 2), conducting axiomatic anal-
yses, dealing with different notions of stability, and investi-
gating the computational complexity of the associated prob-
lems (see, e.g., the book chapter by Aziz and Savani [2016]).
Previously, altruism in games and social contexts of games
have been considered mainly for noncooperative games.
Most prominently, Ashlagi et al. [2008] introduced social
context games where a strategic game is embedded in a so-
cial context that is modeled by a graph of neighborhood.
Examples include ranking games [Brandt et al., 2009] and
coalitional congestion games [Hayrapetyan et al., 2006;
Kuniavsky and Smorodinsky, 2014]. In particular, in the so-
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cial context that Ashlagi et al. [2008] call “surplus collabora-
tion,” players seek to maximize the average payoff of them-
selves and their friends. Still, their model differs from ours in
that they consider noncooperative games. Other work study-
ing altruism in noncooperative games is due to Hoefer and
Skopalik [2009], Chen et al. [2011], Apt and Schäfer [2014],
and Rahn and Schäfer [2013]. Based on altruistic hedonic
games [Nguyen et al., 2016], Schlueter and Goldsmith [2018]
defined super altruistic hedonic games, related to social dis-
tance games due to Brânzei and Larson [2011], where friends
have a different impact on an agent based on their distances
in the underlying network of friends. Monaco et al. [2018;
2019] studied hedonic games with social context and modi-
fied the fractional hedonic games of Aziz et al. [2019] based
on egalitarian social welfare. While in their models players
care also about their friends’ happiness, they focus on Nash
equilibria, the price of anarchy, and the price of stability.
Our Contribution. Conceptually, we extend the model of
altruism proposed by Nguyen et al. [2016] from hedonic
games to general coalition formation games. We argue how
this captures a more global notion of altruism. Technically,
we study the common stability concepts in this model and
analyze the associated verification and existence problems in
terms of their computational complexity.

2 The Model
Coalition Formation Games. LetN = {1, . . . , n} be a set
of agents (or players). Each subset ofN is called coalition. A
coalition structure Γ is a partition of N and we denote the set
of all possible coalition structures by CN . For a player i ∈ N
and a coalition structure Γ ∈ CN , Γ(i) denotes the coalition in
Γ containing i. The objective of a coalition formation game is
to form a coalition structure based on the agents’ preferences.
Hence, a coalition formation game is a pair (N,�), where
N = {1, . . . , n} is a set of agents, � = (�1, . . . ,�n) is a
profile of preferences, and every preference �i ∈ CN × CN
is a complete weak order over all possible coalition struc-
tures. Note that hedonic games are a special case of coalition
formation games where an agent’s preference relation only
depends on the coalitions containing herself. In a hedonic
game (N,�), agent i ∈ N is indifferent between any two
coalition structures Γ and ∆ as long as her coalition is the
same, i.e., Γ(i) = ∆(i) =⇒ Γ ∼i ∆. Therefore, the pref-
erence of agent i ∈ N is usually represented by a complete
weak order over the set of coalitions containing i.
The “Friends and Enemies” Encoding. Since |CN |, the
number of all possible coalition structures, is exponential
in the number of agents, it is not reasonable to ask every
agent for her complete preference over CN . Instead, we are
looking for a way to compactly represent the agents’ pref-
erences. In the literature, many such representations have
been proposed for hedonic games such as the additive en-
coding [Sung and Dimitrov, 2010; Aziz et al., 2013; Woeg-
inger, 2013], the singleton encoding due to Cechlárová and
Romero-Medina [2001] and further studied by Cechlárová
and Hajduková [2003], the “friends and enemies” encoding
due to Dimitrov et al. [2006], and FEN-hedonic games due to
Lang et al. [2015] and also used by Kerkmann et al. [2020;

