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Abstract

Participatory budgeting systems allow city resi-
dents to jointly decide on projects they wish to
fund using public money, by letting residents vote
on such projects. While participatory budgeting
is gaining popularity, existing aggregation methods
do not take into account the natural possibility of
project interactions, such as substitution and com-
plementarity effects. Here we take a step towards
fixing this issue: First, we augment the standard
model of participatory budgeting by introducing a
partition over the projects and model the type and
extent of project interactions within each part us-
ing certain functions. We study the computational
complexity of finding bundles that maximize voter
utility, as defined with respect to such functions.
Motivated by the desire to incorporate project inter-
actions in real-world participatory budgeting sys-
tems, we identify certain cases that admit efficient
aggregation in the presence of such project interac-
tions.

1 Introduction

Participatory budgeting (PB) [Cabannes, 2004] is a direct
democracy approach for budgeting, most often used to decide
a fraction of municipal budgets. Rooted in Brazil [Wampler,
20101, it keeps on gaining popularity as more and more cities
are using it to decide on the distribution of increasing frac-
tions of their mutual funds; in particular, it is used quite
extensively in the United States [Russon Gilman, 2012], in
Europe [Sintomer et al., 2008], and elsewhere [Ganuza and
Baiocchi, 2012].

The most popular ballot type for PB is approval (as it offers
easiness of elicitation), thus our starting point is a standard
model for approval-based participatory budgeting, in which
we are given a set of projects, each with its cost; a collection
of voters, each approving a subset of projects; and a budget
limit. The aggregation task is to select a bundle of projects
whose total cost does not exceed the budget limit, respecting
voter preferences. There are quite a number of aggregation
methods for approval-based participatory budgeting. In par-
ticular, Goel et al. [2019] study variants of the popular ag-
gregation methods for this setting, jointly referred to as the
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Greedy Approval method (it is used, e.g., in Paris and War-
saw): Order the projects in decreasing order of their approval
scores (the number of voters approving each of them); then,
go over the list and fund items as long as the remaining budget
limit suffices. Talmon and Faliszewski [2019] study a family
of aggregation methods for this setting; and Aziz et al. [2018]
consider proportional representation in this context.

The motivation for our work is the fact that, while many
times there are certain interactions between projects, this im-
portant aspect of participatory budgeting is often ignored.
Consider the following toy example of a participatory bud-
geting instance, containing the following set of proposed
projects: Project p; - build a school in road A; project po -
build a school in road B; and project ps - improve the road
from C to road A. Assume that road A and road B are quite
close to each other, while C is quite far from them. Now,
consider some voter vy living next to road A and road B, and
wishing the city to build a school. In this case, it would be
natural for voter v; to approve both p; and ps. Note that,
if there are many voters like v;, then the greedy approval
method might decide to fund both p; and p,. However, this
would not be a good use of public money, as road A and road
B are very close to each other, thus perhaps having a school
in either A or B would suffice. This is an extreme exam-
ple of project substitutions, in which a set of projects (the
set {p1,p2} here) are of no use when selected together. To
demonstrate a different kind of project interaction, consider
some voter vy who lives close to road C, and assume that v,
might be happy for a school to be built in road A, but only if
the road from C to road A would be improved (as otherwise it
would be hard for v, to attend school). In this case, it would
be natural for voter vy to approve both p; and p3. Note that,
if there are many voters like vy, but if, say, ps costs much
more than pq, then the greedy approval method might decide
to fund p; but not fund p3. Again, this would not be good use
of public money as voters like vo perhaps could not attend
the new school. Similarly, suppose school is at isolated place,
then building only road would not be fruitful. This is an ex-
treme example of project complementarities, in which a set
of projects (the set {p1, p3}) are of no use when not selected
together.

