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Abstract

We study a competition among two contests, where
each contest designer aims to attract as much effort
as possible. Such a competition exists in reality,
e.g., in crowd-sourcing websites. Our results are
phrased in terms of the “relative prize power” of a
contest, which is the ratio of the total prize offered
by this contest designer relative to the sum of total
prizes of the two contests. When contestants have
a quasi-linear utility function that captures both a
risk-aversion effect and a cost of effort, we show
that a simple contest attracts a total effort which
approaches the relative prize power of the contest
designer assuming a large number of contestants.
This holds regardless of the contest policy of the
opponent, hence providing a “safety level” which
is a robust notion similar in spirit to the max-min
solution concept.

1 Introduction
A contest is an abstract game-theoretic notion that captures
many realistic situations where multiple players compete to
win prizes. In addition to the many classic applications in
economics and political sciences, new applications emerge
following the success of the Internet economy. For exam-
ple, in Amazon’s Mechanical Turk (www.mturk.com), each
outsourced task is in fact a contest; the website 99designs
(www.99designs.ca) has the option to “Open your brief to
our entire design community. Designers submit their ideas
and you pick your favorite design.” and so on.

A large body of literature on contest design aims to un-
derstand what contest rules will best serve the interest of the
contest designer. Most of this literature focuses on the case
of a single contest, where the contestants can choose whether
to participate in the contest (and how much effort to invest)
but do not need to choose between several possible contests.
In the context of the above crowdsourcing examples, this is
clearly a limiting assumption. On 99designs, for example,
each designer needs to decide how to split her effort among
the many potential contests she is being offered. [Segev,
2019] argues that it is a “theoretical challenge” to describe
such an economy of competing contests.

In this paper we study a model of two competing contests.
There are n contestants, each has a bounded total effort to
split among the two contests. Each contest designer has a
fixed total divisible prize to offer and designs a contest in or-
der to maximize the sum of efforts invested in it. This goal
of receiving the maximal possible sum of efforts is seen in re-
ality many times. For example, Amazon’s mechanical turk is
used to hand out research questionnaires or run research ex-
periments (e.g. in Psychology, Behavioral Economics, etc).
Others use it to tag/label pictures. And so on. In these cases,
the contest designer cares about the total effort (of all the con-
testants) in order to receive as many questionnaires, labeled
images, etc. Many additional such examples exist.

We assume a general class of contest success functions
(CSFs) and prize structures that determines how the prize is
awarded to the contestants as an arbitrary function of the ef-
forts they put in the contest. To tractably focus on a general
competition structure on the side of the contest designers, we
assume homogeneous contestants that have the same quasi-
linear utility function, which is in the spirit of [Siegel, 2009].
The game that we study has two stages. First, contest de-
signers simultaneously choose their CSFs and prize structures
(these two are jointly termed here a “contest policy”). Sec-
ond, contestants simultaneously decide how much effort to
invest in each contest, respecting the overall bound on their
sum of efforts.

We study the “safety level” solution concept [Tennenholtz,
2002],[Feige et al., 2013]. A contest C1 of contest designer
1 obtains a safety level x if, for any contest C2 of contest
designer 2, and any pure or mixed Nash equilibrium (NE) of
the second stage of the game, the total effort invested in the
first contest is at least x. This solution concept has robustness
advantages similar to dominant strategies and the max-min
concept, since the contest designer does not need to assume
that her opponent chooses a specific equilibrium play, in fact
it does not need to know anything about the opponent, not
even that the opponent is rational. The safety level guaran-
tee holds for any contest the opponent chooses. In addition,
[Feige et al., 2013] shows that if an action of some player in
an abstract game has a safety level of x then the utility of this
player in any subgame-perfect equilibrium of this game is at
least x. In our terminology, this means that if some contest
policy has a safety level of x then the sum of efforts invested
in this contest in any subgame-perfect equilibrium is at least
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x. Thus, a safety level analysis also provides important in-
sights regarding the properties of equilibrium outcomes.