2019] and Rothe et al. [2018]. Here, we use the friend-and-
enemy encoding due to Dimitrov et al. [2006]. We focus on
their friend-oriented model and will later adapt it to our al-
truistic model. In the friend-oriented model, the preferences
of the agents in N are given by a network of friends, i.e., a
(simple) graph G = (N,A) whose vertices are the players
and where two players i, j ∈ N are connected by an edge
{i, j} ∈ A exactly if they are each other’s friends. Agents
not connected by an edge consider each other as enemies.
For an agent i ∈ N , we denote the set of i’s friends by
Fi = {j ∈ N | {i, j} ∈ A} and the set of i’s enemies
by Ei = N \ (Fi ∪ {i}). Under friend-oriented preferences
as defined by Dimitrov et al. [2006], players prefer coalitions
with more friends to those with fewer friends and, if there are
equally many friends they prefer the coalition with fewer en-
emies: C �F

i D ⇐⇒ |C ∩ Fi| > |D ∩ Fi| or (|C ∩ Fi| =
|D ∩ Fi| and |C ∩ Ei| ≤ |D ∩ Ei|). This can also be repre-
sented additively. Assigning a value of n to each friend and a
value of −1 to each enemy, agent i ∈ N values coalition C,
containing herself, with vi(C) = n|C ∩Fi| − |C ∩Ei|. Note
that −(n − 1) ≤ vi(C) ≤ n(n − 1), and vi(C) > 0 if and
only if there is at least one friend of i’s in C. For a given
coalition structure Γ ∈ CN , we also write vi(Γ) for player i’s
value of Γ(i). We, furthermore, denote the sum of the values
of i’s friends by sumF

i (Γ) =
∑

f∈Fi
vf (Γ).

The Altruistic Model. Based on this friend-oriented
model, we will define altruistic coalition formation games,
while considering three degrees of altruism as defined by
Nguyen et al. [2016]. However, we adapt them to our model,
extending the agents’ altruism to all their friends.

• Selfish First (SF): Agents rank different coalition struc-
tures mainly based on their own valuations. Only in
the case of a tie between two coalition structures, their
friends’ valuations are considered as well.

• Equal Treatment (EQ): Agents treat themselves and
their friends the same. That means that an agent i ∈ N
and all of i’s friends have the same impact on i’s utility.

• Altruistic Treatment (AL): Agents rank coalition
structures based on their friends’ valuations. They only
consider their own valuations in the case of a tie.

Formally, for an agent i ∈ N and a coalition structure
Γ ∈ CN , we denote i’s utility for Γ under selfish-first pref-
erences by uSFi (Γ), under equal treatment by uEQ

i (Γ), and
under altruistic treatment by uAL

i (Γ). They are defined as

uSFi (Γ) = M · vi(Γ) + sumF
i (Γ) with M ≥ n3,

uEQ
i (Γ) = vi(Γ) + sumF

i (Γ), and

uAL
i (Γ) = vi(Γ) +M · sumF

i (Γ) with M ≥ n2.

For any coalition structures Γ,∆ ∈ CN , agent i’s selfish-first
preference is then defined by Γ �SF

i ∆ ⇐⇒ uSFi (Γ) ≥
uSFi (∆). Her equal- and altruistic-treatment preferences
(�EQ

i ; �AL
i ) are defined analogously, using uEQ

i and uAL
i .

The factor M , which is used for the selfish-first model and
for altruistic treatment, ensures that an agent’s utility is first
determined by the agent’s own valuation in the selfish-first
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Figure 2: Network of friends for Example 1

vi(Γ) 1 2 3 4 5 sumF
1 (Γ)

Γ1 15 3 9 9 0 21

Γ2 5 5 10 10 10 25

Table 1: Comparison of two coalition structures in Example 1

model and by the friends’ valuations in the altruistic model.
Similarly as Nguyen et al. [2016] prove the corresponding
properties in hedonic games, we can show that for M ≥ n3,
vi(Γ) > vi(∆) implies Γ �SF

i ∆, and for M ≥ n2,
sumF

i (Γ) > sumF
i (∆) implies Γ �AL

i ∆. An altruis-
tic coalition formation game (ACFG) is a coalition formation
game where the agents’ preferences were obtained by a net-
work of friends via one of these three cases of altruism. For
any ACFG, the players’ utilities can obviously be computed
in polynomial time.

