
A Multi-Objective Approach to Mitigate Negative Side Effects

Sandhya Saisubramanian1 , Ece Kamar2 and Shlomo Zilberstein1

1University of Massachusetts, Amherst, MA
2Microsoft Research, Redmond, WA

saisubramanian@cs.umass.edu, eckamar@microsoft.com, shlomo@cs.umass.edu

Abstract
Agents operating in unstructured environments of-
ten create negative side effects (NSE) that may not
be easy to identify at design time. We examine how
various forms of human feedback or autonomous
exploration can be used to learn a penalty func-
tion associated with NSE during system deploy-
ment. We formulate the problem of mitigating the
impact of NSE as a multi-objective Markov deci-
sion process with lexicographic reward preferences
and slack. The slack denotes the maximum devi-
ation from an optimal policy with respect to the
agent’s primary objective allowed in order to miti-
gate NSE as a secondary objective. Empirical eval-
uation of our approach shows that the proposed
framework can successfully mitigate NSE and that
different feedback mechanisms introduce different
biases, which influence the identification of NSE.

1 Introduction
Autonomous agents acting in the open world typically oper-
ate based on models that are carefully designed and tested
with respect to some given primary objective, but inevitably
details in the environment that are unrelated to the agent’s
primary objective are ignored [Ramakrishnan et al., 2019].
The incompleteness of any given model is unavoidable due
to practical limitations in model specification (the ramifica-
tion and qualification problems) and due to the limited infor-
mation that may be available during the design phase [Diet-
terich, 2017; Saisubramanian et al., 2019]. In this work, we
consider an agent operating using a model M̃ , which does not
fully represent the real world but includes all the details nec-
essary to achieve the agent’s primary assigned objective. As
a result of the limited fidelity of M̃ , the agent’s actions may
have unmodeled, undesirable negative side effects (NSE) in
some states [Amodei et al., 2016].

We focus on NSE that are undesirable but not prohibitive.
For example, consider an agent that aims to push a box B
from location L1 to L2 (Figure 1) as quickly as possible. The
agent’s model M̃ accurately represents the reward for push-
ing the box to L2, along with the associated transition dynam-
ics, which are essential to achieve its primary objective. But

Figure 1: Illustration of NSE in the boxpushing domain: A policy
based on M̃ dirties the rug (shaded area).

its model may not include other details such as the type of
rug and the impact of pushing the box over the rug, as these
details were not considered relevant to the task during system
design and initial testing. Consequently, when executing the
policy computed using M̃ , the agent pushes the box over the
rug, dirtying the rug as a side effect.

Learning to detect and minimize NSE is critical for safe
deployment of autonomous systems and to support long-term
autonomy in the real-world [Zilberstein, 2015]. One possi-
ble approach to avoid NSE is to entirely redesign the agent’s
model every time NSE are identified. This may corrupt the
reward function of the agent’s primary objective and hence
will likely require suspension of operation until the newly de-
rived policies could be exhaustively evaluated and deemed
safe for autonomous operation. Such an approach to avoid
NSE is inefficient for complex systems such as autonomous
vehicles that operate based on a model that has been carefully
designed and tested for critical safety aspects such as yielding
to pedestrians and conforming to traffic rules. The key ques-
tion is how could deployed agents respond to feedback about
NSE and learn to avoid them.

Existing works (outlined in Table 1) mitigate NSE by re-
computing the reward function for the agent’s primary objec-
tive [Hadfield-Menell et al., 2017], by collecting user feed-
back about which features in the environment can be altered
by the agent [Zhang et al., 2018], or by minimizing devia-
tions from a baseline state [Krakovna et al., 2019]. All these
approaches target settings with avoidable NSE and assume
that the agent has prior knowledge about the cause and occur-
rence of NSE. Real-world situations, however, tend to violate

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

354

[Hadfield-Menell [Zhang [Krakovna Our Approach
Characteristics of Different Approaches et al., 2017] et al., 2018] et al., 2019]

Bounded guarantees with respect to agent’s assigned task 7 7 7 3

No prior knowledge about NSE occurrence is required 7 7 7 3

Generalize learned NSE across states 3 7 7 3

Ability to distinguish and handle different magnitudes of NSE 7 3 3 3

Multi-objective approach 7 7 3 3

Table 1: An overview of the characteristics of different approaches in mitigating NSE.

these assumptions. Furthermore, in situations where the pri-
mary objective is prioritized, the user may be willing to trade-
off some NSE for solution quality. For example, if the agent
takes ten times longer to push the box so as to avoid the rug
area, the user may be willing to tolerate some dirt on the rug
instead. The existing approaches, however, do not guaran-
tee bounded performance with respect to the agent’s primary
objective when minimizing the side effects.

