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Abstract

We propose a general method for generating coun-
terfactual explanations (CFXs) for a range of
Bayesian Network Classifiers (BCs), e.g. single-
or multi-label, binary or multidimensional. We fo-
cus on explanations built from relations of (critical
and potential) influence between variables, indicat-
ing the reasons for classifications, rather than any
probabilistic information. We show by means of a
theoretical analysis of CFXs’ properties that they
serve the purpose of indicating (potentially) pivotal
factors in the classification process, whose absence
would give rise to different classifications. We then
prove empirically for various BCs that CFXs pro-
vide useful information in real world settings, e.g.
when race plays a part in parole violation predic-
tion, and show that they have inherent advantages
over existing explanation methods in the literature.

1

One of the most pressing issues in Al is the lack of ex-
plainability of many of its methods. In recent years, this
has been accelerated from within academia and industry, as
well as by government regulations and guidance by policy
makers, e.g. the EU Ethics guidelines on trustworthy AI'.
Indeed, there has been an influx of general-purpose, model-
agnostic methods for generating explanations for Al systems
(e.g. see [Ribeiro et al., 2016; Lundberg and Lee, 2017;
Ribeiro et al., 2018] for some popular proposals and [Guidotti
et al., 2019] for a recent survey), as well as explanation meth-
ods tailored to specific reasoning or machine learning meth-
ods (e.g. see [Bach er al., 2015] for explanations for neural
networks). In this paper we give a method-specific approach.

Bayesian network classifiers (BCs) [Friedman er al., 1997]
are probabilistic reasoning models whose underlying mech-
anism is a Bayesian network [Pearl, 1989]. Many different
forms of BC exist in the literature (see [Bielza and Larrafiaga,
2014] for an overview of the discrete BCs that we consider in
this paper), e.g. naive [Maron and Kuhns, 1960] or Markov
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blanket-based [Koller and Sahami, 1996], but their classifica-
tion methods are based on the same fundamental principles.
It is well known that BCs are inherently interpretable, how-
ever, the generation of suitable explanations of their results
depends on the user requirements arising in their application.
Many methods for explaining Bayesian networks have been
defined (see [Lacave and Diez, 2002] for an overview), in-
cluding abduction methods, e.g. [Pearl, 1989], explaining
evidence by making inferences about unobserved variables,
and model explanation, which can be at a micro/variable or
macro/model level, e.g. a graphical display of the proba-
bilities [Lacave et al., 2000]. Recently, [Shih ef al., 2018;
Shih ez al., 2019] have shown how representing restricted
forms of BCs as tractable decision functions can open up new
pathways towards two novel forms of explanations. In this
paper we provide novel counterfactual explanations (CFXs)
for generic BCs, based on the causal reasoning underpinning
them. CFXs allow us to answer the question: what would
have caused the BC to determine a different classification?

Our explanation method (Section 2) relies upon mapping
the influences between a BC’s variables, e.g. between obser-
vations and classifications. From these influences we extract
two relations between variables deemed to be relevant to the
CFXs. These relations amount, respectively, to critical and
potential influences, indicating (potentially) pivotal factors,
whose absence would give rise to a different classification.
We identify (Section 3) formal properties of CFXs, in partic-
ular pointing to the informative role of the relations we de-
fine. We then evaluate CFXs empirically (Section 5) by test-
ing them with a range of datasets and BCs, showing that they
perform well against the baselines from [Shih ez al., 2018]
(re-defined, for the purposes of this paper, in Section 4), high-
lighting the advantages that CFXs hold in certain settings, and
exhibit desirable behaviour in real world situations.

2 Explaining Bayesian Classifiers

In this section we define a novel notion of counterfactual ex-
planations for (an abstract representation of) BCs. For the
purposes of this paper, a BC consists of variables, which may
be classifications or observations, conditional dependencies
between variables, domains of values that can be ascribed to
variables, and an evaluation, i.e. a mapping from (assign-
ments of values to) observations to (assignments of values to)
classifications. Formally:
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Figure 1: University admissions BC (i) with observations in white,
classifications in grey and conditional dependencies as dashed ar-
rows and (ii) corresponding CFX for the evaluation with we f g, with
critical and potential influences indicated by ! and x, respectively.

