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Abstract
Though limited in real-world decision making, most
multi-agent reinforcement learning (MARL) mod-
els assume perfectly rational agents – a property
hardly met due to individuals’ cognitive limitation
and/or the tractability of the decision problem. In
this paper, we introduce generalized recursive rea-
soning (GR2) as a novel framework to model agents
with different hierarchical levels of rationality; our
framework enables agents to exhibit varying levels
of “thinking” ability thereby allowing higher-level
agents to best respond to various less sophisticated
learners. We contribute both theoretically and em-
pirically. On the theory side, we devise the hier-
archical framework of GR2 through probabilistic
graphical models and prove the existence of a per-
fect Bayesian equilibrium. Within the GR2, we
propose a practical actor-critic solver, and demon-
strate its convergent property to a stationary point in
two-player games through Lyapunov analysis. On
the empirical side, we validate our findings on a
variety of MARL benchmarks. Precisely, we first
illustrate the hierarchical thinking process on the
Keynes Beauty Contest, and then demonstrate sig-
nificant improvements compared to state-of-the-art
opponent modeling baselines on the normal-form
games and the cooperative navigation benchmark.

1 Introduction
In people’s decision making, rationality can often be com-
promised; it can be constrained by either the difficulty of the
decision problem or the finite resources available to each indi-
vidual’s mind. In behavioral game theory, instead of assum-
ing people are perfectly rational, bounded rationality [Simon,
1972] serves as the alternative modeling basis by recognizing
such cognitive limitations. Keynes Beauty Contest [Keynes,
1936] is one of the most-cited examples prescribe bounded
rationality. In the contest, all players are asked to pick one
number from 0 to 100, and the player whose guess is closest
to 1/2 of the average number eventually becomes the winner.
In this game, if all the players are perfectly rational, the only

⇤First two authors contribute equally.

choice is to guess 0 (the only Nash equilibrium) because each
of them could reason as follows: “if all players guess ran-
domly, the average of those guesses would be 50 (level-0), I,
therefore, should guess no more than 1/2 ⇥ 50 = 25 (level-1),
and then if the other players think similarly as me, I should
guess no more than 1/2 ⇥ 25 = 13 (level-2) ...”. Such levels
of recursions can keep developing infinitely until all players
guess the equilibrium 0. This theoretical result from the per-
fect rationality is however inconsistent with the experimental
finding in psychology [Coricelli and Nagel, 2009] which sug-
gests that most human players would choose between 13 and
25. In fact, it has been shown that human beings tend to reason
only by 1-2 levels of recursions in strategic games [Camerer
et al., 2004]. In the Beauty Contest, players’ rationality is
bounded and their behaviors are sub-optimal. As a result, it
would be unwise to guess the Nash equilibrium 0 at all times.

In multi-agent reinforcement learning (MARL), one com-
mon assumption is that all agents behave rationally [Albrecht
and Stone, 2018] during their interactions. For example, we
assume agents’ behaviors will converge to Nash equilibrium
[Yang et al., 2018a]. However, in practice, it is hard to guaran-
tee that all agents have the same level of sophistication in their
abilities of understanding and learning from each other. With
the development of MARL methods, agents could face various
types of opponents ranging from joint-action learners [Claus
and Boutilier, 1998], factorized Q-learners [Zhou et al., 2019],
to the complicated theory-of-mind learners [Rabinowitz et
al., 2018]. It comes as no surprise that the effectiveness of
MARL models decreases when the opponents act irrationally
[Shoham et al., 2003]. On the other hand, it is not desir-
able to design agents that can only tackle opponents that play
optimal policies. Justifications can be easily found in mod-
ern AI applications including studying population dynamics
[Yang et al., 2018b] or video game designs [Peng et al., 2017;
Hunicke, 2005]. Therefore, it becomes critical for MARL
models to acknowledge different levels of bounded rationality.
In this work, we propose a novel framework – General-

ized Recursive Reasoning (GR2) – that recognizes agents’
bounded rationality and thus can model their corresponding
sub-optimal behaviors. GR2 is inspired by cognitive hierar-
chy theory [Camerer et al., 2004], assuming that agents could
possess different levels of reasoning rationality during inter-
actions. It begins with level-0 (L0 for short) non-strategic
thinkers who do not model their opponents. L1 thinkers are
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more sophisticated than level-0; they believe the opponents
are all at L0 and then act correspondingly. With the growth
of k, Lk agents think in an increasing order of sophistication
and then take the best response to all possible lower-level
opponents. We immerse the GR2 framework into MARL
through graphical models, and derive the practical GR2 soft
actor-critic algorithm. Theoretically, we prove the existence
of Perfect Bayesian Equilibrium in GR2 framework, as well
as the convergence of GR2 policy gradient methods on two-
player normal-form games. Our proposed GR2 actor-critic
methods are evaluated against multiple strong MARL base-
lines on Keynes Beauty Contest, normal-form games, and
cooperative navigation. Results justify our theoretical findings
and the effectiveness of bounded-rationality modeling.