Comparison to Altruism in Hedonic Games. Nguyen et
al. [2016] focus on altruism in hedonic games where an
agent’s utility only depends on her own coalition. As we have
already seen from the example in the introduction, there are
some aspects of altruistic behavior that cannot be realized by
hedonic games. The following example shows that our model
crucially differs from the model due to Nguyen et al. [2016].

Example 1 Consider an ACFG with five agents, N =
{1, 2, 3, 4, 5}, and the network of friends in Figure 2. Ta-
ble 1 shows the values vi(Γ), 1 ≤ i ≤ 5, and the sum
of the values of player 1’s friends for coalition structures
Γ1 = {{1, 2, 3, 4}, {5}} and Γ2 = {{1, 2}, {3, 4, 5}}.

Under the selfish-first model, agent 1 prefers Γ1 to Γ2

(Γ1 �SF
1 Γ2) because in Γ1 she is together with all her

friends while in Γ2 she is only together with one friend.
Under altruistic treatment, however, she prefers Γ2 to Γ1

(Γ2 �AL
1 Γ1). She would rather form a coalition with only 2

than being with all her friends because 2 doesn’t like 3 and 4,
and 3 and 4 don’t like 2. Since 1 is altruistic to all her friends,
she prefers the coalition structure that is valued higher by her
friends. Actually, all of agent 1’s friends have a higher valu-
ation for Γ2. Not paying attention to this fact, the altruistic-
treatment model of Nguyen et al. [2016] crucially differs. In
their model, agents only consider friends in their own coali-
tion. Thus, under their model of altruistic treatment, 1 prefers
Γ1 to Γ2. She would rather be with 2, 3, and 4 because the
average valuation of her friends in her coalition would then
be 21

3 = 7 instead of 5
1 = 5 when being alone with 2.

Considering Example 1, an agent does not really seem to
act altruistically if she prefers a coalition structure that makes
all her friends worse off. To avoid this kind of behavior, we
focus on general coalition formation games. In fact, all pref-
erences that were obtained by one of the three degrees of al-

truism, fulfill friend-oriented unanimity: For coalition struc-
tures Γ,∆ ∈ CN , we say �i is friend-orientedly unanimous
if va(Γ) > va(∆) for each a ∈ Fi ∪ {i} implies Γ �i ∆.
Comparing coalition structures by concentrating only on the
coalitions that the considered agent is part of, the equal- and
altruistic-treatment models by Nguyen et al. [2016] are not
friend-orientedly unanimous.1

3 Stability in ACFGs
The main question in coalition formation games is which
coalition structures might form. There are several stability
concepts that are well-studied for hedonic games, each indi-
cating whether a given coalition structure would be accepted
by the agents or if there are other coalition structures that
are more likely to form. Although we consider more general
coalition formation games, we can easily adapt these defini-
tions to our framework.

Stability Notions. Let (N,�) be an ACFG with agents
N = {1, . . . , n} and preferences � = (�1, . . . ,�n) ob-
tained from a network of friends via one of the three degrees
of altruism. A coalition structure Γ is said to be

• Nash stable if no player prefers moving to another coali-
tion; formally: (∀i ∈ N)(∀C ∈ Γ ∪ {∅})[Γ �i

Γi→C ], where Γi→C denotes the coalition structure that
arises from Γ when moving i to C, i.e., Γi→C = Γ \
{Γ(i), C} ∪ {Γ(i) \ {i}, C ∪ {i}};
• individually rational if no player would prefer being

alone: (∀i ∈ N)[Γ �i Γi→∅];

• individually stable if no player prefers moving to another
coalition and could deviate to it without harming any
player in that coalition: (∀i ∈ N)(∀C ∈ Γ ∪ {∅})