Definition 1. A BC is a tuple (O,C,D,V, o) such that:

o O is a (finite) set of observations;

e C is a (finite) set of classifications; we refer to X = O uC
as the set of variables;

oD C X x X is the set of conditional dependencies between
the variables; for any a € X, D(a) = {8 € X|(8,«) € D}
are the conditional dependencies of o;

e V is a set of sets such that for any x € X there is a unique
v € V associated to x, called the domain of x (V(x) for
short); we refer to the elements of V(x) as values for x;

o let an assignment to a set of variables S € X be a mapping
as : S = Uges V() such that, for all z € S, ag(x) € V(x),
and let Ag be the set of all assignments to variables in S;
then the BC realises a mapping o : Ao — Ac from (assign-
ments to) observations to (assignments to) classifications; we
denote {{ap,0(a0)) | ao € Ao} as ¥ and refer to any pair
€ € X as an evaluation by the BC.

For the sake of concision, given e=(ap, o(ap))eX, for any
0€0,ceC werefer to ap (0) as (o) and to o (ap ) (c) as €(c).

For illustration, consider an example from [Shih et al.,
2018], in which a university admissions decision ¢ is pre-
dicted using a BC with 4 observations: prior work expe-
rience, first-time applicant, passed entrance exam and met
GPA. The graph in Figure li visualises, for this BC, O =
{w, f,e, 9}, C ={c}, and D = {(c,w), (¢, f), (¢, €), (¢, 9)}-
This BC is binary, i.e. Yz € X, V(x) = {+, -}. The first col-
umn in Table 1 gives X for the BC in this example, amounting
to 16 possible evaluations, with each row an evaluation in X
(e.g. the first row amounts to ¢ with observations and classi-
fication all assigned to —, with e.g. e(w) = — and ¢(¢) = -).

Our definition of BC does not include any probabilistic in-
formation, but the evaluations result from an underlying prob-
ability distribution, obtained when the classifier is learnt, but
compiled away in providing evaluations (e.g. by setting the
classifier to predict the most likely classification for a set of
observations). For example, in the university admissions BC,
o amounts to a simple decision function, which may result
from the use of a threshold ¢ to determine a positive result for
an assignment to observations if the probability of the sin-
gle classification ¢ being positive, given the assignments, is
equal to or greater than ¢. The representation of BCs as sets
of evaluations Y/decision functions is a popular topic of late
when explaining their output (e.g. see [Shih et al., 2019]).
Indeed, some argue that explanations based on simple rela-
tional considerations are preferred to explanations resorting
to more complex conceptual machineries (e.g. probabilistic
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Table 1: Evaluations and explanations for the university admissions
BC, where, e.g., w signifies e(w) = + and w signifies e(w) = —.

Figure 2: Play-outside BC (i) with observations in white, classifica-
tions in grey and conditional dependencies as dashed arrows and (ii)
corresponding CFX for the evaluation with wthp, with critical and
potential influences indicated by ! and *, respectively.

considerations) [Lombrozo, 2007]. Note that the problem of
extracting X is not the focus of this paper.

In our definition of BCs, variables may have different do-
mains or share the same domains. BCs can be binary, when
the domains of variables consist of exactly two values, e.g.
V(z) = {+,-} for all x € X (as in the university admissions
BC), or multidimensional (non-binary), where no restrictions
are imposed on the domains of variables.

Finally, BCs may be single- or multi-label, depending on
whether C is a singleton or not, respectively. Single-label
BCs may be naive (as in the illustration for university ad-
missions), when there are no conditional dependencies be-
tween observations. An example of a binary multi-label BC
is shown graphically in Figure 2i. This BC determines the
classifications play outside and raining based on the obser-
vations windy, temperature, humidity and pressure. We thus
have C = {o,7}, O = {w,t,h,p}, D as in the figure, and
as in Table 2, where, e.g. when all the observations are (as-
signed to) + (bottom row), raining is (assigned to) — and play
outside is (assigned to) +.

We will define counterfactual explanations in terms of the
variables that may influence (assignments to) classifications:

Definition 2. The influences of a BC (O,C,D,V,c) are T ¢
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Table 2: Evaluations and explanations for the play-outside BC. We
indicate with x when r is not in the relevant variables of 0’s CFX.

{(a, 8) € X xC|B € D(«)}. For any («, ) € L, we refer
to « as the influencer and to B as the influencee; also, the
influencers of a € X are given by Z(a) = { € X|(B, ) € I}.