2 Related Work
Modeling opponents in a recursive manner can be regarded
as a special type of opponent modeling [Albrecht and Stone,
2018]. Recently, studies on Theory of Mind (ToM) [Goldman
and others, 2012; Rabinowitz et al., 2018] explicitly model
the agent’s belief on opponents’ mental states in the reinforce-
ment learning (RL) setting. The I-POMDP framework focuses
on building the beliefs about opponents’ intentions into the
planning and making agents act optimally with respect to such
predicted intentions [Gmytrasiewicz and Doshi, 2005]. GR2
is different in that it incorporates a hierarchical structure for
opponent modeling; it can take into account opponents with
different levels of rationality and therefore can conduct nested
reasonings about the opponents (e.g. “I believe you believe
that I believe ... ”). In fact, our method is most related to
the probabilistic recursive reasoning (PR2) model [Wen et al.,
2019]. PR2 however only explores the level-1 structure and it
does not target at modeling bounded rationality. Importantly,
PR2 does not consider whether an equilibrium exists in such
a sophisticated hierarchical framework at all. In this work,
we extend the reasoning level to an arbitrary number, and
theoretically prove the existence of equilibrium as well as the
convergence of the subsequent learning algorithms.
Decision-making theorists have pointed out that the abil-

ity of thinking in a hierarchical manner is one direct con-
sequence of the limitation in decision makers’ information-
processing power; they demonstrate this result by matching
real-world behavioral data with the model that trades off be-
tween utility maximization against information-processing
costs (i.e. an entropy term applied on the policy) [Genewein
et al., 2015]. Interestingly, the maximum-entropy framework
has also been explored in the RL domain through inference on
graphical models [Levine, 2018]; soft Q-learning [Haarnoja
et al., 2017] and actor-critic [Haarnoja et al., 2018] meth-
ods were developed. Recently, soft learning has been fur-
ther adapted into the context of MARL [Wei et al., 2018;
Tian et al., 2019]. In this work, we bridge the gap by em-
bedding the solution concept of GR2 into MARL, and derive
the practical GR2 soft actor-critic algorithm. By recognizing
bounded rationality, we expect the GR2 MARL methods to
generalize across different types of opponents thereby showing
robustness to their sub-optimal behaviors, which we believe is
a critical property for modern AI applications.

3 Preliminaries
The Stochastic Game [Shapley, 1953] is a natural framework
to describe the n-agent decision-making process; it is typically
defined by the tuple

⌦
S,A1, . . . ,An, r, . . . , rn,P, �

↵
, where

S represents the state space, Ai and ri(s, ai, a�i) denote the
action space and reward function of agent i 2 {1, . . . , n},
P : S ⇥ A1 ⇥ · · · ⇥ An ! P(S) is the transition prob-
ability of the environment, and � 2 (0, 1] a discount fac-
tor of the reward over time. We assume agent i chooses
an action ai 2 Ai by sampling its policy ⇡i

✓i(ai|s) with
✓i being a tuneable parameter, and use a�i = (aj)j 6=i to
represent actions executed by opponents. The trajectory
⌧ i =

⇥
(s1, ai1, a

�i
1 ), . . . , (sT , aiT , a

�i
T )

⇤
of agent i is defined

as a collection of state-action triples over a horizon T .