We analyze the safety level provided by the following “ex-
clusive proportional” contest policy (EPP): the contest C di-
vides the prize equally among contestants that invest their to-
tal effort in C. Normalizing the sum of efforts of all contes-
tants to 1, our analysis studies the safety level of the propor-
tional exclusive contest policy as a function of the “relative
prize power” of the contest, which is the ratio between the
prize of the first contest designer and the sum of prizes of the
two contests. This is a simple contest policy that could be
easily implemented in many case. In our previous example
of research questionnaires on Amazon’s turk, such a require-
ment translates to rewarding only fully completed question-
naires. We conduct an extensive analysis of the safety level
of EPP, showing that it results in near optimal utility to the
contest designer who chooses it.

1.1 Related Work
A closely related paper is [Feige et al., 2013]. It studies a
competition among auctions that sell several identical items.
Both our safety level analysis as well as the definition of EPP
are inspired by that paper. However, since [Feige et al., 2013]
study a market model, the utility function that they study is
inappropriate to a contest setting. In particular, it fully ignores
the cost of effort and the attitude of the player towards risk.
[Siegel, 2009] gives a general formulation of a utility function
of contestants that we incorporate in our model.

Multiple Competing Contests. [DiPalantino and Vo-
jnovic, 2009] study a model with identical competing contests
(winner takes it all) that differ only in the prize size. [Azmat
and Möller, 2009] allow a more general prize structure in a
similar model. Both papers focus on analyzing the effect of
the prize size/structure on the participation decisions of the
players. [Azmat and Möller, 2018] incorporated two different
types of contests (high and low) while using a similar prize
structure. [Morgan et al., 2017] analyzed the effect of show-
up, fees, number of prizes and discriminativeness on partic-
ipation in contests. In the current paper we allow a much
larger class of contest types. Two papers that study an in-
herently different model of competing contests are [Möller,
2012] and [Moldovanu and Sela, 2006]. The first one studies
how to preserve competition over time. In such a case, even
the loser in a contest should receive a portion of the prize. In
the second paper contest designers do not compete but rather
cooperate as they are controlled by the same designer. A con-
test designer can split the total prize to many sub-contests, to
improve expected total as well as highest effort.

Single Contests. One of the many surveys of the literature
is [Corchón, 2007]. Most of the literature including the recent
one focuses on various aspects in the design of a single con-
test. For example, [Levy and Sarne, 2018] compare “simple”
versus “complicated” contests, showing empirically that there
is no advantage for the latter type. [Gao et al., 2012] studies
contests where the contestants are partitioned to groups, and
showed that small groups are better than large ones. [Levy
et al., 2017] study how to design a contest which maximizes
the quality of the best contributors. A similar approach has

been used by [Xu and Larson, 2014] that describe how to
self-exclude contestants with low-expertise.

Blotto Games. In our terminology, a Blotto game is a set-
ting of competing contests where all contest policies are iden-
tical and fixed. The contests in the Blotto game setting are not
strategic entities and the analysis in this literature focuses on
the Nash equilibria in the contestants game. Recent litera-
ture on Blotto games focuses on the computational aspect of
finding a Nash equilibrium [Behnezhad et al., 2017], [Ah-
madinejad et al., 2019], [Vu et al., 2018b] and [Łatek et al.,
2009]. [Vu et al., 2018a] suggest a theoretical bound on the
approximation error as a function of the game’s parameters.
A variation of this game that considers players preferences
has been solved by [Palmieri and Lallouet, 2017]. [Kohli et
al., 2011] analyzed empirically the results of a Blotto game
played over a social network.

2 Model and Preliminaries
We study the following complete information two stage
game, G. There are n contestants denoted with index i and
two contests denoted with index j. Contest j = 1, 2 can of-
fer a total fully divisible prize of at most Qj (where Qj is
fixed). For simplicity we normalize Q1 +Q2 = 1 and denote
Q1 = t and Q2 = 1− t where t ∈ [0, 1]. All contestants have
the same maximal effort to invest, B.