We propose a multi-objective approach that exploits the
reliability of the existing model with respect to the primary
objective, while allowing a deployed agent to learn to avoid
NSE as much as possible. The agent’s model is augmented
with a secondary reward function that represents the penalty
for NSE of its actions. Hence, the problem is formulated as a
multi-objective Markov decision process with lexicographic
reward preferences (LMDP) and slack [Wray et al., 2015]. A
lexicographic approach is adopted because (1) the reward as-
sociated with primary objective is prioritized, (2) the reward
for the primary objective and the penalty for NSE may have
different units, such as time taken to push a box and the cost
of cleaning a rug, and (3) alternative scalarization methods
require non-trivial parameter tuning [Roijers et al., 2013].

The agent’s primary objective is to achieve its assigned
task, while the secondary objective is to minimize NSE. The
slack denotes the acceptable deviation from the optimal ex-
pected reward of its primary objective, in order to minimize
NSE. The agent may not have any initial knowledge about the
NSE. The solution framework utilizes a three-step approach
to detect and mitigate NSE (Figure 2): (1) first the agent col-
lects data about NSE penalty through a feedback mechanism,
(2) the agent learns a predictive model of the penalty for NSE
that generalizes the available data, and (3) the agent replans
using a model augmented with the learned NSE penalty.

We investigate the efficiency of different feedback ap-
proaches to learn about NSE, including oracle feedback and
agent exploration. The oracle feedback typically represents
some type of human feedback such as penalty signals, ac-
tion approval, corrections of the agent’s behavior, or demon-
strations of correct ways to perform the task. In learning by
exploration, the agent collects data about NSE by exploring
the environment. Our experiments demonstrate the benefits
of our approach in mitigating both avoidable and unavoid-
able NSE. The results also indicate how the sampling biases
introduced by the different types of feedback influence the
identification of NSE.

Our primary contributions are: (1) formalizing the prob-
lem of mitigating NSE as a multi-objective MDP with slack;

(2) presenting a solution approach to update the agent’s pol-
icy by learning about NSE as a secondary reward function
and estimating the minimum slack required to avoid NSE;
(3) studying various types of feedback mechanisms to learn
the penalty associated with side effects; and (4) evaluating
the performance and analyzing the bias associated with each
feedback mechanism.

2 Preliminaries: Lexicographic MDP
A lexicographic Markov decision process (LMDP) [Wray
et al., 2015] is a multi-objective MDP with lexicographic
preferences over reward functions. LMDPs are partic-
ularly convenient to model multi-objective MDPs with
competing objectives and with an inherent lexicographic
ordering over them. An LMDP is denoted by the tuple
M = 〈S,A, T,R,∆R,∆R,∆, o〉 with S denoting the finite set of
states,A denoting the finite set of actions, T :S×A×S→ [0, 1]
is the transition function and RRR = [R1, ..., Rk]T is the vector
of reward functions with Ri : S×A→ R, ∆∆∆ = 〈δ1, ..., δk〉
is the tuple of slack variables with δi ≥ 0, and o denotes the
strict preference ordering over the k objectives. The slack δi
is an additive value denoting the acceptable deviation from
the optimal expected reward for objective oi so as to improve
the lower priority objectives. The set of value functions is
denoted by VVV = [V1, ..., Vk]T , with Vi denoting the value
function corresponding to oi, and calculated as

VVV π(s)=RRR(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)VVV π(s′), ∀s ∈ S.

LMDP sequentially processes each objective in the lexico-
graphic order and therefore the policy of the current objective
and the slack determine the actions available for optimizing
the next objective. The set of restricted actions for oi+1 is:

Ai+1(s)={a∈A| max
a′∈Ai

Qi(s, a
′)−Qi(s, a) ≤ ηi}

where ηi=(1−γ)δi, with a discount factor γ ∈ [0, 1). We re-
fer to [Wray et al., 2015] for a detailed background on LMDP.