3.1 The Concept of Optimality in MARL
Analogous to standard reinforcement learning (RL), each
agent in MARL attempts to determine an optimal policy maxi-
mizing its total expected reward. On top of RL, MARL intro-
duces additional complexities to the learning objective because
the reward now also depends on the actions executed by oppo-
nents. Correspondingly, the value function of the ith agent in
a state s is V i(s;⇡✓) = E⇡✓,P

hPT
t=1 �

t�1ri
�
st, ait, a

�i
t

�i

where (ait, a
�i
t ) ⇠ ⇡✓ = (⇡i

✓i ,⇡
�i
✓�i) with ⇡✓ denoting

the joint policy of all learners. As such, optimal behav-
ior in a multi-agent setting stands for acting in best re-
sponse to the opponent’s policy ⇡�i

✓�i , which can be for-
mally defined as the policy ⇡i

⇤ with V i(s;⇡i
⇤,⇡

�i
✓�i) �

V i(s;⇡i
✓i ,⇡

�i
✓�i) for all valid ⇡i

✓i . If all agents act in best
response to others, the game arrives at a Nash equilibrium
[Nash and others, 1950].Specifically, if agents execute the

policy of the form ⇡i(ai|s) =
exp(Qi

⇡✓
(s,ai,a�i))

P
a0 exp(Qi

⇡✓
(s,a0,a�i))

– a

standard type of policy adopted in RL literatures – with
Qi

⇡✓
(s, ai, a�i) = ri(s, ai, a�i)+�EP [V i(s0;⇡✓)] denoting

agent i’s Q-function and s0 being a successor state, they reach
a Nash-Quantal equilibrium [McKelvey and Palfrey, 1995].

3.2 The Graphical Model of MARL
Since GR2 is a probabilistic model, it is instructive to pro-
vide a brief review of graphical models for MARL. In single-
agent RL, finding the optimal policy can be equivalently
transferred into an inference problem on a graphical model
[Levine, 2018]. Recently, it has been shown that such equiva-
lence also holds in the multi-agent setting [Wen et al., 2019;
Grau-Moya et al., 2018]. To illustrate, we first introduce
a binary random variable Oi

t 2 {0, 1} (see Fig. 1) that
stands for the optimality of agent i’s policy at time t, i.e.,
p
�
Oi

t = 1|O�i
t = 1, ⌧ it

�
/ exp

�
ri
�
st, ait, a

�i
t

��
, which sug-

gests that given a trajectory ⌧ ti , the probability of being op-
timal is proportional to the reward. In the fully-cooperative
setting, if all agents play optimally, then agents receive the
maximum reward that is also the Nash equilibrium; therefore,
for agent i, it aims to maximize p(Oi

1:T = 1|O�i
1:T = 1) as

this is the probability of obtaining the maximum cumulative
reward/best response towards Nash equilibrium. For simplic-
ity, we omit the value for Ot hereafter. As we assume no
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Figure 1: Graphical model of the level-k reasoning model. Subfix of
a⇤ stands for the level of thinking not the timestep. The opponent poli-
cies are approximated by ⇢�i. The omitted level-0 model considers
opponents fully randomized. Agent i rolls out the recursive reasoning
about opponents in its mind (grey area). In the recursion, agents with
higher-level beliefs take the best response to the lower-level agents.

knowledge of the optimal policies ⇡⇤ and the model of the
environment P(S), we treat them as latent variables and apply
variational inference [Blei et al., 2017] to approximate such
objective; using the variational form of p̂(⌧ i|Oi

1:T ,O
�i
1:T ) =

[p̂(s1)
QT�1

t=1 p̂(st+1|st, ait, a�i
t )]⇡✓(ait, a

�i
t |st) leads to

maxJ (⇡✓) = log p(Oi
1:T = 1|O�i

1:T = 1) (1)

�
X

⌧ i

p̂(⌧ i|Oi
1:T ,O�i

1:T ) log
p(Oi

1:T , ⌧
i|O�i

1:T )

p̂(⌧ i|Oi
1:T ,O

�i
1:T )

=
TX

t=1

E⌧ i⇠p̂(⌧ i)


ri
�
st, a

i
t, a

�i
t

�
+H

�
⇡✓(a

i
t, a

�i
t |st)

��
.

To maximize J (⇡✓), a variant of policy iteration called
soft learning is applied. For policy evaluation, the Bell-
man expectation equation now holds on the soft value func-
tion V i(s) = E⇡✓

⇥
Qi(st, ait, a

�i
t )� log(⇡✓(ait, a

�i
t |st))

⇤
,

with the updated Bellman operator T ⇡Qi(st, ait, a
�i
t ) ,

ri(st, ait, a
�i
t ) + �EP

⇥
softQ(st, ait, a

�i
t )

⇤
. Compared to the

max operation in the normal Q-learning, soft operator is
softQ(s, ai, a�i) = log

P
a

P
a�i exp

�
Q(s, ai, a�i)

�
⇡

maxai,a�i Q
�
s, ai, a�i

�
. Policy improvement however be-

comes non-trivial because the Q-function now guides the im-
provement direction for the joint policy rather than for each
single agent. Since the exact parameter of the opponent policy
is usually unobservable, agent i needs to approximate ⇡�i

✓�i .