[
Γ �i

Γi→C ∨ (∃j ∈ C)[Γ �j Γi→C ]
]
;

• contractually individually stable if no player prefers an-
other coalition and could deviate to it without harm-
ing any player in the new or the old coalition: (∀i ∈
N)(∀C ∈ Γ ∪ {∅})

[
Γ �i Γi→C ∨ (∃j ∈ C)[Γ �j

Γi→C ] ∨ (∃k ∈ Γ(i))[Γ �k Γi→C ]
]
;

• totally individually stable if no player prefers another
coalition and could deviate to it without harming any
other player: (∀i ∈ N)(∀C ∈ Γ ∪ {∅})

[
Γ �i Γi→C ∨

(∃l ∈ N \ {i})[Γ �l Γi→C ]
]
;

• core stable if no nonempty coalition blocks Γ: (∀C ⊆
N,C 6= ∅)(∃i ∈ C)[Γ �i ΓC→∅], where ΓC→∅ denotes
the coalition structure arising from Γ when all players in
C leave their coalitions to form the new coalition C, i.e.,
ΓC→∅ = Γ \ {Γ(j)|j ∈ C} ∪ {Γ(j) \C|j ∈ C} ∪ {C};
• strictly core stable if no coalition weakly blocks Γ:

(∀C ⊆ N)(∃i ∈ C)[Γ �i ΓC→∅] ∨ (∀i ∈ C)[Γ ∼i

ΓC→∅];

• popular if for every other coalition structure ∆, at least
as many players prefer Γ to ∆ as there are players who

1Note that they define a restricted version of friend-oriented una-
nimity that only considers the agents’ own coalitions.
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stability notion VERIFICATION EXISTENCE

ind. rationality in P1 trivial: YES1

Nash stability in P1 trivial: YES1

ind. stability in P1 trivial: YES1

core stability coNP-compl.2,3 trivial: YES
str. core stability in coNP1 trivial: YES

popularity coNP-compl.2,3 not trivial1

str. popularity coNP-compl.2,3 coNP-hard

perfectness in P2,3 in P2

1 This result also holds for �EQ and �AL.
2 In coNP for �EQ .
3 In coNP for �AL.

Table 2: Results for α-VERIFICATION and α-EXISTENCE

prefer ∆ to Γ: (∀∆ ∈ CN ,∆ 6= Γ)
[
|{i ∈ N | Γ(i) �i

∆(i)}| ≥ |{i ∈ N | ∆(i) �i Γ(i)}|
]
;

• strictly popular if for every other coalition structure ∆,
more players prefer Γ to ∆ than there are players who
prefer ∆ to Γ: (∀∆ ∈ CN ,∆ 6= Γ)

[
|{i ∈ N | Γ(i) �i

∆(i)}| > |{i ∈ N | ∆(i) �i Γ(i)}|
]
; and

• perfect if there is no player who prefers any coalition
structure to Γ: (∀i ∈ N)(∀∆ ∈ CN )[Γ �i ∆].

Note that “totally individual stability” is a new notion which
we introduce here. It strengthens the notion of contractually
individual stability and makes sense in the context of coalition
formation games because players’ preferences may also be
influenced by coalitions they are not part of.

4 How Hard are Verification and Existence?
We now study the associated verification and existence prob-
lems and conduct a computational analysis for them. Given a
stability concept α, these problems are defined as follows.
• α-VERIFICATION: Given an ACFG (N,�) and a coali-

tion structure Γ ∈ CN , does Γ satisfy α?
• α-EXISTENCE: Given an ACFG (N,�), does there ex-

ist a coalition structure Γ ∈ CN that satisfies α?
Table 2 summarizes the results for these problems un-

der �SF . We will also give results for �EQ and �AL in this
section. In Table 2, however, we only mark if the results for
�EQ and �AL match those for �SF .
Individual Rationality. Verifying individual rationality is
easy: We just need to iterate over all agents and compare two
coalition structures in each iteration. Since players’ utilities
can be computed in polynomial time, individual rationality
can be verified in time polynomial in the number of agents.