In the first stage of the game, contest designers simul-
taneously declare their contest policy which determines the
amount of prize that contestant i receives from contest j as
a function of the effort that contest designer j receives from
all contestants. Formally, a contest policy j = 1, 2 is a func-
tion fj : [0, B]n −→ [0, Qj ]

n, such that
∑n
i=1 fi,j(b̄

j) ≤ Qj
where b̄j ∈ [0, B]n is the vector of efforts invested in con-
test j and fi,j(b̄j) denotes the i’th coordinate of fj(b̄j). We
emphasize that we allow the contest designers to choose any
contest policy from this general class, which captures various
prize structures as an arbitrary function of the efforts they put
in the contest.

Given the two contest policy functions f1, f2 declared by
the two contest designers, in the second stage of the game
we have a game among the contestants which we denote as
G(f1, f2): contestants simultaneously choose their effort in-
vested. The effort is denoted by bi,j where contestant i in-
vests effort bi,j ∈ [0, B] in contest j and for any i,

∑
j bi,j ≤

B. We denote bi = (bi,1, bi,2) , b̄j = (b1,j , ..., bn,j) , b̄ =
(b1, ..., bn) , b̄−i = (b1, ..., bi−1, bi+1, ..., bn).

The resulting utility of contest designer j is uj(b̄j) =∑
i bi,j . The resulting utility of a contestant, which depends

on the amount of prize obtained and the effort invested, is:

ui(b̄) = g1

∑
j

fi,j(b̄
j)

+ g2

B −∑
j

bi,j

 (1)

where g1(·) represents the utility gained from prize and g2(·)
represents the utility gained from leisure. Throughout, we
assume the standard quasi-linear utility function: g2(x) = x
and g1(x) = αxβ , where 0 ≤ β ≤ 1 represents the curvature
of the function thus the risk aversion of the contestant, and
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α ≥ 1 captures a more general substitution effect allowing
for one unit of the prize to be worth more than one unit of
effort (as α increases the prize is valued more relative to the
cost of effort and a larger β implies less risk-aversion).

When n is fixed we can normalize B to be any constant
to our choice. However, in part of our analysis we will study
the asymptotic properties of the game when n goes to infinity.
In this case if B is a constant, the total amount of the effort
grows to infinity as n goes to infinity which does not make
sense as the amount of the prize is still a constant. We there-
fore choose to set B = 1

n in order to keep the overall amount
of effort in the game to be a constant normalized to 1.

2.1 Safety Level and the Exclusive Proportional
Policy

As discussed in the introduction, our solution concept is that
of a safety level:
Definition 1. The safety level (SL) of a contest policy function
fj is defined as follows:

SL(fj) ≡ min
f−j∈F−j

min
b̄ which is NE inG(fj ,f−j),

uj(b̄).

where Fj is the set of all contest policy functions of contest
designer j, and the set of Nash Equilibria (NE) effort’s of con-
testants that we consider for the gameG(fj , f−j) includes all
pure as well as mixed NE of the game.

Our purpose is to identify a contest policy f∗ with
SL(f1 = f∗) ≈ t. This will imply that, by playing a best
response, contest designer 2 can achieve a utility of not much
more than 1 − t (since the total sum of efforts of all contes-
tants is 1). On the other hand, in a symmetric way, contest
designer 2 can achieve a utility of not much less than 1 − t
by choosing f2 = f∗. Thus, although f∗ may not be an ex-
act equilibrium, it provides the contest designer who chooses
to use it a utility which is close to the best possible utility in
any equilibrium outcome. Moreover, this is achieved with-
out knowing the contest policy of the opponent and without
assuming that an equilibrium play is actually materialized.
Thus, a safety level analysis does not restrict attention to f∗,
but rather show that a contest designer can choose f∗ without
losing much utility even if the opponent is able to choose an
arbitrary contest policy which belongs to a very general and
large class of contest policies as we have defined above. In
addition it will turn out that this f∗ is a very simple contest
policy which can be easily implemented.