4 Generalized Recursive Reasoning
Recursive reasoning is essentially taking an iterative best
response to opponents’ policies. level-1 thinking is “I

know you know how I know”. We can represent such re-
cursion by ⇡(ai, a�i|s) = ⇡i(ai|s)⇡�i(a�i|s, ai) where
⇡�i(a�i|s, ai) stands for the opponent’s consideration of
agent i’s action ai ⇠ ⇡i(ai|s). The unobserved opponent con-
ditional policy ⇡�i can be approximated via a best-fit model
⇢�i
��i parameterized by ��i. By adopting ⇡✓(ai, a�i|s) =

⇡i
✓i(ai|s)⇢�i

��i(a�i|s, ai) in p̂(⌧ i|Oi
1:T ,O

�i
1:T ) in maximizing

the Eq. 1, we can solve the best-fit opponent policy by

⇢�i
��i(a

�i|s, ai) / exp
�
Qi

⇡✓
(s, ai, a�i)�Qi

⇡✓
(s, ai)

�
. (2)

We provide the detailed derivation of Eq. 2 in Appendix A.
Eq. 2 suggests that agent i believes his opponent will act in
his interest in the cooperative games. Based on the opponent
model in Eq. 2, agent i can learn the best response policy by
considering all possible opponent agents’ actions: Qi(s, ai) =R
a�i ⇢

�i
��i(a�i|s, ai)Qi(s, ai, a�i) da�i, and then improve its

own policy towards the direction of

⇡0 = argmin
⇡0

DKL

"
⇡0(·|st)

����

����
exp(Qi

⇡i,⇢�i(st, ai, a�i))
P

a0 exp(Qi(st, a0, a�i))

#
. (3)

4.1 Level-k Recursive Reasoning – GR2-L
Our goal is to extend the recursion to the level-k (k � 2)
reasoning (see Fig. 1). In brief, each agent operating at level k
assumes that other agents are using k � 1 level policies and
then acts in best response. We name this approach GR2-L. In
practice, the level-k policy can be constructed by integrating
over all possible best responses from lower-level policies

⇡i
k(a

i
k|s) /

Z

a�i
k�1

⇢
⇡i
k(a

i
k|s, a�i

k�1) (4)

·
Z

ai
k�2

h
⇢�i
k�1(a

�i
k�1|s, a

i
k�2)⇡

i
k�2(a

i
k�2|s)

i
daik�2

| {z }
opponents of level k-1 best responds to agent i of level k-2

�
da�i

k�1.

When the levels of reasoning develop, we could think of
the marginal policies ⇡i

k�2(a
i|s) from lower levels as the

prior and the conditional policies ⇡i
k(a

i|s, a�i) as the pos-
terior. From agent i’s perspective, it believes that the op-
ponents will take the best response to its own fictitious ac-
tion aik�2 that are two levels below, i.e., ⇢�i

k�1(a
�i
k�1|s) =R

⇢�i
k�1(a

�i
k�1|s, aik�2)⇡

i
k�2(a

i
k�2|s) daik�2, where ⇡

i
k�2 can

be further expanded by recursively using Eq. 4 until meeting
⇡0 that is usually assumed uniformly distributed. Decisions
are taken in a sequential manner. As such, a level-k model
transforms the multi-agent planning problem into a hierarchy
of nested single-agent planning problems.

4.2 Mixture of Hierarchy Recursive Reasoning –
GR2-M

So far, a level-k agent assumes all opponents are at level k�1
during the reasoning process. We can further generalize the
model to let each agent believe that the opponents can be
much less sophisticated and they are distributed over all lower
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hierarchies ranging from 0 to k � 1 rather than only the level
k � 1, and then find the corresponding best response to such
mixed types of agents. We name this approach GR2-M.
Since more computational resources are required with in-

creasing k, e.g., human beings show limited amount of work-
ing memory (1 � 2 levels on average) in strategic thinkings
[Devetag and Warglien, 2003], it is reasonable to restrict the
reasoning so that fewer agents are willing to conduct the rea-
soning beyond k when k grows large. We thus assume that
Assumption 1. With increasing k, level-k agents have an
accurate guess about the relative proportion of agents who
are doing lower-level thinking than them.
The motivation of such assumption is to ensure that when