The existence problem is trivial, since Γ = {{1}, . . . , {n}}
is always individually rational. Furthermore, we give the
following characterization for all three degrees of altruism,
omitting the proof due to space constraints.

Theorem 2 Let (N,�) be an ACFG and let Γ be a coalition
structure. Γ is individually rational if and only if it holds for

1 2 3 4 5 6 7 8 9 10

Figure 3: Network of friends for Example 4

all players i ∈ N that Γ(i) contains a friend of i’s or i is
alone, formally: (∀i ∈ N)[Γ(i) ∩ Fi 6= ∅ ∨ Γ(i) = {i}].
Nash Stability. Since there are at most n coalitions in a
coalition structure Γ ∈ CN , we can verify Nash stability
in polynomial time: We just iterate over all agents i ∈ N
(|N | = n) and all coalitions C ∈ Γ∪{∅} (at most n+ 1) and
check whether Γ �i Γi→C . Since we can check a player’s
preference over two coalition structures in polynomial time
and since we have at most a quadratic number of iterations
(n · (n+ 1)), verification is in P for Nash stability.

Existence is trivially in P for Nash stability; indeed, the
same example that Nguyen et al. [2016] gave for altruistic
hedonic games works here as well. Specifically, for C =
{i ∈ N | Fi = ∅} = {c1, . . . , ck} the coalition structure
{{c1}, . . . , {ck}, N \ C} is Nash stable.

Individual Stability. For individual stability, contractually
individual stability, and totally individual stability, existence
is trivially in P. Nash stability implies all these three con-
cepts, hence, the Nash stable coalition structure from above
is also (contractually; totally) individually stable.

Verification is also in P for these concepts. Similarly to
Nash stability, we iterate over all players and all coalitions
and check the particular conditions in polynomial time.

Core Stability and Strict Core Stability. We now show
that the existence problem is trivial for (strict) core stability if
the preferences are obtained via the selfish-first model, again
omitting the proof due to space constraints.

Theorem 3 Let (N,�SF ) be an ACFG where the prefer-
ences�SF were obtained from a network of friendsG via the
selfish-first model. Let further C1, . . . , Ck be the vertex sets
of the connected components of G. Then Γ = {C1, . . . , Ck}
is strictly core stable (and thus core stable).

However, the coalition structure from Theorem 3 is not al-
ways core stable under equal treatment or altruistic treatment.

Example 4 Let N = {1, . . . , 10} and let the preferences be
given by the network of friends G shown in Figure 3.

Consider the coalition structure consisting of the con-
nected components of G, i.e., Γ = {{1, . . . , 10}}, and the
coalition C = {8, 9, 10}. C blocks Γ under equal and al-
truistic treatment. To see this, consider how players 7 to 10
value Γ and ΓC→∅ and compute the utilities for players 8, 9,
and 10. Omitting the details, for all i ∈ C = {8, 9, 10} we
have uEQ

i (Γ) < uEQ
i (ΓC→∅), which implies Γ ≺EQ

i ΓC→∅,
and that sumF

i (Γ) < sumF
i (ΓC→∅), which implies Γ ≺AL

i
ΓC→∅. Hence, C blocks Γ for equal and altruistic treatment.

Theorem 5 (Strict) core stability verification can be done in
coNP for all three degrees of altruism. For the selfish-first
model, core stability verification is even coNP-complete.

The proof of Theorem 5 is omitted due to space constraints.
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Figure 4: Network of friends for Example 6

Popularity and Strict Popularity. Under all three degrees
of altruism, there does not always exist a (strictly) popular
coalition structure.

Example 6 Let N = {1, . . . , 7} and let the preferences be
given by the network of friends shown in Figure 4.

Then there is no (strictly) popular coalition structure for
any of the three degrees of altruism. Since perfectness implies
popularity, there is also no perfect coalition structure.