Specifically, inspired by [Feige et al., 2013] we define the
following “Exclusive Proportional Policy” (EPP) function:

fEPPi,1 (b̄1) =

{ 1
|{i′|bi′,1=B}|Q1 bi,1 = B

0 else

In words, the exclusive proportional policy function allocates
the prize of contest designer 1 equally among all contestants
that gave all their effort to contest designer 1 (these are the
exclusive contestants), and does not allocate anything else to
non-exclusive contestants.

Clearly, if contest 1 uses the fEPP , any contestant will
choose to invest an effort which is either 0 or B in contest 1.
More formally, any Nash equilibrium outcome of this game

is of the following form: With some probability Pi we have
bi = (B, 0) and with probability 1−Pi we have bi = (0, bi,2)
where bi,2 ∈ [0, B] could be some random variable.

Throughout, we fix f1 = fEPP , any arbitrary f2, and any
arbitrary NE (that can be non-pure) in the contestants game
G(f1 = fEPP , f2). We denote by x =

∑
i bi,1 the random

variable that is the effort of contest designer 1 given the re-
alization of effort bi,1 of all contestants to contest designer 1
according to the NE strategies. The expected sum of effort
invested in the first contest is E[x]. We remark that a pure
or non-pure NE in the game G(f1, f2) need not necessarily
exist if we assume a continuous choice of efforts in the range
[0, B]. However if we discretize the range (as finely as we
wish) Nash’s theorem will imply existence.
Example 1. Consider the following simple example, assum-
ing g1(x) = 1.5·x, g2(x) = x (a linear utility function). The
contest policy functions of the contest designers are f1(·) =
f2(·) = fEPP , the relative prize power of contest designer 1
is Q1 = t = 0.25 and the number of contestants is n = 4.
One can verify that b̄ = ((B, 0), (0, B), (0, B), (0, B)) is
a pure NE. Another, non-pure, NE is that all players invest
effort bi = (B, 0) with probability Pi = 0.25 and effort
bi = (0, B) with probability 1 − Pi = 0.75. In both of these
NE, E[x] = 0.25. In fact, one can verify that in this example,
any pure or non-pure NE of this game has E[x] = 0.25.

The main point that we will show in this paper is that when
the number of contestants n is large, the safety level that EPP
provides is close to t which is the best possible. The follow-
ing example shows that the assumption of many contestants
is important since, with a small number of contestants, the
safety level of EPP could be even zero.
Example 2. Consider the case where Q1 = t = 0.2, n = 2,
and f1(·) = f2(·) = fEPP , and β = 1. When α = 1, in
all NE one of the contestants will invest full effort in contest 2
while the other contestant will not participate in any contest.
When α = 1.5, in the unique NE both contestants will invest
full effort in contest 2. With these parameters, the first contest
will receive a non-zero effort in some Nash equilibria only
when n ≥ 4.

3 Safety Levels in Nash Equilibria
Our first step in the safety level analysis is to develop an
inequality that must be satisfied in any NE of the game
G(fEPP , f2). Using this inequality will then provide a lower
bound on E[x].1

Assumption 1. The analysis in this section holds for any util-
ity function in the general form of Eq. 1 where the gi(·) func-
tions (for i = 1, 2) satisfy:

1. gi(·) is monotone non-decreasing and concave.
2. gi(0) = 0 and gi( 1

z ) is convex in z ∈ (0, 1].

3. The inverse function g−1
1 (z) is well-defined for any

z ≥ g1

(
Q1

1 + n

)
− g2(B).

1This is not the best lower bound but for quasi-linear utility func-
tions it turns out to be asymptotically optimal.
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Quasi-linear utility functions satisfy the first two properties
for any α ≥ 1 and any 0 ≤ β ≤ 1 and the third property
when β = 1. When β < 1 the third property is satisfied iff
g1

(
Q1

1+n

)
− g2(B) ≥ 0 which holds for all sufficiently large

n, in particular when (n+ 1)/n
1
β ≤ Q1.