Intuitively, («,3) should be in Z if the value of influencer
« may have an impact on the value of influencee 3 given
by the BC. We choose binary, rather than more complex, in-
fluences to fulfil a desideratum of simplicity. We allow Z
to be any subset of A'xC; the specific choice of Z depends
on the BC/classification task. In the university admissions
BC, T ={(wc),(f,0,(,0,(g,0)} =OxC, thus each observation
may influence the classification, while in the play-outside BC,
Z={(w,o0),(t,0),(t,r),(h,r),(p,r),(r,0)}, thus classification r and
observations w and ¢ may all influence o. For more complex
BCs, other forms of influences may be required, e.g. using
Markov blankets [Pearl, 1989]. Note that naive BCs induce
shallow graphs of influences, whereas multi-label BCs may
induce non-shallow graphs.

Our counterfactual explanations are defined to answer the
question “Why does the classification e € C (the explanan-
dum) have the value ¢(e) in the context of the evaluation
€ € X7 They rely upon a selection of variables X, ¢ X,
including the explanandum e, deemed to be relevant to e,
as well as (two, mutually exclusive) relations between these
variables, drawn from the restriction of the influences to the
relevant variables and “chaining” (via “paths”) the relevant
variables X to e, where, as conventional, a path from A to B
by arelation R is a sequence of distinct variables o, ..., ag,
k > 1, such that oy = A, o, = B, and foreach ¢, 1 < i < k,
(e, 411) € R. The motivation for X, is that only some of
the variables in X’ (potentially very few [Miller, 2019]) may
suffice to explain the value assigned to e by e. Formally:

Definition 3. Givena BC (O,C,D,V, o) with influences I, a
counterfactual explanation (CFX) for an explanandum e € C
in an evaluation € € ¥ is a triple (X,., R\, R ) such that:
e Ry € T is a binary relation of critical influence where
V(a,B) € Ry, ¥y e Z(B)\{a},

— 351€' € X such that €' () = e(y) and €' () # e(a) and
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-VeeXife(y)=e(v) and € () e() then €' (8) #e(8);
e R. € T is a binary relation of potential influence where
V(a,B) € Ry:

- (O‘7ﬁ) ¢R!;

- 3e',€" € ¥ such that e(a) = €'(a) = ¢'(a),e(B) =
¢(B) # () and ¥y e T(B)\ o}, (1) = " (7);
o {e} € X, C X such that Vo € X, \{e} there exists a path
from ato e by RiUR,.
The critical influencers (Cls) and potential influencers (Pls)
of any o € X are defined as Ri(«) = {f € X|(B, ) € Ry}
and R.(a) = {8 € X:|(B,a) € R.}, respectively.

The relations of critical and potential influence are based
on the notion that if a change away from the current eval-
uation of an influencer may see a change in the evaluation
of its influencee (when all its other influencers’ evaluations
remain unchanged), the influencee’s current state somewhat
depends on that of the influencer. A critical influence is a re-
lation where any change in the evaluation of the influencer
(with other influencers unchanged) will have this effect, thus
it represents an immediate change which can be guaranteed.
Meanwhile, a potential influence is not “critical” in that there
exists at least one such possible change when other influ-
encees remain in some constant (not necessarily the current)
state, and thus it represents the possibility of such a change.

For illustration, the CFXs for the university admissions BC
are shown in Table 1. Consider the evaluation with w feg,
whose CFX, shown in Figure 1ii, includes a CI relation from
g. If a change in the evaluation of g from — to + were seen
with all other influencers remaining unchanged, the classifi-
cation would also change from — to +. This CFX also shows
that the relations from f and e are Pls, indicating the presence
of some other case where a change in their evaluations from
- to + would lead to a change in the classification from - to
+ (e.g. wfegtowfeg for f and wfeg to wfeg for €).

Note that CFXs can be understood as sub-graphs of the
graph of influences, including (an assignment to) a classifi-
cation (the explanandum) and with edges drawn from the two
relations Ry and R.... If the given BC is naive, as for university
admissions, then these sub-graphs (the CFXs) are shallow.
Consider instead the multi-label play-outside BC, with CFXs
for the classification o shown in Table 2. These CFXs now
make use of other classifications and are thus non-shallow
(e.g. the evaluation with wthp admits the CFX in Figure 2ii,
including the intermediate classification 7 explained in turn).

3 Formal Properties of CFXs

Here we prove that CFXs provide not only insights into the
pivotal factors which lead to a classification but also potential
changes which may result in different classifications. First we
show uniqueness and (conditional) non-emptiness of CFXs.