3 Problem Formulation
Consider an agent that reasons using its acquired model, an
MDP M̃ = 〈S̃, Ã, T̃ , R̃〉. The agent’s model M̃ includes a
single objective, which is the primary task of the agent. How-
ever, the agent is situated in a more complex environment
which is an extension of M̃ and modeled as an LMDP, de-
noted byM∗, with an additional secondary objective, initially

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

355

Figure 2: Our framework for mitigating negative side effects.

unknown to the agent. The two objectives in M∗ are: as-
signed task (o1) and mitigate side effects (o2), with o1 � o2.
We consider a factored state representation for M∗ and M̃ .

We make the following assumptions about the relationship
between M̃ andM∗: (1) M̃ has all the components necessary
to achieve o1 – an optimal policy of M̃ for o1 is also optimal
in M∗ with respect to o1; (2) The agent does not have any
prior knowledge about o2, which reflects the NSE, and its
associated penalty denoted by RN ; (3) M̃ may have limited
state representation, compared to M∗, regarding o2; and (4)
M̃ and M∗ are stationary. The effectiveness of our approach
to avoid NSE will depend on the fidelity of S̃. While perfect
information is not required, we assume in this work that the
occurrence of NSE correlates with the features in S̃. This
allows the agent to learn RN using its current model M̃ . For
example, the agent can learn to recognize that pushing the box
over a rug is undesirable because it is tied to specific locations
that are part of its state representation. If the surface type is a
state feature, the agent could further generalize what it learns.

Definition 1. A primary policy is an optimal policy for M̃ ,
optimizing the agent’s primary objective defined by R̃.

Executing a primary policy may result in NSE in some
states, since it optimizes for o1 alone. Let Ω : S̃× Ã → R
be a mapping that denotes the severity of the expected NSE
produced by executing ã in s̃. States in which the agent’s
actions have immediate NSE (Ω(s̃, ã)>0) are called suscep-
tible states. The agent may not be able to observe the NSE
except for the penalty, which is proportional to the severity
of the NSE, provided by the feedback mechanism. In the in-
terest of clarity, we assume that executing certain actions in
susceptible states always leads to NSE. The formulation nat-
urally applies to situations in which the occurrence of NSE is
probabilistic or when a state in M̃ maps to multiple states in
the real world with different NSE severities, by calculating an
expected penalty that accounts for the likelihood.

In this paper, we focus on the problem of identifying and
mitigating NSE, without redesigning the entire model, using
various feedback mechanisms. There may be limited oppor-
tunity for avoiding NSE when optimizing for o1. Therefore,
we consider a slack value δ, which denotes the maximum al-
lowed deviation of a policy from the optimal expected reward
for o1 in order to minimize NSE.

Given M̃ and feedback data regarding side effects, the

agent is expected to compute a policy that optimizes o1, while
avoiding NSE, subject to a slack value. Our formulation
can hence handle settings with both avoidable and unavoid-
able negative side effects. To achieve this, the corresponding
LMDP of the agent’s M̃ is defined by augmenting it with ob-
jective o2 and a penalty function for NSE.

Definition 2. The augmented MDP of a given model M̃ is a
lexicographic MDP, denoted M=〈S,A, T,RRR, o, δ〉 s.t.:

• S = S̃ denotes the state space;
• A = Ã denotes the set of actions;
• T = T̃ denotes the transition function;
• RRR = [R1,R2] with R1 = R̃ denotes the reward associ-

ated with primary objective of the agent and R2 =RN
denotes the reward associated with NSE of the actions;
• o = [o1, o2] denotes the objectives where o1 is the pri-

mary objective denoting the agent’s assigned task and
o2 is minimizing NSE with o1 � o2; and
• δ ≥ 0 is the maximum slack or deviation from optimal

expected reward for o1 in order to minimize NSE.
Since we have two objectives and we only impose slack

on the primary objective, we use a single slack parameter δ.
Since the agent cannot predict the NSE a priori, it must learn
RN using feedback mechanisms (discussed in Section 4).