Theorem 1. If Assumption 1 holds, then in any (pure or non-
pure) NE of G(f1 = fEPP , f2) where f2 can be any ar-
bitrary contest policy as defined in Section 2, the following
equation must hold:

Q2 ≥ n(1− E[x])g−1
1

(
g1

(
Q1

1 + nE[x]

)
− g2(B)

)
(2)

The following lemma is key to the proof of Theorem 1:

Lemma 1. In all NE (either pure or non-pure), for any con-
testant i s.t. Pi < 1,

E[fi,2(b̄2)|bi,1 = 0] ≥ g−1
1

(
g1

(
Q1

1 + nE[x]

)
− g2(B)

)
(3)

Before proving this lemma, we first show how it implies The-
orem 1. Recall that E[x] =

∑
iE[bi,1] =

∑
i(Pi ·

1
n + (1 −

Pi) · 0) =
∑
i
Pi
n . Now,

Q2 ≥
∑
i

E[fi,2(b̄2)] =

∑
i

(
(1− Pi)(E[fi,2(b̄2)|bi,1 = 0] + PiE[fi,2(b̄2)|bi,1 = B]

)
≥
∑
i

(
(1− Pi)E[fi,2(b̄2)|bi,1 = 0]

)
≥

∑
i

(1− Pi) · g−1
1

(
g1

(
Q1

1 + nE[x]

)
− g2(B)

)
≥

n(1− E[x]) · g−1
1

(
g1

(
Q1

1 + nE[x]

)
− g2(B)

)
(4)

where the transition from the third line to the forth line fol-
lows from Lemma 1. As this is exactly the claim in Theo-
rem 1, we have shown how the lemma implies the theorem.

The rest of this section proves Lemma 1. Since Pi ≥ 0, a
necessary condition for a NE is:

E
[
ui(b̄)|bi,1 = B

]
≤ E[ui(b̄)|bi,1 = 0] (5)

(if Pi > 0 then this is an exact equality and if Pi = 0 then the
action bi,1 = 0 is not worse than the action bi,1 = 0.)

Since g1(·) is concave, Jensen’s inequality allows us to up-
per bound the right hand side of Eq. 5, as follows. 2

2Recall Jensen’s Inequality: Let g : R −→ R be convex on [a,b].
Let X be a random variable such that P[a ≤ X ≤ b] = 1, Then,
g(E[X]) ≤ E[g(X)]. If the g is concave the inequality is reversed.

E[ui(b̄)|bi,1 = 0] =

E

g1

∑
j

fi,j(b̄
j)

+ g2(B − bi,2)

∣∣∣∣∣bi,1 = 0

 =

E
[
g1(fi,2(b̄2)|bi,1 = 0

]
+ E[g2(B − bi,2)|bi,1 = 0] ≤

E
[
g1(fi,2(b̄2))|bi,1 = 0

]
+ E[g2(B)|bi,1 = 0] =

E
[
g1(fi,2(b̄2))|bi,1 = 0

]
+ g2(B) ≤

g1(E[fi,2(b̄2)|bi,1 = 0]) + g2(B)

(Regarding the last transition in the above equation, note that
fi,2(b̄) is a random variable, hence we can use Jensen’s In-
equality.) Combining with Eq. 5 we have therefore obtained:

g1

(
E[fi,2(b̄2)|bi,1 = 0]

)
≥ E[ui(b̄)|bi,1 = B]− g2(B) (6)

Lemma 2. For any contestant i′,

E[x|bi′,1 = B] = B · (1− Pi′) + E[x] =
1

n
− 1

n
Pi′ + E[x]

Therefore, n · E[x|bi,1 = B] ≤ 1 + n · E[x].

Proof. E[x] = 1
n

∑
i=1 Pi = Pi′

n + 1
n

∑
i6=i′ Pi, hence

E[x|bi′,1 = B] = 1
n + 1

n

∑
i6=i′ Pi = 1

n + E[x]− Pi′
n .