Theorem 1. Given a BC (O,C,D,V,c) and its influences Z,
let e € C be an explanandum in an evaluation € € X.. Then,

(X, R, Rs) foreine, and if RiUR, = @ then e’ e € T
such that 31« € Z(e) where €' (a) + €'(a) = e(a), €”(e) #

€'(e) =e(e) and VB e I(e)\{a}, €"(B) = €'(B).

Proof. Follows from Definition 3. O
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We posit that the guarantee of a single, non-empty explana-
tion is desirable, as it increases the chance of a user compre-
hending it and not being overwhelmed by multiple distinct
explanations. We guarantee that the CFX (of an explanan-
dum) is non-empty in the likely case that there are two dis-
tinct evaluations where changing the evaluation of a single
influencer changes that of the influencee (the explanandum).

We now show CFXs are “compositional”, in that they in-
clude CFXs of other classifications. Formally:

Theorem 2. Given a BC (O,C,D,V, o), its influences I,
and a CFX (X.,Ri,R.) for an explanandum e € C in an
evaluation € € ¥, a CFX (X, R{,R.) for any explanandum
e eCn X, ineis such that X/ € X, R| € Riand R], € R..

Proof. (Sketch) Whether in the context of (X,., Ri, R.) or
(X),R{,R.), Definition 3 does not differ in determining
Ri(e") or Ri(e"), R.(e") or R, (e’) and, thus, the relevant
variables linked by these relations X,.(e’) or X (e"), and thus
their relations, and so on. Therefore, the theorem holds. [

We thus simplify explanations of multi-label BCs since an
explanation of a set of classifications may be represented by
a single CFX. For example, for the play-outside BC, in all of
the CFXs for o where r is present, the critical and potential
influences towards 7 (and thus the relevant variables linked
by these relations) are as in the corresponding CFX for r.

Our next result concerns the effect of changing the evalua-
tion of an explanandum’s Cls.

Theorem 3. Given a BC (O,C,D,V,c), its influences I,
and a CFX (X, Ri,R.) foreeCinee X, let a,0 € X
be such that there is a unique path oq,. ..o (k> 1) from
ato B by I. Then, Ve €3 such that Yy € Z(a1)U...U
T(am\{ar - apr b €(7) =€) and € () £ (), if there
exists the same unique path by R, then €' (3) #e(3).

Proof. (Sketch) By induction on the length £ of the path: the
property trivially holds if £ = 1 and thus a = f3; also, if the
property holds for £ — 1 (k > 1) then it holds for %, since
€(ay ) is influenced exclusively by Z (o )=ay—1. Indeed V+y €
Z(ap)\{ak-1}, € (v) = e(~y) since there is no path from
to v by Z. Then, if we assume that €'(ay-1) # €(ag-1), by
Definition 3, if (ag-1, k) € R, then €' () # e(ag). O

Since a change in the evaluation of any CI will see a change
in the evaluation of its influencee, which will in turn see a
change in the evaluation of ifs (critical) influencee and so on,
it becomes apparent that one single change sees a guaranteed
chain reaction of changes along a path by the CIs. For exam-
ple, in the play-outside BC, if we consider the CFX for wthp
in Figure 2ii, there is a single, critical path from p to o via
r. This not only shows the important factors in the classifi-
cations but also that: if the pressure were high (positive), it
would not be raining and play outside would be positive.

Our final result concerns changing the evaluation of an ex-
planandum’s PI when its evaluation does not change.

Theorem 4. Givena BC{O,C,D,V, o), its influences I, and
a CFX (X, R1,R.) for e € C in € € ¥ such that Ri(e) = &
and R.(e) + @, let « € R.(e). Then, Ye' € ¥ such that

€'(e) = e(e), €'(a) # e(a) and €(B) = €(B) VB e Z(e)\{a},

454

given a CFX (X/,R{,R.) for e in €, it must hold that
[R. (e)] < |R«(e)| and (trivially) |R{(e)| > |Ri(e)|.