To the best of our knowledge, no system of PB used to-
day deals with project interactions as demonstrated in the
example above and there are no papers dealing with this.
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There are, however, some works regarding multiwinner elec-
tions (MW) [Faliszewski et al., 2017] (MW are PB elections
with projects of unit cost) that consider some forms of in-
teractions between committee members: Izsak et al. [2018]
consider synergies between groups of candidates, albeit their
model do not consider the interplay between candidate in-
teractions and individual voter preferences. There are also
works on diversity constraints in MW (see, e.g., [Izsak, 2017,
Aziz, 2019]), however the interactions we consider here are
different. (There’s also some general relation to combinato-
rial auctions [De Vries and Vohra, 2003], in which there are
some interactions, albeit for a different setting.)

While there could be many, complex types of project inter-
actions in PB instances, here we concentrate on substitution
and complementarity effects for groups of projects. Our basic
intuition is that a voter liking several projects, all of which are
substitutions of each other, would have diminishing marginal
utility as more projects from this group will be funded. In a
case of extreme substitution it means that the voter would get
the same utility as long as at least one project from this group
is funded. We model such project interactions within groups
of projects by augmenting the model of PB described above
to contain—in addition to the set of projects with their costs,
the set of voters, and the budget limit— a partition of the set
of projects. We refer to this partition as the interaction struc-
ture, with the intent that projects in the same part of the inter-
action structure enjoy some substitution or complementarity
effect. Importantly, here we do not tackle the problem of how
to come up with such interaction structures, but rather assume
that it is given: We mention that, e.g., it might be decided by
a decree of the city mayor; voted upon by the city council; or,
say, decided upon by a full-fledged election of its own. Here
we are interested in finding good aggregation methods that
find better solutions by taking such interaction structures into
account. Our approach is utilitarian, in that we define certain
voter utilities—in particular, the utility of a voter depends on
her approval set and the additional interaction structure—and
study aggregation methods that aim at maximizing the total
voter utility. While, indeed, our model does not catch all pos-
sibilities of interactions between projects, it does catch a quite
rich set of possibilities. In particular, we model not only ex-
treme substitution/complementarity effects, but, by parame-
terizing our utility function, we in effect accommodate vari-
ous degrees of such effects.

As the corresponding aggregation methods we consider are
generally computationally intractable, our focus is on iden-
tifying special cases, including wrt. parameters that might
be small in applications, and design efficient algorithms for
these, more restricted settings. We believe that some of our
algorithms can be used in practice, and view our results as
a progress towards tackling the important problem of project
interactions in PB.

2 Formal Model

Throughout the paper, we denote the number of projects by
m and the number of voters by n.

In our setting we have the following ingredients: a set of
projects, P = {p1,...,pm}; a cost function, ¢c: P — RT,
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with cost(B) 1=}  p c(p) for a set of projects B C P, re-
ferred to as the cost of B; a set of voters, V = {v1,...,v,},
where every voter v; specifies the set of projects v; C P ap-
proved by her—her approval set. Note that we use v; both
for a voter and for her approval set; moreover, we call V/
a profile when referring to a collection of approval sets of
all the voters in V; a partition Z of the set of projects (i.e.,
Z =Axn,.. ~7Z\Z|} with Uieljznzi = Pand z; Nz = 0,
i,j € [|Z]]), referred to as the interaction structure; and a
budget limit / € R. An aggregation method for our set-
ting takes an instance of participatory budgeting with inter-
actions, E = (P,¢,Z,¢,V), and returns a bundle B C P
with cost(B) < £.

A natural utilitarian approach is to define a utility for a
voter from a possible bundle to be the number of projects
in the bundle that are approved by the voter and to define
an aggregation method that outputs a bundle that maximizes
the sum of voter utilities. (Note that, as observed by Tal-
mon and Faliszewski [2019], the Greedy Approval method
is a greedy approximation algorithm for maximizing the to-
tal voter utility defined in this way.) Here we take into ac-
count also the interaction structure Z; to do so we define an
interaction function f: ZT — R, understanding f(4) as the
utility that a voter v gets from a part of Z in which there
are exactly ¢ projects approved by v and funded by the bun-
dle at hand: i.e., the utility of some voter v from some bun-
dle B wrt. interaction structure Z and interaction function f
is: util(v, B) := > .., f(]zNv N BJ|). Each f induces
an aggregation method that selects a bundle B maximizes
the sum of voter utilities (i.e., the toral utility), denoted by
util(B) := >, <y util(v, B). Note that a voter could apply
different interaction functions in different parts of Z. What is
more, each voter could have different set of interaction func-
tions. Some of our algorithmic results hold in this general
setting, in particular, those algorithms which are based on
enumeration (e.g. Theorem 4). Nonetheless, for the sake of
presentation, we decided to use a fixed f to all the voters and
all the parts. We consider only nonzero interaction functions
satisfying the following:

1. f(0) = 0: This means that if a voter v does not approve
any project from a part z; € Z that is funded, then the
utility of this voter from part z; is 0; this is a normaliza-
tion condition.