Now starting on the left hand side of Eq. 5

E[ui(b̄)|bi,1 = B] ≥
E
[
g1(fEPPi,1 (b̄1))|bi,1 = B

]
+ E[g2(B −B)|bi,1 = B] =

= E
[
g1(fEPPi,1 (b̄1))|bi,1 = B

]
= E

[
g1

(
Q1

nx

) ∣∣∣∣∣bi,1 = B

]
where the last equality follows since x (which is the effort of
contest designer 1) is equal to B = 1

n times the number of
contestants who submitted their full effort to contest designer
1. The next two inequalities follow from the claims whose
numbers are indicated below the inequality signs:

E

[
g1

(
Q1

nx

) ∣∣∣∣∣bi,1 = B

]
≥

(Footnote. 2)

g1

(
Q1

nE[x|bi,1 = B]

)
≥

(Lemma 2)

g1

(
Q1

1 + nE[x]

)
By using this inequality and Equation 6, and applying g−1

1 (·)
on both sides,

E[fi,2(b̄2)|bi,1 = 0] ≥ g−1
1

(
g1

(
Q1

1 + nE[x]

)
− g2(B)

)
This concludes the proof of Lemma 1.
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Figure 1: The effect of the relative prize power (t on the x axis) on
the safety level (on the y-axis) of contest designer 1, with g1(x) =
αxβ , g2(x) = x and α = 1.2, β = 0.5. Each curve corresponds
to different number of contestants.

Figure 2: The effect of the number of contestants (n, on the x-axis,
in log scale) on the safety level (on the y-axis) of contest designer
1, with g1(x) = αxβ , g2(x) = x and α = 1.2, t = 0.6. Each
curve represents a different value of β. Note the convergence to the
dashed curve (t).

4 The Safety-Level of EPP
Applying the quasi-linear utility function into Eq. 2 from the
previous section, we obtain:

1− t ≥ (n−nE[x])

(
1

α

(
α

(
t

1 + nE[x]

)β
− 1

n

)) 1
β

(7)

Using Mathematica c© we numerically solve Eq. 7. The main
conclusions are:

1. In the limit as n goes to infinity (for any constant α, β)
the safety level converges to the relative prize power t
(Fig. 1, 2, 3).

2. As β decreases (more risk aversion) the convergence rate
is faster (Fig. 2).

3. As α increases the convergence rate is faster (Fig. 3).
4. For any constant α, β, n, the safety level as a function

of the relative prize power t is convex (Fig. 1). I.e.,
the marginal benefit from a slight increase in the rela-
tive prize power is higher for a contest designer who al-
ready has a larger relative prize power. This effect is less
significant as n and/or α become larger.

To conclude, as the number of contestants n grows, the
safety level becomes close to linear in t. Thus, α and β does
not significantly impact the safety level when n is large. An

Figure 3: The effect of the number of contestants (n, on the x-axis,
in log scale) on the safety level (on the y-axis) of contest designer
1, with g1(x) = αxβ , g2(x) = x and β = 0.6, t = 0.5. Each
curve represents a different value of α. Note the convergence to the
dashed curve (t).

additional way to see this is to plug in the quasi-linear utility
function in Eq. 7:

1− t
1− E[x]

≥ n

(
1

α

(
α

(
t

1 + nE[x]

)β
− 1

n

)) 1
β

=

((
nt

1 + nE[x]

)β
− nβ

αn

) 1
β

≈ t

E[x]

(8)

implying that, in the limit as n goes to infinity (and any con-
stant α ≥ 1, β < 1), E[x] ≈ t.