Note that there are 877 possible coalition structures for this
game2 and that we tested this example using brute force.

We now show that under the selfish-first model it is hard to
verify if a given coalition structure is (strictly) popular and it
is also hard to decide whether there exists a strictly popular
coalition structure for a given ACFG.

Theorem 7 Under the selfish-first model, strict popularity
verification is coNP-complete, strict popularity existence is
coNP-hard, and popularity verification is coNP-complete.

Proof. Recall that a coalition structure Γ ∈ CN is not
strictly popular in an ACFG (N,�) (given by a network
of friends G) if and only if there is a coalition structure
∆ ∈ CN ,∆ 6= Γ, such that |{i ∈ N | Γ(i) �i ∆(i)}| ≤
|{i ∈ N | ∆(i) �i Γ(i)}|. We can nondeterministically
guess a coalition structure ∆ and verify the above condition in
polynomial time, so strict popularity verification is in coNP.

To show coNP-hardness of strict popularity verification,
we use a restricted version of EXACT COVER BY 3-SETS
(X3C), which we denote by RX3C and which is shown
to remain NP-complete by Gonzalez [1985]. We provide
a polynomial-time many-one reduction from RX3C to the
complement of strict popularity verification. An instance
(B,S ) of RX3C consists of a set B = {1, . . . , 3k} and a
collection S = {S1, . . . , S3k} of 3-element subsets of B
(Si ⊆ B and |Si| = 3 for 1 ≤ i ≤ 3k). The instance is
restricted such that each element of B occurs in exactly three
sets in S . Given this instance, the question is whether S
contains an exact cover for B, i.e., a subset S ′ ⊆ S such
that every element of B occurs in exactly one set in S ′.

Given an instance (B,S ) of RX3C, we construct the
following ACFG. The set of players is given by N =
{α1, . . . , α5k} ∪ {βb | b ∈ B} ∪ {ζS , ηS | S ∈ S }.

Let Alpha = {α1, . . . , α5k}, Beta = {βb | b ∈ B}, and
QS = {ζS , ηS} for each S ∈ S . The network of friends is
given in Figure 5, where a dashed circle around a group of
players means that all these players are friends of each other:

• All players in Alpha ∪Beta are friends of each other.

• For every S ∈ S , ζS and ηS are friends.

• For every S ∈ S , ζS is friend with every βb with b ∈ S.

2The number of possible partitions of a set with n elements
equals the nth Bell number [Bell, 1938; Rota, 1964].

α1

...

α5k

β1

...

βb

...

β3k

ζS1

...

ζSj

b ∈ Sj

...

ζS3k

ηS1

...

ηSj

...

ηS3k

QS1

QSj

QS3k

Alpha ∪Beta

Figure 5: Network of friends in the proof of Theorem 7.

Furthermore, consider the coalition structure Γ =
{Alpha ∪ Beta,QS1

, . . . , QS3k
}. We show that S contains

an exact cover for B if and only if Γ is not strictly popular.
Only if: Assume that there is an exact cover S ′ ⊆ S

for B. Since every set in S contains three elements of B,
we have |S ′| = k. Consider the coalition structure ∆ =
{Alpha ∪Beta ∪

⋃
S∈S ′ QS} ∪ {QS |S ∈ S \S ′}.

All βb, b ∈ B prefer ∆ to Γ since they have 8k − 1 friends
in Γ(βb) but 8k friends in ∆(βb).

All αl, 1 ≤ l ≤ 5k prefer Γ to ∆ because they have the
same number of friends in both coalition structures but no
enemies in Γ(αl) and 2k enemies in ∆(αl).

All ζS with S ∈ S ′ prefer ∆ to Γ because they have one
friend in Γ(ζS) but four friends in ∆(ζS). For all ζS with
S ∈ S \ S ′, it holds that ∆(ζS) = Γ(ζS). Hence, they
decide their preferences according to their friends’ valuations.
They are friends with ηS who values Γ and ∆ the same and
friends with three βb, b ∈ S, who all value ∆ better than Γ.
Hence, ζS prefers ∆ to Γ.