k is large, there is no benefit for level-k thinkers to reason
even harder to higher levels (e.g. level k + 1), as they will
almost have the same belief about the proportion of lower level
thinkers, and subsequently make similar decisions. In order to
meet Assumption 1, we choose to model the distribution of rea-
soning levels by the Poisson distribution f(k) = e���k

k! where
� is the mean. A nice property of Poisson is that f(k)/f(k�n)
is inversely proportional to kn for 1  n < k, which satisfies
our need that high-level thinkers should have no incentives
to think even harder. We can now mix all k levels’ thinkings
{⇡̂i

k} into agent’s belief about its opponents at lower levels by

⇡i,�
k (aik|s, a�i

0:k�1)

:=
e��

Z

�
�0⇡̂i

0(a
i
0|s) + · · ·+ �k

k!
⇡̂i
k(a

i
k|s, a�i

0:k�1)
�
, (5)

where the term Z =
Pk

n=1
e���n/n!. In practice, � can be set

as a hyper-parameter, similar to TD-� [Tesauro, 1995].
Note that GR2-L is a special case of GR2-M. As the mixture

in GR2-M is Poisson distributed, we have f(k�1)
f(k�2) =

�
k�1 ; the

model will bias towards the k � 1 level when �� k.

4.3 Theoretical Guarantee of GR2 Methods
Recursive reasoning is essentially to let each agent take the
best response to its opponents at different hierarchical levels.
A natural question to ask is does the equilibrium ever exist in
GR2 settings? If so, will the learning methods ever converge?

Here we demonstrate our theoretical contributions that 1)
the dynamic game induced by GR2 has Perfect Bayesian Equi-
librium [Levin and Zhang, 2019]; 2) the learning dynamics of
policy gradient in GR2 is asymptotically stable in the sense of
Lyapunov [Marquez, 2003].
Theorem 1. GR2 strategies extend a norm-form game into
extensive-form game, and there exists a Perfect Bayesian Equi-
librium (PBE) in that game.

Proof (of sketch). See Appendix C for the full proof. We can
extend the level-k reasoning procedures at one state to an
extensive-form game with perfect recall. We prove the exis-
tence of PBE by showing both the requirements of sequentially
rational and consistency are met. ⌅
Theorem 2. In two-player normal-form games, if these exist a
mixed strategy equilibrium, under mild conditions, the conver-
gence of GR2 policy gradient to the equilibrium is asymptotic
stable in the sense of Lyapunov.

Algorithm 1 GR2 Soft Actor-Critic Algorithm
1: Init: �, k and  (learning rates).
2: Init: ✓i,��i,!i for each agent i. !̄i  !i, Di  ;.
3: for each episode do
4: for each step t do
5: Agents take a step according to ⇡i

✓i,k(s) or ⇡
i,�
✓i,k(s).

6: Add experience (s, ai, a�i, ri, s0) to Di.
7: for each agent i do
8: Sample a batch {(sj , aij , a�i

j , rij , s
0
j)}Mj=0 ⇠ Di.

9: Roll out policy to level k via GR2-L/M to get ai0j
and record inter-level results (ai0j,k, a

�i0
j,k�1, · · · ).

10: Sample a�i0
j ⇠ ⇢�i

��i(·|s0j , ai0j ).
11: !i  !i �  Qir̂!iJQi(!i).

12: ✓i  ✓i �  ⇡ir̂✓i

⇣
J⇡i

k
(✓i) + J⇡i

k̃
(✓i)

⌘
.

13: ��i  ��i �  ⇢�ir̂��iJ⇢�i(��i).
14: end for
15: !̄i   !̄!i + (1�  !̄)!̄i.
16: end for
17: end for

Proof (of sketch). See Appendix D for the full proof. In the
two-player normal-form game, we can treat the policy gradient
update as a dynamical system. Through Lyapunov analysis,
we first show why the convergence of level-0 method, i.e.
independent learning, is not stable. Then we show that the
level-k method’s convergence is asymptotically stable as it
accounts for opponents’ steps before updating the policy. ⌅
Proposition 1. In both GR2-L & GR2-M model, if the agents
play pure strategies, once level-k agent reaches a Nash Equi-
librium, all higher-level agents will follow it too.