4.1 The case of risk-neutrality (β = 1)
The previous conclusion holds for β < 1 and we complete
the picture for the case of β = 1 which corresponds to the
important case of risk-neutrality. Applying the linear utility
function into equation 2:

1− t ≥ n− nE[x]

α

(
αt

1 + nE[x]
− 1

n

)
(9)

Our lower bound on the effort of the first contest designer for
the case of a linear utility function is then:

E[x] ≥ 1

2n

(
n(1 + α)− 1

−
√

(n(1 + α)− 1)2 + 4n(1 + α− tα− ntα)

) (10)

In the sequel we refer to our lower bound on the safety level,
i.e., the RHS of this equation, as SLlinear(n, α, t). We next
discuss some implications of this lower bound.
A Large Number of contestants. Our main goal is to an-
alyze the effect of α on the safety level, as a function of the
relative prize power. However there is also a third parame-
ter which is the number of contestants n which could poten-
tially complicate the picture. We proceed by first showing
that the safety level converges relatively quickly to its limit as
n grows. We then analyze the effect of α on the safety level,
as a function of the relative prize power t, in this limit.

Figure 4 shows the safety level of the first contest designer
as a function of the number of contestants, for α = 1.5 and
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Figure 4: The effect of the number of contestants (n, on the x-
axis) on the safety level (on the y-axis) of contest designer 1, with
g1(x) = αx and α = 1.5. Each curve represents a different relative
prize power t of the first contest designer.

various values of t. It is clear from the figure that the safety
level in each case quickly converges to its limit as n grows.
For example, comparing the safety level at n = 100 and at
n = 1000, the difference is less than 5% for t ≥ 0.3 (for
higher values of α the difference is even smaller). This limit
can be calculated explicitly from equation 10, obtaining:

lim
n→∞

SLlinear(n, α, t) =
1 + α−

√
1 + 2α(1− 2t) + α2

2
(11)

Recall that our main motivating question is to understand
the influence of the relative prize power of contest designer
1 on the safety level that contest designer 1 can obtain with
the EPP strategy. Since SLlinear(n, α, t) becomes very
close to SLlinear(n → ∞, α, t) already for moderate val-
ues of n, it makes sense to examine this question assuming
n = ∞. As expected SLlinear(n → ∞, α, t = 0) = 0
and SLlinear(n → ∞, α, t = 1) = 1 (recall that we as-
sume α ≥ 1). Figure 5 completes the picture for all val-
ues 0 < t < 1, by showing the safety level of contest de-
signer 1 as a function of the relative prize power t assum-
ing n → ∞, for various values of α. As can be seen from
the figure, this connection is sub-linear and convex, and as α
increases this connection becomes closer to a linear connec-
tion (see more details on the convexity of this connection be-
low). Analytically, the slope is d

dtSLlinear(n → ∞, α, t) =
α√

1+2α(1−2t)+α2
. As α increases, this slope becomes closer

to 1, i.e., limα→∞
d
dtSLlinear(n→∞, α, t) = 1.

Is the bound in Eq. 11 tight? The bound in Eq. 11 is quite
far from linear for small α’s, even in the limit as n goes to
infinity. This is in sharp contrast to the case of β < 1. For
example, when α = 1 and t = 0.5, the bound that this equa-
tion gives is about 0.292893 which is very far from t = 0.5
which is the bound that we get for any β < 1 and n → ∞.
This naturally raises the question of whether our analysis in
the linear case is tight, or whether the bound in Eq. 11 is too
loose. We show via an example that this bound is tight, and
that the gap between β < 1 and β = 1 is real.

To see this, consider the case of a linear utility with α =
β = 1. Contest 1 uses EPP and contest 2 equally divides the
prize among all contestants that invest in contest 2 an effort
of at least some fixed ε > 0. The following equation gives

Figure 5: The effect of the relative prize power of contest designer
1 (t, on the x-axis) on the safety level (on the y-axis) of contest
designer 1, with g1(x) = αx. Each curve represents a different α.
This plot assumes a large number of contestants as shown in Eq. 11.

a sufficient condition for a pure NE in which x contestants
invest full effort in contest 1 (the utility of each one is the
middle term in the equation) and the rest invest an effort of
ε in contest 2 (the utility of each one is the right term in the
equation). Both terms are required to be larger than 1

n since
this is the utility from not investing any effort in any contest.
The middle term is the utility of a contestant that invests an
effort of B in contest 1. The right-most term is the utility a
contestant that invests an effort of ε in contest 2. The equality
of these two terms means that we are in a NE.