. f(i) > f(j) for i > j: This means that the interaction
function is non-decreasing; this is natural as the utility
of a voter shall not decrease if more of her approved
projects are being funded.

f(@) = 1 for the first ¢ for which f(i) > 0; this is a
normalization condition.

We furthermore distinguish between two types of interac-
tion functions: Concave (resp., convex) functions, in which
F(i+1) — () < F(5) = f(i— 1) (resp, f(i+1) — f(i) >
f(@) — f(i — 1)), correspond to substitution effects (resp.,
complementarity effects) as concavity (resp. convexity) cor-
responds to diminishing (resp., increasing) marginal utilities.
As such, these are referred to as substitution functions (resp.,
complementarity functions). When we deal with the decision
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version of our problem, in which we decide existence of a
bundle with at least some given total utility, then we refer to
f-PB (if f is an interaction function), f-PBSUB (if f is a
substitution function), or f-PBCOMP (if f is a complemen-
tarity function). We refer to the corresponding optimization
problems (in which we wish to identify a bundle maximiz-
ing total utility) as MAX-f-PB, MAX-f-PBSUB, or MAX-
f-PBCoMP. Note that, in all problems, f is part of the prob-
lem name, and thus fixed.

Example 1. Let P = {a,b, ¢, d, e, f} be a set of projects and
Z = {{a,b,c},{d,e},{f}} be a partition of P. Let V =
{v1,v2} with v; = {a,b,c} and vy = {a,d, f}. Consider
the substitution function f(i) = Z;zl 1/4. For the bundle
B = {a,b,d}, the total utility is 3.5, as util(vy, B) = 1.5
and util(vg, B) = 2. If all projects cost 1 and the budget limit
is 3, then MAX- f-PBSUB would select the bundle {a, d, [},
as it maximizes the total utility with, achieving total utility 4.
Consider the complementarity function f(i) = . For the
bundle B = {a, b, d}, the total utility is 6, as util(v, B)
4 and util(vy, B) = 2. Here, if all projects cost 1 and the
budget limit is 3, then MAX-f-PBCoMP would select the
bundle {a,b,c}, as it maximizes the total utility, achieving
total utility 10.

Paper structure. We study the possibility of identifying
bundles maximizing total utility for various interaction func-
tions. In Section 3, we show general intractability. Then,
to better understand the combinatorics of our problems and
to identify special cases admitting efficient algorithms, we
proceed in 2 directions: In Section 4 we study the parameter-
ized complexity of our problems wrt. problem parameters that
might be small in real-world instances; and in Section 5 we
study the complexity of our problems for instances of two do-
main restrictions suited for our setting. Section 6 concludes.

3 General Computational Complexity

f-PBSUB and f-PBCoOMP generalize the standard model of
approval-based PB by introducing an interaction function f.
Talmon and Faliszewski [2019] study a utilitarian setting of
approval-based PB without project interactions; in particular,
they define a voting rule, denoted by R"%U B which maximizes
voter utility, where the utility of a voter v from some bun-
dle B is the number of funded projects approved by her (i.e.,
|v N B). They show that R[g, can be solved in polynomial
time via a standard dynamic programming for Unary Knap-
sack [Talmon and Faliszewski, 2019, Proposition 1]. Next we
identify two cases for which MAX- f-PB is equivalent to the
no-interaction setting of R"%U 5 as such these are polynomial-

time solvable. (Intuitively, the next result follows as | Z| = m
corresponds to the all-singletons interaction partition; and lin-
ear interaction functions nullify the interaction partition.)