Proof. See Appendix E for the full proof. ⌅
Corollary 1. In GR2 setting, higher-level strategies weakly
dominate lower-level strategies.

5 Practical Implementations
Computing the recursive reasoning is computationally expen-
sive. Here we first present the GR2 soft actor-critic algorithm
with the pseudo-code in Algo. 1, and then introduce the com-
promises we make to afford the implementation.

5.1 GR2 Soft Actor-Critic
For policy evaluation, each agent rolls out the reason-
ing policies recursively to level k by either Eq. 4 or
Eq. 5, the parameter !i of the joint soft Q-function is
then updated via minimizing the soft Bellman residual
JQi(!i) = EDi [ 12 (Q

i
!i(s, ai, a�i)� Q̂i(s, ai, a�i))2] where

Di is the replay buffer storing trajectories, and the target Q̂i

goes by Q̂i(s, ai, a�i) = ri(s, ai, a�i) + �Es0⇠P [V i(s0)].
In computing V i(s0), since agent i has no access to
the exact opponent policy ⇡�i

✓�i , we instead com-
pute the soft Qi(s, ai) by marginalizing the joint Q-
function via the estimated opponent model ⇢�i

��i by
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RECURSIVE DEPTH LEVEL 3 LEVEL 2 LEVEL 1 LEVEL 0
EXP. SETTING NASH GR2-L3 GR2-L2 GR2-L1 PR2 DDPG-TOM MADDPG DDPG-OM MASQL DDPG
p = 0.7, n = 2 0.0 0.0 0.0 0.0 4.4 7.1 10.6 8.7 8.3 18.6
p = 0.7, n = 10 0.0 0.0 0.1 0.3 9.8 13.2 18.1 12.0 8.7 30.2
p = 1.1, n = 10 100.0 99.0 94.2 92.2 64.0 63.1 68.2 61.7 87.5 52.2

Table 1: The Converging Equilibrium on Keynes Beauty Contest.

(a) (b)

Figure 2: Beauty Contest of p = 0.7, n = 2. (a) Learning curves w/ or w/o the auxiliary loss of Eq. 6. (b) Average learning curves of each
GR2 method against the other six baselines (round-robin style).

Figure 3: The guessing number of both agents during the training of
the GR2-L3 model in the Beauty Contest setting (n = 2, p = 0.7).

Qi(s, ai) = log
R
⇢�i
��i(a�i|s, ai) exp

�
Qi(s, ai, a�i)

�
da�i;

the value function of the level-k policy ⇡i
k(a

i|s) then comes
as V i(s) = Eai⇠⇡i

k

⇥
Qi(s, ai)� log ⇡i

k(a
i|s)

⇤
. Note that

⇢�i
��i at the same time is also conducting recursive reasoning

against agent i in the format of Eq. 4 or Eq. 5. From agent i’s
perspective however, the optimal opponent model ⇢�i still
follows Eq. 2 in the multi-agent soft learning setting. We
can therefore update ��i by minimizing the KL, J⇢�i(�i) =
DKL

⇥
⇢�i
��i(a�i|s, ai)k exp

�
Qi

!i(s, ai, a�i)�Qi
!i(s, ai)

� ⇤
.

Wemaintain two approximatedQ-functions ofQi
!i(s, ai, a�i)

and Qi
!i(s, ai) separately for robust training, and the gradient

of ��i is computed via SVGD [Liu and Wang, 2016].
Finally, the policy parameter ✓i for agent i can be learned

by improving towards what the current Q-function Qi
!i(s, ai)

suggests, as shown in Eq. 3. By applying the reparameter-
ization trick ai = f✓i(✏; s) with ✏ ⇠ N (0, I), we have
J⇡i

k
(✓i) = Es,ai

k,✏
[log ⇡i

✓i,k (f✓i(✏; s)|s)�Qi
!i (s, f✓i(✏; s))].

Note that as the agents’ final decision comes from the best
response to all lower levels, we would expect the gradient
of @J⇡i

k
/@✓i to be propagated from all higher levels during

training.