The framework for minimizing the NSE involves the fol-
lowing three steps (Figure 2):

1. The agent collects data about NSE through various types
of oracle feedback or by exploring the environment;

2. A predictive model of NSE is trained using the gathered
data to generalize the agent’s observations to unseen sit-
uations, represented as a reward function RN ;

3. The agent computes a policy π by solving the augmented
MDP optimally with the given δ and learned RN .

3.1 Slack Estimation
The slack denotes the maximum allowed loss in the expected
reward of the agent’s primary objective in order to minimize
NSE. A smaller slack value limits the scope for minimizing
NSE. A very high slack can allow the agent to not fulfill o1
in an attempt to minimize the NSE. Therefore, the slack de-
termines the overall performance of the agent with respect
to both its objectives. Typically the slack value is based
on user preferences and the general tolerance towards NSE.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

356

Algorithm 1 Slack Estimation (M̃,Ω)
1: δ ←∞
2: Ṽ ∗1 (so)← Solve M̃ optimally with respect to o1
3: Compute NSE-free transition (T̂) by disabling all actions

that result in negative side effects, ∀(s̃, ã, s̃′):

4: T̂ (s̃, ã, s̃′)←
{
T̃ (s̃, ã, s̃′), if Ω(s̃, ã) = 0

0, otherwise
5: if solution exists for 〈S̃, Ã, T̂ , R̃〉 with respect to o1 then
6: V̂ ∗1 (so)← Solve 〈S̃, Ã, T̂ , R̃〉 optimally for o1
7: δ ← |Ṽ ∗1 (so)− V̂ ∗1 (so)|
8: return δ

We present an approach to determine the minimum slack re-
quired to avoid NSE altogether, when feasible (once knowl-
edge about the NSE is obtained). Algorithm 1 determines
the slack as the difference between the expected reward of
the model before and after disabling all the actions that lead
to NSE. The expected return for achieving the task from the
single start state s0 and using M̃ is denoted by Ṽ ∗1 (s0). The
expected reward after disabling all the actions with NSE, de-
noted by V̂ ∗1 (s0), is the maximum reward that can be achieved
without causing any NSE, when possible. Thus the difference
in values indicates the minimum slack required to avoid NSE,
when feasible, and ensures that the slack is in the same unit
as the primary objective. A solution may no longer exist after
the actions are disabled (Lines 3-4), in which case δ =∞ is
returned, indicating that it is impossible to completely avoid
NSE and still accomplish the task.

Proposition 1. Given Ω, Algorithm 1 calculates the mini-
mum slack required to avoid NSE, while still accomplishing
the agent’s primary objective, when NSE are avoidable.

Proof. We prove this by contradiction. Let δ denote the slack
returned by Algorithm 1 and δ∗ denote the minimum slack
required to avoid NSE in a setting where the NSE are avoid-
able. Let δ∗ > δ. This indicates that Algorithm 1 produced
a lower value of slack than required, resulting in NSE dur-
ing policy execution. This is possible when the model is not
solved optimally or if all the actions that lead to NSE have
not been disabled. By Lines 2-6 in Algorithm 1, all unaccept-
able actions are disabled based on Ω and the model is solved
optimally. Therefore, δ∗ ≤ δ. Let δ∗ < δ. By Lines 2-6 in
Algorithm 1, all actions with NSE are disabled and the model
is solved optimally. Hence, δ∗≮ δ. Therefore, δ∗=δ.

Slack is specified by the user when NSE are unavoidable
or when δ estimated using Algorithm 1 is beyond the user
tolerance. If the models are solved approximately, without
solution guarantees, Algorithm 1 is not guaranteed to return
the minimum slack but our approach still produces a policy
that minimizes NSE, given the slack.

4 Learning Negative Side Effects
To learn about NSE, we consider two forms of feedback that
correlate with features in S̃: feedback acquired from an or-
acle and feedback the agent acquires by exploring the envi-

ronment. The oracle, typically representing human feedback,
provides signals about undesirable actions (with respect to
NSE) according to M∗. Alternatively, the agent may explore
the environment to gather reward signals with respect to NSE.

4.1 Learning from Human Feedback
Random Queries We begin by considering an ideal setting
in which the agent randomly selects an (s, a) pair for query-
ing an oracle, given a budget and without replacement, and
receives the exact penalty for the state-action pair with re-
spect to NSE. This approach does not introduce any bias as
the samples are i.i.d., allowing the agent to learn the true un-
derlying RN as the budget for querying increases. Hence this
approach offers an upper bound for learning a model of NSE.