Corollary 2. If |Z| = m or if f is the linear function, where
m is the number of projects, then MAX- f-PB is polynomial-
time solvable.

However, as we show next, intractability appears even for
a small deviation of f from linearity or of Z from the all-
singletons partition.
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Theorem 3. f-PB is NP-complete and W[1]-hard wrt. the
budget limit { for every |Z| € {1,2,..., |em]} even for con-
stant app, where m is the number of projects and app is the
maximum size of an approval set, for any € € (0, 1) and any
non-linear interaction function f.!

The proof of Theorem 3 follows by a reduction from
the INDEPENDENT SET or CLIQUE problems on r-regular
graphs, depending on how f deviates from being linear, with
required total utility u different for the two cases. Edges
correspond to voters, vertices correspond to projects. All
projects are of unit cost. Each vertex-project is approved
by exactly r edge-voters. All vertex-projects are in one part.
By choosing vertex-projects we get utility depending on the
number of satisfied voters (covered edges). If f(1) = 1 and
f(2) < 2, then f deviates from linearity in a downward way
and we get more utility if we maximize the number of edges
covered once; hence, we are using reduction from INDEPEN-
DENT SET). However, if f(1) = 1and f(2) > 2(or f(1) =0
and f(2) = 1), then f deviates from linearity in an upward
way and we get more utility if we maximize the number
of edges covered twice (hence we are using reduction from
CLIQUE). If the function is linear (or equal to 0) up to some
point i (7 is a constant as f is fixed), and then f deviates from
linearity, then we add ¢ — 1 dummy wonderful-projects that
are approved by every voter and live in the same part as the
vertex-projects and we increase the budget by :—1. We set the
total utility in such a way that all dummy wonderful-projects
are in every feasible solution, and the effect of f being linear
(equal to 0) up to ¢ is canceled out as every voter is satisfied
by ¢ — 1 dummy wonderful-projects. To provide hardness for
the case with many parts we add dummy bad-projects that
are not approved by any voter. Every bad-project belongs to
a singleton part; then, there is no incentive to choose these
projects to the solution. As ¢, as well as the number of vertex-
projects, are fixed for a fixed graph and fixed function f, the
number of bad-projects can be arbitrarily close to number of
projects.

4 Fixed-Parameter Algorithms

Theorem 3 above shows that MAX-f-PB is generally NP-
hard, and also implies hardness wrt. the budget limit ¢ and
wrt. the maximum approval set size app. In this section we
consider further input parameters, concentrating on these pa-
rameters: The number of projects: m; the number of voters:
n; the number of parts in Z: |Z|; and the maximum projects
inapart of Z: s := max.cz |z|.

First, observe that MAX-f-PB is FPT wrt. the number m
of projects as we can try all possible bundles. Indeed, in
some real-world PB instances m is rather small (e.g., most
PB instances powered by Stanford Participatory Budgeting
Platform? contain less than 20 projects). Note that assuming
ETH, CLIQUE and INDEPENDENT SET do not admit 2°(7*+7)

'W(2]-hardness of f-PB wrt. £, for f(i) = min(1, ) can follow
by a reduction from Dominating Set [Bonnet er al., 2016]. Hardness
of f-PBSUB can also be derived by reducing from winner determi-
nation for non-decreasing non-constant OWA vectors [Skowron et
al., 2016, Theorem 5].

“https://pbstanford.org/
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algorithm, where n and m are number of vertices and edges
in the graph, respectively [Impagliazzo et al., 2001]. Since in
both the reductions (reduction from CLIQUE and INDEPEN-
DENT SET), for |Z| = 1, number of vertices and edges in
the graph are mapped to the number of projects (with some
additional constant many projects) and the number of voters,
assuming ETH, there is no 2°("*™) algorithm for MAX- f-
PB, for any non-linear function f.

Regarding the parameter app, it is generally decided by the
election organizer, and is indeed rather small (around 5-10 in
most instances, e.g., Paris and Warsaw; and even 1 or 2, e.g.,
in Wroctaw). Observe that MAX- f-PB is polynomial-time
solvable if app = 1, however, there are some functions f
for which MAX- f-PB is NP-hard already for app = 2 (in
fact, any function f deviating from linearity for some value
1 is NP-hard as soon as app = i + 1 using Theorem 3), and
remains polynomial time, otherwise.