5.2 Approximated Best Response via Deterministic
Policy

As the reasoning process of GR2 methods involve iterated
usages of ⇡i

k(a
i|s, a�i) and ⇢�i

k (a�i|s, ai), should they be
stochastic, the cost of integrating possible actions from lower-
level agents would be unsustainable for large k. Besides, the
reasoning process is also affected by the environment where
stochastic policies could further amplify the variance. Con-
sidering such computational challenges, we approximate by
deterministic policies throughout the recursive rollouts, e.g.,
the mean of a Gaussian policy. However, note that the highest-
level agent policy ⇡i

k that interacts with the environment is still
stochastic. To mitigate the potential weakness of deterministic
policies, we enforce the inter-level policy improvement. The
intuition comes from the Corollary 1 that higher-level poli-
cies should perform better than lower-level policies against
the opponents. To maintain this property, we introduce an
auxiliary loss J⇡i

k̃
(✓i) in training ⇡i

✓i (see Fig. 5 in Appendix

B), with s ⇠ Di, ai
k̃
⇠ ⇡i

✓i , a
�i
k̃

⇠ ⇢�i
��i and k̃,� 2., we have

J⇡i
k̃
(✓i) = Es,ai

k̃
,a�i

k̃

⇥
Qi(s, ai

k̃
, a�i

k̃�1
)�Qi(s, ai

k̃�2
, a�i

k̃�1
)
⇤
. (6)

As we later show in Fig. 2a, such auxiliary loss plays a critical
role in improving the performance.

5.3 Parameter Sharing across Levels
We further assume parameter sharing for each agent during
the recursive rollouts, i.e., ✓k = ✓k+2 for all ⇡i

✓k and ⇢�i
✓k .

However, note that the policies that agents take at different
levels are still different because the inputs in computing high-
level policies depend on integrating different outputs from
low-level policies as shown in Eq. 4. In addition, we have the
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       Level 1 Level 2Level 0

(a) (b) (c)

Figure 4: (a) Learning dynamics of GR2-L on Rotational Game. (b) Average reward on Stag Hunt. (c) Performance on Coop. Navigation.

constraint in Eq. 6 that enforces the inter-policy improvement.
Finally, in GR2-M setting, we also introduce different mixing
weights for each lower-level policy in the hierarchy (see Eq. 5).

6 Experiments
We start the experiments1 by elaborating how the GR2 model
works on Keynes Beauty Contest, and then move onto the
normal-form games that have non-trivial equilibria where com-
mon MARL methods fail to converge. Finally, we test on the
navigation task that requires effective opponent modeling.

We compare the GR2 methods with six types of baselines in-
cluding Independent Learner via DDPG [Lillicrap et al., 2015],
PR2 [Wen et al., 2019], multi-agent soft-Q (MASQL) [Wei
et al., 2018], and MADDPG [Lowe et al., 2017]. We also in-
clude the opponent modeling [He et al., 2016] by augmenting
DDPG with an opponent module (DDPG-OM) that predicts
the opponent behaviors in future states, and a theory-of-mind
model [Rabinowitz et al., 2018] that captures the dependency
of agent’s policy on opponents’ mental states (DDPG-ToM).
We denote k as the highest level of reasoning in GR2-L/M,
and adopt k = {1, 2, 3},� = 1.5. All results are reported
with 6 random seeds. We leave the detailed hyper-parameter
settings and ablation studies in Appendix F due to space limit.

6.1 Keynes Beauty Contest
In a Keynes Beauty Contest (n, p), all n agents pick a number
between 0 and 100, the winner is the agent whose guess is
closest to p times the average number. The reward is set as the
absolute difference.
In reality, higher-level thinking helps humans to get close

to the Nash equilibrium of Keynes Beauty Contest (see In-
troduction). To validate if higher level-k model would make
multi-agent learning more effective, we vary different p and n
values and present the self-play results in Table. 1. We can tell
that the GR2-L algorithms can effectively approach the equi-
librium while the other baselines struggle to reach it. The only
exception is 99.0 in the case of (p = 1.1, n = 10), which we
believe is because of the saturated gradient from the reward.