Despite the benefits offered by this approach, it is often
unrealistic to expect exact penalty specification for randomly
selected (s, a). Hence we also consider other feedback mech-
anisms where the oracle (or a human) approves the agent’s
actions, corrects the agent’s policy, or demonstrates an ac-
ceptable trajectory. Since such feedbacks do not provide the
exact penalty for NSE, feedbacks indicating acceptable ac-
tions are mapped to a zero penalty and others are mapped to
a fixed, non-zero penalty denoted by k, which in turn con-
tributes to RN . In our experiments, k is set to the maximum
penalty incurred for NSE in the problem.

Approval (HA) The agent randomly selects (s, a) pairs,
without replacement, to query the human, who in turn ei-
ther approves or disapproves the action in that state. The
agent learns by mapping the approved actions to zero penalty,
RN (s, a) = 0, and the disapproved actions are mapped to a
non-zero penalty RN (s, a)=k. We consider two types of hu-
man approval: strict (HA-S) and lenient (HA-L). Strict feed-
back disapproves all actions that result in NSE. Lenient ap-
proval only disapproves actions with severe NSE. The sever-
ity threshold for HA-L is a tunable parameter that is problem-
specific. Thus with HA-L, the agent will not learn about NSE
with low severity and with HA-S, the agent cannot distinguish
between actions with different severities of NSE in a state.

Corrections (C) In this form of feedback, the agent per-
forms a trajectory of its primary policy, with the oracle mon-
itoring. If the oracle observes an unacceptable action at any
state, it stops the agent and specifies an acceptable action to
execute in that state. If all actions in a state lead to NSE,
then the oracle specifies an action with the least NSE. The
agent proceeds until the goal is reached or until interrupted
again. When interrupted, the agent assumes that all actions,
except the correction, are unacceptable in that state. If not
interrupted, the action is considered to be acceptable. Ac-
ceptable actions are mapped to zero penalty, RN (s, a) = 0,
and unacceptable actions are mapped to a non-zero penalty,
RN (s, a)=k.

Demo-action mismatch (D-AM) In demo-action mis-
match, the human provides limited demonstrations. Each
demonstration is a trajectory from start to the goal. The agent
collects these trajectories and compares them with its pri-
mary policy. For all states in which there is an action mis-
match, the agent assumes its policy leads to NSE and assigns
RN (s, a)=k.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

357

Both C and D-AM introduce bias since the samples are
not i.i.d. as the visited states are correlated. Furthermore, all
actions other than the corrections or those demonstrated are
assumed to be unacceptable. Since there may be multiple ac-
ceptable actions in each state, this introduces additional bias.

4.2 Learning from Exploration
When feedback from an oracle is expensive to collect or un-
available, it may be easier to allow the agent to identify sus-
ceptible states through limited exploration. Learning from ex-
ploration uses ε-greedy action selection—the agent exploits
the action prescribed by its primary policy or explores a ran-
dom action to learn about NSE. The agent executes an action
and observes the corresponding NSE penalty, RN (s, a). If
the exploration is in a simulator designed to learn NSE, then
the reward signals only indicate the penalty for NSE. If the
agent explores M∗, the reward signals are tuples indicating
the reward for the action and NSE penalty.

We consider three exploration strategies: conservative –
where the agent explores an action with probability 0.1 or
follows its primary policy, moderate – where the agent either
explores an action with probability 0.5 or follows its primary
policy, and radical – where the agent predominantly explores
with probability 0.9, allowing the agent to possibly identify
more NSE than the other exploration strategies.

The exploration strategies also suffer from bias induced by
correlated samples since the states visited are not i.i.d. Note
that the agent explores only to learn RN and the final policy
is computed by solving the augmented model.

4.3 Model Learning
The agent’s observations are generalized to unseen situations
by training a random forest regression (RF) model to predict
the penalty RN . We use the RF model to handle the con-
tinuous nature of the penalty and any regression technique
may be used in practice. The hyperparameters for the train-
ing are determined by a randomized search in the space of
RF parameters. For each hyperparameter setting, a three-fold
cross validation is performed and the mean squared error is
calculated. Parameters with the least mean squared error are
selected for training, which is then used to predict the penalty
RN . The augmented MDP is then updated with this learned
RN and the agent computes an NSE-minimizing policy for
execution by solving the augmented MDP.

5 Experimental Setup
We perform extensive evaluation of the different feedback
mechanisms for mitigating avoidable and unavoidable NSE.