Below we describe efficient algorithms for MAX- f-PB
wrt. s, m — |Z], and n.

4.1 Parameterization by s

In many cases, the parameter s—the maximum size of a part
in the “interactions partition” Z—could be rather small; in
particular, several projects of the same kind and in close geo-
graphical position might be in the same part of an interaction
partition, however projects that are far away from each might
probably should not be in the same part, so, if the projects
are across the country, usually s is small. Here, we give an
FPT algorithm wrt. s for MAX- f-PB, where f : ZT — Z7T
and f(h) > 1, where h is the smallest positive integer for
which f(h) is non-zero. We call such function as integer-
valued function. We restrict to those functions here as it is
needed technically for the dynamic programming (DP) al-
gorithm we use to prove the claim; note that such func-
tions can nevertheless still encompass complicated substitu-
tion/complementarity effects, however to a lesser precision.
Theorem 4. MAX-f-PB is FPT wrt. s, where s is the maxi-
mum number of projects in a part and f is an integer-valued
function.

Proof. Let (P,c,Z,¢, V) be the given instance of MAX-f-
PB.Let Z = {z1,...,2,}. We define the dynamic program-
ming table as follows: for i € [q], j € [ngf(s)] U {0}, we
define T'[¢, j] as the minimum cost of a bundle that belongs to
first ¢ parts of Z and whose total utility is j. If no such bundle
exists, then T'[i, j] = co. Note that we have only O(ng?f(s))
table entries. We compute our table entries as follows.

cost(B) B C z is a cheapest bundle
T, j] = with total utility j, if exists (1)
00 otherwise

T[1,j] = 0, for all j < h, as the empty bundle is the only
least cost bundle of total utility 0. Note that T[1, j] is correct.
Time taken to compute T'[1, 5] is 2/*t| as we can check the
cost of all subsets of z;. For i > 1, we compute the table
entry recursively as follows. For S C P, let ug denote the
total utility of S.

T[i,j] = in {T[i—1,j — ug| + cost(S)}

us<j

2
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The correctness of Equation 2 follows from the fact that if
B C 21 U...U z; is a least cost bundle with total utility j,
then B\ z is a potential candidate for T'[i — 1,j — upnz,]-
Similarly, for S C z;, if B’ C 21,...,2;_1 is a bundle with
total utility 7 — ug, then B’ U S is a potential candidate for
T'i, j]. The maximum total utility that can be achieved with
budget ¢ is equal to max{j € [ngf(s)] : T[q, j] < ¢}. O

4.2 Parameterization by m — |Z|

As argued above, there are scenarios in which the size of ev-
ery part in Z is small, thus |Z] is large, and m — | Z| is small.
Here, we describe an FPT algorithm wrt. m — |Z|. Recall
that using Corollary 2, when |Z| = m (that is, there are no
interactions at all), MAX- f-PB can be solved in polynomial
time. Our algorithm works as follows. Let (P, ¢, Z,£,V) be
the given instance of MAX- f-PB. First, note that there are at
most m — |Z| parts in Z that contain more than one project
each, and, thus, at most m — |Z| projects which belongs to
such parts (part that contain more than one project). There-
fore, we can guess the projects from these parts in the solution
bundle (me\z | guesses, in total), delete these parts from Z
(this means that we also delete projects in these parts from P
and every approval set) and solve the reduced instance using
Corollary 2. Thus, we have the following:

Theorem 5. MAX-f-PB is FPT wrt. m — |Z|, where m is
the number of projects.

4.3 Parameterization by n

We furthermore consider the number n of voters as it is a
basic parameter of our instances, and since PB is useful not
only on a city-level (in which usually all residents are eligible
voters, thus n is rather large), but also on, say, an apartment-
level (consider PB used by a house/building committee), and
on a city-level in which, say, only members of the city council
are eligible for voting. We describe efficient algorithms wrt.
n for interaction functions that eventually become constant.
Here, also we consider integer-valued functions as we will
use Theorem 4 as subroutine.