Proof. (Sketch) We consider the states of e’s incoming influ-
ences from € = (X, Ri, R.) to e’ = (X, R|,R.). For (o, e),
by Definition 3, « either loses its status as a PLif €'(e) = e(e)
is no longer potentially influenced by ¢’(«) # e(a), or it re-
mains a PI, as it cannot become a Cl in €’ as this would require
a change from e(e) to €’(e). For {(v,e) € R.|y e X\{a}},
the only modified evaluation is €’(«), and thus, by Definition
3, these PIs either remain so or become CIs. For {(d,¢) €
Z\R.|0 € X}, any influence in R{ U R/ must have already
been in R, by Definition 3. Thus the theorem holds. O

When a change in the evaluation of a PI does not result in a
change in the evaluation of its influencee, this theorem shows
that it may no longer be a PI, while other PIs of the influ-
encee may become CIs. Thus, PIs may highlight an iterative
path towards CIs. This is an important finding demonstrating
the power of CFXs as it shows how the two relations work
in symphony to allow a user to assess the counterfactual fac-
tors of a BC’s predictions. For example, in the BC in Table
1, CFXs may provide an admissions officer with reasons for
why an applicant was accepted or not, in the form of factors
which could have reversed that decision. Let us take the case
w feg where the applicant was rejected (-). In the correspond-
ing CFX, none of the observations are Cls, i.e. a change in
any observation would not change the classification for the
applicant (Theorem 3). However, all observations are Pls, i.e.
they may provide an iterative path towards a change by in-
creasing the number of Cls (Theorem 4). If we change the
evaluation of the PI w (so now the applicant has prior work
experience) we obtain w fég, whose CFX in Figure 1ii shows
that the change generates the CI g. Thus, if the applicant were
to meet the GPA, the classification would also change (Theo-
rem 3). At this point the admissions officer can see that had
the applicant had prior work experience and met the GPA, the
classification would be reversed.

4 Related Work

In this section we discuss related work from the literature,
making formal comparisons with our work. We do not review
methods for explaining general Bayesian networks such as
those aiming to obtain the most probable explanation [Pearl,
19891 as these approaches seek to determine approximations
of the evaluations, which is outside the scope of this paper.

Two types of explanations for naive BCs are defined in
[Shih er al., 2018]. We re-define them here so that they can be
formally compared with our CFXs. The first form of explana-
tion gives, for a positive (negative) classification, the minimal
subset of the positive (negative, respectively) observations
sufficient for the classification. The second form comprises
the smallest set of variables that renders the other variables’
evaluations irrelevant to the classification.

Definition 4. [Shih et al, 2018] Given a naive BC
(0,{c},D,V,0) and an explanandum e = c in € € X.:

e ¢ minimum cardinality explanation (MCX) for e in € is an
evaluation m € Y such that m(e) = e(e) and Be’' € ¥ where

€'(e)=€(e) and |[{0cOle'(0)=¢€(e) }|<|{oeOlm(0)=€(e)}

>
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e g prime implicant explanation (PIX) for e in € is a partial
evaluation’ p € 2¢ which is minimal (wrt set inclusion) and
A€’ € X where € 2 pand € (e) # €(e).

Let M be the set of all MCXs and P be the set of all PIXs.

The formal relationship between PIXs and CFXs follows.

Theorem 5. Given a binary, naive BC (O, {c},D,V, o), its
influences Z, and a CFX explanation (X, Ri, R.) for an ex-
planandum e = c in € € $: Nyep p = Ri(e€).

Proof. For a variable z, let x € (,ep p and suppose by con-
tradiction 2 ¢ Ri(e). This implies that 3¢’ € 3 such that
Vy € X\{z}€'(y) = e(y) while € (z) # e(x). It follows that
the partial evaluation p’ obtained restricting €’ to X\{x} is ei-
ther a PIX for e or there is a partial evaluation p”’ ¢ p’ which is
a PIX for e. Then there is a PIX for e not including x which
contradicts the hypothesis z € M,cp p. Conversely assume
that 2 € Ry(e) but = ¢ Npep p. Then 3p; € P such that x ¢ p;,
and thus the partial evaluation p; can be extended to an evalu-
ation €’ such that ¢’ (x) # e(x) while Vy € X\{z}€'(y) = e(y)
(in particular €' (e) = €(e)) which contradicts x € Ry(e). O

Since PIXs and MCXs are the most similar in the literature
to our CFXs, we have provided illustrations thereof through-
out the paper, and will use them as baselines in Section 5.

The explanations of [Timmer et al., 2015] also show the
interplay between variables, utilising argumentation frame-
works [Simari and Rahwan, 2009] as the reasoning model. A
notion of support, similar to our influence, is used to derive
evidential (rather than counterfactual) support graphs based
on the Markov blanket of each variable (rather than only clas-
sifications in our method). Support graphs may contain mul-
tiple instances of a variable, whereas our CFXs do not.