Baselines The performance of our approach is compared
with three baselines. First is the Oracle agent that avoids
NSE while satisfying the primary objective. The Oracle has
a perfect NSE model and its policy is computed by solving
the model after avoiding all the actions with NSE. In prob-
lems with unavoidable NSE, it selects the action with the least
NSE since that is the best possible performance that can be
achieved while satisfying the primary objective. The perfor-
mance of the Oracle provides a lower bound on the penalty
for NSE incurred by the agent. The second is the No queries

case in which the agent does not query or learn about NSE.
Instead, it naively executes its primary policy. This provides
an upper bound on the penalty for NSE incurred by the agent.
Third is the scalarization approach [Krakovna et al., 2019]
(RR) in which the agent optimizes r(st, at)−βd(st, bt), where
r(st, at) is the reward corresponding to o1 and d(st, bt) is the
measure of deviation from the baseline state bt, denoting the
NSE. A direct comparison with this approach is not feasible
since it is based on assumptions that do not hold in our setting.
Therefore, we modified the RR approach to make it applicable
in our setting—by calculating the deviation based on a model
of NSE learned with Random Query approach, as it does not
introduce any bias. We compute the deviation from inaction
baseline, which measures the NSE of the agent’s action with
respect to no action execution in that state [Krakovna et al.,
2019]. The side effects we consider are irreversible by an
agent, once occurred, making the baseline state unreachable.
We tested with β ∈ [0.1, 0.9] since o1 is prioritized in our
formulation and report results with β = 0.8 as it achieved the
best trade-off in training.

Side Effects In the interest of clarity, we consider two types
of NSE severity: mild and severe. Each action can either re-
sult in a mild NSE, severe NSE, or no NSE. The strict hu-
man approval (HA-S) feedback disapproves all actions that
result in NSE. The lenient human approval (HA-L) only dis-
approves actions with severe NSE. For learning NSE by ex-
ploration, we consider agent exploration in a simulator where
the reward signals indicate NSE penalty.

In our experiments, we optimize costs, which are negations
of the rewards. Random forest regression from sklearn
Python package is used for model learning. The aug-
mented MDP is solved using a lexicographic variant of
LAO* [Hansen and Zilberstein, 2001]. The slack is computed
using Algorithm 1 and γ = 0.95. Values averaged over 100
trials of planning and execution, along with their standard er-
rors, are reported for the following domains.

Boxpushing We consider a modified boxpushing do-
main [Seuken and Zilberstein, 2007] in which the agent is
expected to minimize the expected time taken to push a box
to the goal. Each action takes +1 unit of time. Each state is
represented as 〈x, y, b, c〉 where x, y denote the agent’s loca-
tion, b indicates if the agent is pushing the box, c indicates the
current cell’s surface type. Pushing the box on a surface type
c= 1 results in severe NSE with a penalty of 10, pushing the
box on a surface c= 2 results in mild NSE and a penalty of
5, and no NSE otherwise. The state features used for training
are 〈b, c〉. We test on five instances with grid size 15×15 and
with varying initial location of the box and the NSE regions.

Driving Our second domain is based on simulated au-
tonomous driving [Saisubramanian et al., 2020; Wray et al.,
2015] in which the agent’s primary objective is to minimize
the expected cost of navigation from start to a goal, during
which it may encounter some puddles. The agent can move
in all four directions at low and high speeds. The cost of nav-
igating at a low speed is 2 and that of high speed is 1. When
the agent navigates over a puddle at high speed, it spatters wa-
ter which is undesirable. Some puddles may have pedestrians
in the vicinity and splashing water on them results in severe

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

358

(a) Boxpushing (b) Driving

(c) Boxpushing (d) Driving

Figure 3: Effect of learning from human feedback methods (a-b) and with exploration strategies (c-d) on problems with avoidable NSE.

NSE with a penalty of 10 and a mild NSE otherwise with a
penalty of 5. Each state is represented by 〈x, y, l, p, h〉 where
x, y denote the agent’s location, l is the speed, p, h indicate
the presence of a puddle and a pedestrian in the vicinity. Fea-
tures used for training are 〈l, p, h〉. Five test instances are
generated with grid size 15×15 and by varying the start, goal,
puddle, and pedestrian locations.