1

n
<

(
t

x

)
=

(
1− t
n− x

)
+

1

n
− ε.

Taking for example t = 0.5 and rearranging, we have

ε =

(
0.5

n− x

)
−
(

0.5

x

)
+

1

n
.

When ε → 0, x → 0.293 · n. (This also implies that if we
choose a very small ε, the utility from participating in one the
contests will be larger than 1

n .) Thus, in this example, even
for very large n’s, the utility of contest 1 that uses EPP will be
less than 0.3 while its relative prize power is 0.5. The lower
bound that Eq. 11 gives, which is equal to 0.292893 in this
case, is very close to the actual utility obtained in the above
example.
The convexity of the safety level (for any finite number of
contestants n). In fact it turns out that the convexity of the
safety level function holds for every n and α:

Theorem 2. For every n and α, ∂2

∂t2SLlinear(n, α, t) ≥ 0.

Proof. The second derivative of equation 10 w.r.t. t is:

∂2

∂t2
SLlinear(n, α, t) =

2nα2(1 + n)2

((n(1− α)− 1)2 + 4n(1 + α− tα− ntα))
3
2

The numerator is non-negative. Define z to be the argument
in the denominator z(n, α, t) = (n(1 − α) − 1)2 + 4n(1 +
α− tα− ntα). z(n, α, t = 1) = (nα− n− 1)2 > 0 and the
derivative with respect to t is ∂

∂tz(n, α, t) = −4nα(1 + n) <
0. Therefore ∀t ≤ 1, z(n, α, t) ≥ z(n, α, t = 1) > 0
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Large α values. The coefficient α represents the substi-
tution relation between cost of effort and prize. As α be-
comes larger a contestant is willing to invest more effort
for the same amount of prize. As shown in figure 5, as α
grows, the safety level becomes closer to a linear function.
Using equation 9 and taking the limit α −→ ∞ we have
(1−t)

1−E[x] ≥
n
α ( αt

1+nE[x] −
1
n ) = nt

1+nE[x] −
1
αn ≈

nt
1+nE[x] .

For large values of α we therefore obtain the approxima-
tion E[x] ≈ t − 1−t

n . Comparing to [Feige et al., 2013],
their model can be viewed as assuming α → ∞ since they
assume that contestants do not have any utility(positive or
negative) for any effort invested. Indeed, under such an as-
sumption, they showed a lower bound on the safety level of
E[x] ≥ t− 1

n , which is consistent with our result, and which
our result generalizes for all values of α.

5 Conclusions and Future Directions
This paper models competition among two contest designers
and the resulting n contestants game. We show that the sim-
ple and natural exclusive proportional policy obtains a safety
level that approaches the relative prize power t of the contest
when the number of contestants n or the substitution param-
eter α are large. This means that a contest designer that uses
it obtains utility not much smaller than the utility that can be
obtained in any equilibrium outcome.

We have found that the safety level function is convex with
respect to the relative prize power. Moreover the safety level
of the contest designers converges very fast with respect to
the number of contestants when contestants are risk-averse
(β < 1). The convexity of the safety level with respect to the
relative prize power implies that a contest designer who has
a larger relative prize power will gain more from growing.
Therefore, for future research we would suggest to model a
multi-round game, where in every round contests initially de-
cide on the size of their prizes (which is fixed in our model),
and this could possibly be related to the gains of the contests
from previous rounds. Another more technical interesting
question is to determine whether there is a contest policy that
provides a higher safety level in the various cases where ex-
clusive proportional policy is sub-linear, and, more generally,
to provide tight characterizations of equilibrium outcomes.

In this paper we assume that effort is observable, in order to
force exclusiveness. In a model of identical contestants, we
believe this is reasonable as effort can be deduced from the
observable quality of the outcome (e.g., a full questionnaire).
In future work it could be interesting to study whether contest
policies that do not require exclusiveness are able to provide
the same safety level guarantees as EPP.
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