Definition 6 (Eventual-constant interaction functions). An
interaction function f is eventual-constant if there exists
some ¢ € N such that f(j) = f(¢) for each j > 1.

First, we apply the following reduction rule, exhaustively;
i.e., we preprocess the given instance and bound the number
of projects in every part of Z by O(2").

Reduction Rule 7. Let (P, ¢, Z,{, V') be the given instance
of MAX- f-PB. Suppose that there exists i € N such that for
all j > 14, f(j) = f(i). If there exists more than i projects,
say pi,...,pi+1 inapart of Z such that they are approved by
the same set of voters and c(p1) < ... < ¢(pit1), then delete
piy1 from P, Z and from every approval set. Let the reduced
instance be (P’ ¢, V', Z' 0).

The correctness of Reduction Rule 7 follows from the fact
that there exists an optimal solution B to (P, ¢, Z, ¢, V) that
does not contain p; 11 as f(i) = f(i + 1). Thus, B is also an
optimal solution to (P, ¢, V', Z' £). Similarly, we can argue
the other direction. Note that, after the exhaustive application
of Reduction Rule 7, for every subset of voters, there is at
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most ¢ projects in a part of Z which is approved by only these
voters. Moreover, since f is fixed, every part of Z contains
at most O(2") projects. Thus, due to Theorem 4, we have
following:

Theorem 8. For any eventual-constant function f, MAX-f-
PB is FPT wrt. n, where n is the number of voters and f is
an integer-valued function.

FPT wrt. n holds also for (not necessarily eventual-con-
stant) concave functions. The proof involves a DP on top of
the MILP technique of Bredereck et al. [2020].

Theorem 9. MAX-f-PBSUB is FPT wrt. n, where n is the
number of voters and f is an integer-valued function.

Proof sketch. The overall algorithm is a DP similar to the one
used in the proof of Theorem 4 with the crucial difference
that, instead of checking all subsets of a part in a brute-force
way, here we solve a Mixed Integer Linear Program (MILP).
As the number of integer variables in the MILP is upper-
bounded by a function depending only on the parameter n,
FPT follows by the result of Lenstra [1983] (as discussed
and used by Bredereck et al. [2020]). In the MILP we parti-
tion P into 2™ — 1 subsets, each indexed by a voter subset.
Then, we have integer variables corresponding to number of
projects from each such part taken to the solution. We then
need to encode (1) cost constraint; (2) utility constraint. As
the cost constraint can be encoded as minimizing a convex
function and the utility as maximizing a concave function, we
can use an encoding following the technique of Bredereck et
al. [2020] to use only additional real-valued variables.

In the overall DP, we define T'[i, j] in the same way as in
Theorem 4, i.e., T'[¢, j] is the minimum cost of a bundle that
belong to first ¢ parts of Z and whose total utility is at least
j. If no such bundle exists, then T'[i,j] = oo. Note that
f is concave hence f(m) < mf(1) = O(m) and we have
O(n|Z|*f(m)) € O(nm?) table entries in total. We com-
pute our table entries as follows.

T[1,j] = MILP(z1, §)
TTi, j] {Ti —1,j — u] + MILP(z;, u)}

= min
we{0,1,...,5}

Hence, the maximum total utility that can be achieved with
budget ¢ is equal to max{j € [nm?] : T[|Z], 5] < ¢}.

We are filling O(nm?) entries in the table, each solving
O(nm?) many MILPs, each in time (’)*(220(")). Hence the
total time is (9*(220(") ), thus FPT wrt. n. O

5 Restricted Domains

In our quest for identifying tractable cases for MAX- f-PB,
we extend our study by considering the computational com-
plexity of MAX-f-PB for various domain restrictions that
model extreme cases of situations that might be natural to
occur in participatory budgeting with interactions. Here also
we restrict our study to integer-valued functions to identify
tractability. In particular, we consider two domain restrictions
for PB.
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5.1 Restricting to r-DISTRICT

The first domain restriction we consider, r-DISTRICT, mod-
els a setting in which each voter approves only projects from
her district (more generally, it models a situation in which
voters do not care for projects that are not directly relevant to
them); note that, in its formal definition below, we consider
an additional partition of the projects that does not have to be
equal to Z.