6 Results and Discussion
Effectiveness of Feedback Mechanisms Figure 3 show the
average penalty incurred for NSE in settings with avoidable
NSE, both mild and severe, as the training budget is in-
creased. While the Corrections feedback is efficient in terms
of samples required, it is more expensive to collect this feed-
back since it requires constant oversight. Random querying
and HA-S, which rely on random samples of states, achieve
significant reduction in NSE with 500 samples. Although
HA-L also relies on random sampling of states, it does not
provide information about mild NSE, which affects its per-
formance. Training with Demo-AM feedback does not al-
ways minimize NSE even as the budget is increased, since the
agent does not receive enough negative samples and has no
information about the NSE in states unvisited in the demon-
strations. Additionally, it is unable to distinguish between the
different levels of severity of the NSE of its actions. However,
Demo-AM is still better than No queries. RR with the model
of NSE learned using Random Query and with the given bud-
get, performs poorly irrespective of the budget. Apart from
the reported results, we also tested RR with a perfect model of
NSE and its performance was significantly better and some-
times comparable to the Oracle’s performance. However, ob-

taining a perfect model of NSE is non-trivial in practice. In
Figure 3(c-d), Random querying with the maximum budget
(7000) and RR with this learned model are plotted in to com-
pare the performance of exploration strategies and to under-
stand how the correlated samples affect the performance. Ir-

(a) Human feedback

(b) Exploration

Figure 4: Performance on problems with unavoidable NSE.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

359

respective of the exploration type, the agent learns the NSE
with a reasonable number of trials. Figure 6(a) shows the
performance of the approaches with respect to o1.

Unavoidable NSE Since Algorithm 1 does not produce a
finite slack for this setting, we experiment with a slack value
that is 15% of the expected cost of o1. This value is based
on the observation that slack values returned by Algorithm 1
are within 15% of the expected cost for o1, for most prob-
lem instances with avoidable NSE. Figure 4 plots the results
for boxpushing problems with unavoidable NSE. Problem in-
stances with unavoidable NSE case were generated by mak-
ing sure there is no path to the goal over surface c = 3. Since
HA-S cannot distinguish between different severities, its per-
formance is affected when NSE are unavoidable. Unlike Fig-
ure 3(a-b), Demo-AM matches the performance of other tech-
niques when NSE are unavoidable. Similar to Figure 3(c-
d), learning by exploration in settings with unavoidable NSE
matches the performance of Random query. Similar results
were obtained for driving domain. Overall, the results indi-
cate that our framework can effectively learn and mitigate the
impacts of both avoidable and unavoidable NSE.

Bias of Various Feedback Mechanisms Figure 5 plots the
frequency of querying in different regions of the state space
with different feedback mechanisms. The x-axis denotes the
state space and darker shades indicate regions that were fre-
quently queried. The results are plotted for driving domain
with avoidable NSE and using 7000 queries for human feed-
back and 100 trials for exploration. Feedback techniques
based on random sampling of states have a higher coverage
of the state space, contributing to a better performance. The
exploration techniques are the most restricted, due to which
their performances are largely similar. Since an ε-greedy ap-
proach is followed for exploration, these techniques likely
cover only the region surrounding that of the primary pol-
icy. As states in this region are often critical for satisfying
the agent’s primary objective, learning about NSE in this re-
stricted region is often sufficient to effectively mitigate the
penalty for NSE. This result shows that different feedback
types focus on different regions of the state space, which in
turn affects the NSE model learning.

Effect of Slack We study the effect of slack on the expected
cost of o1 and on NSE (o2), by varying the slack from 40% to
100% of the value returned by Algorithm 1 on problems with
avoidable NSE. Figure 6 shows the results on the boxpush-
ing domain with 7000 queries for human feedback and 100
exploration trials. The values show the average cost in 100
trials of executing the updated policy with each slack value.
We do not compare with the baselines, which are unaffected
by the variation in slack. Results with no slack bound the
performance of other techniques. As the slack is increased,
the average penalty incurred for NSE tends to decrease. The
minimal differences in the average costs for o1 shows that the
slack values returned by Algorithm 1 are reasonable and af-
fect o1 only by a small margin. The performance of some
feedback approaches are unaffected by the variation in slack,
which shows their limitations in minimizing NSE.

(a) Random Query (b) Strict HA (c) Lenient HA (d) Demo-AM

(e) Corrections (f) Conservative (g) Moderate (h) Radical

Figure 5: Bias in feedback techniques.