We argue that the synergy of agents’ reaching the equilibria
in this game only happens when the learning algorithm is able

1The experiment code and appendix are available at https://github.
com/ying-wen/gr2

to make agents acknowledge different levels of rationality. For
example, we visualize the step-wise reasoning outcomes of
GR2-L3 in Fig. 3. During training, the agent shows ability to
respond to his estimation of the opponent’s action by guess-
ing a smaller number, e.g., in step 400, 19.98 < 25.34 and
17.62 < 20.76. Even though the opponent estimation is not
accurate yet (20.76 6= 19.98 ⇥ 1.1), the agent performance
can still be improved as the recursive level increases, the op-
ponent’s guessing number will become smaller, in this case,
20.76 < 25.34. Following this logic, both agents finally reach
0. In addition, we find that in (p = 0.7, n = 2), GR2-L1 is
soon followed by the other higher-level GR2 models once it
reaches the equilibrium; this is in line with the Proposition 1.
To evaluate the robustness of GR2 methods outside the

self-play context, we make each GR2 agent play against all
the other six baselines by a round-robin style and present
the averaged performance in Fig. 2b. GR2-M models out-
perform all the other models by successfully guessing the
right equilibrium, which is expected since GR2-M is by design
capable of considering different types of opponents.
Finally, we justify the necessity of adopting the auxiliary

loss of Eq. 6 by Fig. 2a. As we simplify the reasoning roll-
outs by using deterministic policies, we believe adding the
auxiliary loss in the objective can effectively mitigate the po-
tential weakness of policy expressiveness and guide the joint
Q-function to a better direction to improve the policy ⇡i

k.

6.2 Normal-form Games
We further evaluate GR2 methods on two normal-form games:
Rotational Game (RG) and Stag Hunt (SH). The reward matrix

of RG is RRG =


0, 3 3, 2
1, 0 2, 1

�
, with the only equilibria at

(0.5, 0.5). In SH, the reward matrix is RSH =


4, 4 1, 3
3, 1 2, 2

�
.

SH has two equilibria (S, S) that is Pareto optimal and (P, P)
that is deficient.
In RG, we examine the effectiveness that level-k policies

can converge to the equilibrium but level-0 methods cannot.
We plot the gradient dynamics of RG in Fig. 4a. level-0 pol-
icy, represented by independent learners, gets trapped into the
looping dynamics that never converges, while GR2-L policies
can converge to the center equilibrium, with higher-level pol-
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icy allowing faster speed. These empirical findings in fact
match the theoretical results on different learning dynamics
demonstrated in the proof of Theorem 2.
To further evaluate the superiority of level-k models, we

present Fig. 4b that compares the average reward on the
SH game where two equilibria exist. GR2 models, together
with PR2 and DDPG-ToM, can reach the Pareto optima with
the maximum reward 4, whereas other models are either fully
trapped in the deficient equilibrium or mix in the middle. SH is
a coordination game with no dominant strategy; agents choose
between self-interest (P, P) and social welfare (S, S). Without
knowing the opponent’s choice, GR2 has to first anchor the
belief that the opponent may choose the social welfare to
maximize its reward, and then reinforce this belief by passing
it to the higher-level reasonings so that finally the trust between
agents can be built. The level-0 methods cannot develop such
synergy because they cannot discriminate the self-interest from
the social welfare as both equilibria can saturate the value
function. On the convergence speed in Fig. 4b, as expected,
higher-level models are faster than lower-level methods, and
GR2-M models are faster than GR2-L models.

6.3 Cooperative Navigation

We test the GR2 methods in more complexed Particle World
environments [Lowe et al., 2017] for the high-dimensional
control task of Cooperative Navigation with 2 agents and 2
landmarks. Agents are collectively rewarded based on the
proximity of any one of the agents to the closest landmark
while penalized for collisions. The comparisons are shown
in Fig. 4c where we report the averaged minimax-normalized
score. We compare both the self-play performance and the
averaged performance of playing with the other 10 baselines
one on one. We notice that the GR2 methods achieve critical
advantages over traditional baselines in both the scenarios of
self-play and playing against others; this is line with the previ-
ous findings that GR2 agents are good at managing different
levels of opponent rationality (in this case, each opponent
may want to go to a different landmark) so that collisions are
avoided at maximum. In addition, we can find that all the listed
models show better self-play performance than that of play-
ing with the others; intuitively, this is because the opponent
modeling is more accurate during self-plays.

7 Conclusion

We have proposed a new solution concept to MARL – general-
ized recursive reasoning (GR2) – that enables agents to recog-
nize opponents’ bounded rationality and their corresponding
sub-optimal behaviors. GR2 establishes a reasoning hierarchy
among agents, based on which we derive the practical GR2
soft actor-critic algorithm. Importantly, we prove in theory the
existence of Perfect Bayesian Equilibrium under GR2 setting
as well as the convergence of the policy gradient methods on
the two-player normal-form games. A series of experimental
results justified the advantages of GR2 methods over strong
MARL baselines on modeling different opponents.
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