Definition 10 (r-DISTRICT). A profile V satisfies r-Dis-
TRICT if the set of projects P can be partitioned into subsets
Py, ..., P such that |P;| < 7,4 € [k], and each approval
ballot v € V is a subset of exactly one P;, i € [k].

Assuming a fixed number r of proposed projects from a
district, a solution can be found in polynomial time.

Theorem 11. MAX- f-PB under r-DISTRICT can be solved
in polynomial time, where f is an integer-valued function.

Our algorithm is similar in spirit to the dynamic program-
ming algorithm in Theorem 4, as here also we can do dynamic
programming over the subsets of P, ..., Py. Here, the intu-
ition is that since approval set of a voter is a subset of P;,
where i € [k], we can guess the projects funded from each P,
in polynomial time (as r is fixed), and do the similar dynamic
programming as in Theorem 4.

5.2 Restricting to PARTITION

The second domain restriction we consider, PARTITION, is an
extreme case of r-DISTRICT in which every voter approves
all the projects in her district. Here we do not care for the
maximum size of a district. One motivation for this domain
restriction comes from political parties: If only parties sug-
gest projects, and voters follow party lines by supporting the
projects suggested by their party, then the profile would sat-
isfy PARTITION. (We mention that this domain restriction is
studied by Elkind and Lackner [2015], albeit not for partici-
patory budgeting.)

Definition 12 (PARTITION). We say that a profile D satis-
fies PARTITION if the projects in P can be partitioned into
Py, ..., Py such that each voter approves one of the sets
Py, ..., Py

Next we describe a polynomial-time algorithm for MAX-
f-PBSUB, for PARTITION instances, where f is an integer-
valued function. Our algorithm is, in essence, a nested dy-
namic programming: The main DP is used to find the cheap-
est bundle that is a subset of P;, ¢ € [k], for all possible util-
ities (Lemma 13); this DP uses a “nested” DP that is used to
find a bundle that maximises the utility using the solution of
sub-problems computed above.

Lemma 13. Let (P,c,Z,0,V,u)? be an instance of f-
PBSUB, where f is an integer-valued function, such that ev-
ery voter approves all projects. Then, one can find a least
cost bundle with utility v in polynomial time, if exists.

Proof. We describe a dynamic programming algorithm. Let
Z ={z,...,24}. Inthe table, T, each entry T[i, j|, where

3We slightly abuse notation and use f-PBSUB to find a solution
with utility u.
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i € [q], 7 € [u]U{0} is the minimum cost of a bundle which is
a subset of 21, ..., z; with total utility u. We compute the ta-
ble entries as follows. Let B; ; be a set of x least cost projects
in z; such that |V| - f(z) = j, if exists.

1.5 = {

For 2 > 1, we compute the table entries as follows.

T[?,,]} = {T[Z — 1, h] =+ COSt(BZ"(j,h))} (3)

cost(B1 ;)
00

if By ; exists
otherwise

min
1<h<j:
B; (j—n) exists

Correctness follows in a similar way as in Theorem 4. O

We use Lemma 13 for designing a polynomial-time
algorithm for MAX-f-PBSUB for PARTITION instances,
where f is an integer-valued function. Let (P
{P1,...,Px},c,Z,£,V) be the given instance of MAX- f-
PBSUB under PARTITION. Let Vp, be the set of vot-
ers who approve the projects in P; and Z|p, be the par-
tition obtained after removing all the projects from parts
in Z that are not in P;. Intuitively, if B is a solution to
(P = {P1,...,P:},c,V,Z,¢) such that the utility of ev-
ery voter in Vp, from B is u;, then the total utility for B
is uy + ...+ uy as no voter approves projects from different
parts in P, and we can find a least cost bundle for the instance
(P, ¢,Vp,, Z|p,,u) of f-PBSUB using Lemma 13.