All ηS with S ∈ S ′ prefer Γ to ∆ because they have the
same number of friends in Γ(ηS) and ∆(ηS) but less enemies
in Γ(ηS). However, all ηS with S ∈ S \S ′ are indifferent
between Γ and ∆ because ∆(ηS) = Γ(ηS) and their only
friend ζS values Γ and ∆ the same.

We then have #∆�Γ = |{i ∈ N | ∆(i) �i Γ(i)}| =
|{β1, . . . , β3k, ζS1 , . . . , ζS3k

}| = 6k and #Γ�∆ = |{i ∈ N |
Γ(i) �i ∆(i)}| = |{α1, . . . , α5k} ∪ {ηS |S ∈ S ′}| = 5k +
k = 6k. Since #∆�Γ = #Γ�∆, Γ is not strictly popular.

If: Assume that Γ is not strictly popular, i.e., that there is
a coalition structure ∆ ∈ CN ,∆ 6= Γ with #Γ�∆ ≤ #∆�Γ.

• For every αl, 1 ≤ l ≤ 5k, Alpha ∪ Beta is her best
valued coalition since she is together with all her friends
and none of her enemies. Every other coalition is valued
worse. Hence, αl prefers Γ to every coalition structure
where she is not in Alpha ∪ Beta. Furthermore, she is
indifferent between Γ and ∆ if ∆(αl) = Alpha∪Beta.

• If Alpha∪Beta were a coalition in ∆ then some of the
players from QS1

, . . . , QS3k
would be partitioned in a

different way than in Γ. However, this would not cause
any player to be happier. There would be at least two
players who prefer Γ to ∆ but no player who prefers ∆
to Γ. This is a contradiction to the assumption.
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Hence, Alpha ∪ Beta is not a coalition in ∆ and all 5k α-
players prefer Γ to ∆. (But we will show thatAlpha∪Beta is
subset of a coalition in ∆.) Furthermore, for every ηS , S ∈ S
it holds thatQS is her best valued coalition. Again, ηS prefers
Γ to ∆ if ∆(ηS) 6= QS and is indifferent between Γ and ∆
if ∆(ηS) = QS . Let k′ be the number QS-sets that are not
a coalition in ∆, i.e., k′ = |{S ∈ S | QS /∈ ∆}|. Then k′
is also the number of η-players who prefer Γ to ∆. The other
3k − k′ η-players are indifferent between Γ and ∆.

First, observe that k′ ≤ k: For a contradiction, assume that
k′ > k. Then 5k α-players and at least k+ 1 η-players prefer
Γ to ∆, so #Γ�∆ ≥ 6k + 1. However, this is a contradiction
to #Γ�∆ ≤ #∆�Γ because there are at most 6k players who
prefer ∆ to Γ, namely 3k β-players and 3k ζ-players.

Next, observe that k′ ≥ k: For a contradiction, assume that
k′ < k. There are k′ ζS-players with ∆(ζS) 6= QS . Since
every ζS-player is friends with exactly three β-players, these
k′ ζS-players are friends with at most 3k′ different β-players.
For the other (at least) 3k − 3k′ β-players it holds that they
have none of their ζ-friends in ∆(β). That means, that they
have at most 8k − 1 friends in ∆(β) (all other α- and β-
players). And if they have exactly 8k − 1 friends in ∆(β),
then they also have an enemy in ∆(β) becauseAlpha∪Beta
is not a coalition in ∆. Hence, all these 3k − 3k′ β-players
prefer Γ to ∆. We then have #Γ�∆ ≥ 5k + k′ + (3k −
3k′) = 8k − 2k′ > 8k − 2k = 6k. This is a contradiction to
#Γ�∆ ≤ #∆�Γ and #∆�Γ ≤ 6k.