(a) Effect on o1

(b) Effect on o2

Figure 6: Effect of slack on the performance.

7 Conclusion and Future Work
We formulate the problem of mitigating the immediate NSE
of actions in a state as a multi-objective problem with slack
and propose an algorithm to determine the minimum slack
required to avoid these side effects. Various feedback mecha-
nisms are considered for learning a model of negative side ef-
fects and their biases are analyzed empirically. Our proposed
framework is shown to be effective in mitigating undesirable
side effects. A key advantage of our approach is that it al-
lows learning about NSE during agent deployment, without
the need to suspend operation to allow redesign of the reward
function. In the future, we aim to extend our approach to set-
tings in which the side effects are partially observable and to
settings where effectively avoiding the side effects requires
adding new features to the state representation.

Acknowledgments
This work was supported by the Semiconductor Research
Corporation grant #2906.001.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

360

References
[Amodei et al., 2016] Dario Amodei, Chris Olah, Jacob Steinhardt,

Paul Christiano, John Schulman, and Dan Mané. Concrete prob-
lems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

[Dietterich, 2017] Thomas G. Dietterich. Steps toward robust arti-
ficial intelligence. AI Magazine, 38(3):3–24, 2017.

[Hadfield-Menell et al., 2017] Dylan Hadfield-Menell, Smitha
Milli, Pieter Abbeel, Stuart J. Russell, and Anca Dragan. Inverse
reward design. In Advances in Neural Information Processing
Systems, 2017.

[Hansen and Zilberstein, 2001] Eric A. Hansen and Shlomo Zilber-
stein. LAO*: A heuristic search algorithm that finds solutions
with loops. Artificial Intelligence, 129:35–62, 2001.

[Krakovna et al., 2019] Victoria Krakovna, Laurent Orseau, Miljan
Martic, and Shane Legg. Penalizing side effects using stepwise
relative reachability. In IJCAI AI Safety Workshop, 2019.

[Ramakrishnan et al., 2019] Ramya Ramakrishnan, Ece Kamar,
Besmira Nushi, Debadeepta Dey, Julie Shah, and Eric Horvitz.
Overcoming blind spots in the real world: Leveraging comple-
mentary abilities for joint execution. In Proceedings of the 33rd
Conference on Artificial Intelligence (AAAI), 2019.

[Roijers et al., 2013] Diederik M. Roijers, Peter Vamplew, Shimon
Whiteson, and Richard Dazeley. A survey of multi-objective se-
quential decision-making. Journal of Artificial Intelligence Re-
search, 48:67–113, 2013.

[Saisubramanian et al., 2019] Sandhya Saisubramanian, Kyle
Wray, Luis Pineda, and Shlomo Zilberstein. Planning in stochas-
tic environments with goal uncertainty. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2019.

[Saisubramanian et al., 2020] Sandhya Saisubramanian, Ece Ka-
mar, and Shlomo Zilberstein. Mitigating the negative side ef-
fects of reasoning with imperfect models: A multi-objective ap-
proach. In Proceedings of the 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2020.

[Seuken and Zilberstein, 2007] Sven Seuken and Shlomo Zilber-
stein. Improved memory-bounded dynamic programming for de-
centralized POMDPs. In Proceedings of the 23rd Conference on
Uncertainty in Artificial Intelligence (UAI), 2007.

[Wray et al., 2015] Kyle Hollins Wray, Shlomo Zilberstein, and
Abdel-Illah Mouaddib. Multi-objective MDPs with conditional
lexicographic reward preferences. In Proceedings of the 29th
Conference on Artificial Intelligence (AAAI), 2015.

[Zhang et al., 2018] Shun Zhang, Edmund H. Durfee, and Satin-
der P. Singh. Minimax-regret querying on side effects for safe
optimality in factored Markov decision processes. In Proceed-
ings of the 27th International Joint Conference on Artificial In-
telligence (IJCAI), 2018.

[Zilberstein, 2015] Shlomo Zilberstein. Building strong semi-
autonomous systems. In Proceedings of the 29th Conference on
Artificial Intelligence (AAAI), 2015.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

361

	Introduction
	Preliminaries: Lexicographic MDP
	Problem Formulation
	Slack Estimation

	Learning Negative Side Effects
	Learning from Human Feedback
	Learning from Exploration
	Model Learning

	Experimental Setup
	Results and Discussion
	Conclusion and Future Work