Theorem 14. MAX-f-PBSUB under PARTITION can be
solved in polynomial time, where f is an integer-valued func-
tion.

Proof. Let (P = {Py,...,Px},c,V,Z,{) be the given in-
stance of MAX-f-PBSUB under PARTITION. Here, we do
dynamic programming over subsets of P, ..., P;. For each
P; and j, where i € [k], 0 < j < n|Z|f(m), T[i,j] is the
least cost of a bundle which is a subset of P; with total util-
ity j. Note that T'[i, j] can be computed using algorithm in
Lemma 13 with instance (P;, ¢, Vp,, Z|p,, ¢, u;). Next, we
create a table T', where each entry T'[¢, j] is the least cost of a
bundle which is a subset of Py, ..., P; with total utility j as
follows. For all 0 < j < n|Z|f(m), T[1,4] = Ti, j]. For
1 > 1, we compute the table entries as follows.

Tli, ) = min {Tli 1,5+ Tli.j = ')}

“

The correctness follows from the disjointness of parts in P.
Since both the tables 7" and T have at most nk|Z|f(m) en-
tries, hence polynomial size as f is concave (similarly as ar-
gued in Theorem 9). Since each entry can be computed in
polynomial time, the algorithm runs in polynomial time. [

6 Outlook

We proposed a model that incorporates certain kinds of inter-
actions between projects in participatory budgeting. We be-
lieve that this aspect is of great importance and, when taken
into account, can improve the quality of the selected bundles,
thus increasing the social welfare (i.e., the total utility). Ac-
knowledging that there might be many forms of project inter-
actions, we tackled a certain kind of project interactions that
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corresponds to various degrees of substitutions and comple-
mentarities between groups of projects.

While we showed that finding optimal bundles is gener-
ally intractable—in particular, the problem becomes hard as
soon as one deviates from the singletons-only interaction par-
tition and from the linear interaction function—we identified
several well-motivated special cases that admit efficient al-
gorithms: We showed that our problems are FPT wrt. ei-
ther m — |Z] or s; FPT wrt. n if interactions are limited
to eventual-constant concave functions; and polynomial-time
solvable for profiles satisfying r-District or Partition.

Approximability. Another natural way at coping with the
computational hardness of our problems is by approximation
algorithms. First, as one can reduce an instance with | Z| parts
and n voters to an instance with 1 part and n|Z| < nm
projects (by splitting each voter to |Z|-many voters), |Z]
does not affect approximability in time polynomial on nm;
hence, below we consider only |Z| = 1.* Approximability
of MAX-f-PB was only considered (under different names)
for specific functions out of which we imply that (1) MAX- f-
PBSUB admits a (1—1/e)-approximation due to submodular-
ity of concave function f and the result of Sviridenko [2004];
(2) Assuming Gap-ETH, for any ¢ > 0 and any function
T there is no T'(k)(n + m)°®)-time algorithm for MAX-
f-PBSUB to within a factor of (1 — 1/e + ¢)—already for
f(#) = min(4, 1) and unit-cost projects [Manurangsi, 2020];
(3) Assuming Gap-ETH, there is no polynomial time approxi-
mation algorithm for MAX- f-PB—for every function f with
f(1) = 0—with approximation guarantee better than n°().
This follows from the reduction in Theorem 3 and hardness
of approximation of Densest k-Subgraph [Manurangsi, 2017]
similarly as it was done in [Skowron et al., 2016]. Good ap-
proximation for convex functions with f(1) = 1, or better
ratios for specific concave functions are open. Note that re-
cently, for the case of unit-cost projects, a tight approxima-
tion for f(q) = Y¢_, 1/¢ (and any geometrically dominant
function) was shown [Dudycz et al., 2020].

Future research. We believe that our paper opens the way
for other approaches to incorporate project interactions to par-
ticipatory budgeting. In particular, the main concrete avenues
for immediate future research are exploring other cases in
which PB with interactions can be solved efficiently (per-
haps assuming that all approval sets individually satisfy the
budget constraint); considering other utility functions; and,
generally, considering other (perhaps non utilitarian) ways to
incorporate project interactions to the PB setting.
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