Hence, k′ = k and 5k α-players plus k η-players prefer Γ
to ∆. Then, because of #Γ�∆ ≤ #∆�Γ, all β- and ζ-players
prefer ∆ to Γ. This is only possible if each of the 3k β-players
has all α- and β-players and a ζ-player as friend in ∆(β).
Since there are k′ = k ζS-players with ∆(ζS) 6= QS , each
of these ζS-players is friends with three different β-players.
Hence, {S ∈ S |QS /∈ ∆} is an exact cover for B.

The results for strict popularity existence and popularity
verification can be shown by slightly changing the above re-
duction. The details are omitted here. q

Perfectness. Turning now to perfectness, we start with the
selfish-first model.

Theorem 8 Let G be a network of friends on a set of
agents N . A coalition structure Γ ∈ CN is perfect under the
selfish-first model if and only if it consists of the connected
components of G and all of them are cliques.

Proof. From left to right, assume that the coalition struc-
ture Γ ∈ CN is perfect. It then holds for all agents i ∈ N and
all coalition structures ∆ ∈ CN , ∆ 6= Γ, that i weakly prefers
Γ to ∆ (Γ �SF

i ∆). It follows that vi(Γ) ≥ vi(∆) for all
∆ ∈ CN , ∆ 6= Γ and i ∈ N . Hence, every agent i ∈ N has
the maximal valuation vi(Γ) = n · |Fi| and is together with
all of her friends and none of her enemies. This implies that
each coalition in Γ is a connected component and a clique.

The implication from right to left is obvious. q

Since it is easy to check this characterization, perfect coali-
tion structures can be verified in polynomial time for the
selfish-first model. It follows directly from Theorem 8 that
the corresponding existence problem is also in P:

1

2
3

4
5

9
7

8
6

Figure 6: Network of friends for Example 11

Corollary 9 Let N be a set of agents and G a network of
friends on N . There exists a perfect coalition structure under
the selfish-first model if and only if all connected components
of G are cliques.

Proposition 10 Perfectness verification can be done in coNP
for all three degrees of altruism. For equal treatment, perfect-
ness existence is in coNP.

We again omit the proof of Proposition 10. We only men-
tion that membership of perfectness existence in coNP for
equal treatment follows from the following observations. If
a coalition structure Γ ∈ CN is perfect under equal treat-
ment then (a) each agent is together with all her friends (i.e.,
(∀i ∈ N)[Fi ⊂ Γ(i)]) and (b) each coalition in Γ has a di-
ameter of at most 2. Combining (a) and (b), Γ consists of the
connected components of G and all these components have
diameters of at most 2. However, this not an equivalence.
The converse does not hold as the following example shows.

Example 11 Let N = {1, . . . , 9} and let the network of
friends G be given by Figure 6.

Γ = {{1, . . . , 9}} consists of the only connected com-
ponent of G, which has a diameter of 2. However, Γ is
not perfect under equal treatment because agent 1 prefers
∆ = {{1, . . . , 6}, {7, 8, 9}} to Γ: Omitting the details, we
can show that uEQ

1 (∆) = 113 > 112 = uEQ
1 (Γ).

5 Conclusions and Open Problems
We have proposed to extend the model of altruistic hedonic
games due to Nguyen et al. [2016] to coalition formation
games in general. We have compared this more general model
to altruism in hedonic games and have motivated our work by
solving some crucial disadvantages that come with the restric-
tion to hedonic games. We have studied the common stabil-
ity notions and have initiated a computational analysis of the
associated verification and existence problems (see Table 2
for an overview of our results). We also gave characteriza-
tions for some of the stability notions, using graph-theoretical
properties of the underlying network of friends. For future
work, we propose to complete this analysis and get a full char-
acterization for all stability notions. Furthermore, it would be
interesting to see if those problems for which we could only
show coNP upper bounds are also coNP-complete.

Another interesting research topic could be the consid-
eration of altruism for other representations of the players’
preferences such as the friends-and-enemies encoding with
enemy-oriented preferences [Dimitrov et al., 2006].
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