Explanation trees for causal Bayesian networks [Nielsen et
al., 2008] also use the variables relevant to explanations for
explananda, but only for observations. The explanations are
causal wrt the dataset, i.e. variable « causing variable 5 may
affect the explanation, whereas ours are causal only wrt the
BC itself, answering “what caused the BC to predict €(e)?”.

Various model-agnostic explanation methods exist, e.g.
[Ribeiro ef al., 2016; Lundberg and Lee, 2017], including
some that generate counterfactuals, e.g. [Schwab and Karlen,
20191, but they generate flat explanations, ignoring factors
between inputs and outputs that CFXs may use.

S Experiments

We now evaluate CFXs empirically with various datasets and
BCs. Our experiments indicate that CFXs (i) are of appropri-
ate cardinality and length (compared with PIXs and MCXs
from Section 4); (ii) highlight paths via PIs towards Cls;
and (iii) give meaningful information about BCs’ predictions.
The algorithm we use to generate R for an explanandum e €
C in € € ¥ has time complexity O (p - Y zeZ(e) [V(z)|), while
that for R, has time complexity O (u- [aez(e) V(2)]),
where p is the constant time required to compute a classi-
fication. For a binary, naive BC that can be compiled into an
OBDD [Shih et al., 2018], to find a CI for e we generate the

2
Here, we treat any € € ¥ as a set.
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sub-graph induced by ¢, checking for all - € Z(e) that there is
an outgoing edge leading into the opposite sink to that of the
classification. This has time complexity O (|Z(e)|), where 4
was removed as the result can be determined from the OBDD.
To find a PI for e, for each x € Z(e), we search for paths to —
and + classifications, keeping the subsequent variables con-
stant. In the worst case, the whole OBDD may be searched.

For the experiments we consider three settings: the Con-
gressional Voting Records dataset’, the Parole Violation
dataset* and the Child Bayesian network®. The Voting
Records dataset consists of 435 voting records, amounting
to 16 key votes by (Republican or Democrat) Congressmen
in the USA. We understand votes as observations and party
membership of Congressmen as classifications. We binarise
the dataset such that votes are either yes or not yes. The Pa-
role Violation dataset consists of 675 records, amounting to
cases of prisoners who either violated parole or not, under-
stood as classifications. Numeric features of the dataset were
mapped into categorical ones using uniform length intervals,
giving 8 categorical features for each prisoner, understood as
observations. Child is a multi-label Bayesian network that de-
scribes the incidence of 6 possible diseases in a baby. We un-
derstand six clinical reports and age (the BN’s leaves) as ob-
servations that generate 1080 possible evaluations with pres-
ence/absence of one of the diseases as the main classifica-
tion and all other variables as intermediate classifications. We
built a binary, naive BC with test set accuracy of 89.3% for
Voting Records and a non-binary, naive BC with test set ac-
curacy of 87.3% for Parole Violation. For Child, we applied
inference rules from Bayes’ theorem to obtain the classifica-
tions. In each BC, classifications’ values in evaluations are
set to those with the highest probability.

Table 3 shows our results concerning the explanations’ car-
dinality and length.® All explanations here are non-empty,
though ClIs only appear in a subset of the results, which is ex-
pected as the more observations and values involved, the less
likely it is that any change in a single variable will guaran-
tee a different classification. While MCXs include every ob-
servation and are usually singular, many PIXs are generated
for each evaluation, despite their more compact length, which
may prevent easy comprehension by users in some settings.
This point is accentuated in the datasets, particularly for the
PIXs for the Voting Records, as shown in Table 3, where a
single evaluation may generate hundreds of PIXs and only
4% have a single PIX. Our CFXs, meanwhile, are unique (per
evaluation) and their length is between the two baselines. In
the results for Child, the lengths of the (still numerous) PIXs
decrease due to the intermediate classifications that they have
no way of representing, whereas the CFXs capture them, with
a notable increase in CIs. Overall, we posit that our CFXs
perform well against the baselines in these experiments.

*http://archive.ics.uci.edu/ml/index.php
*https://www.icpsr.umich.edu/icpsrweb/NACID/studies/26521
>https://www.bnlearn.com/bnrepository/discrete-medium.html
®Note that we consider MCXs for Voting Records only as the two
others are non-binary and [Shih et al., 2018] define MCXs formally
for binary BCs only; we consider PIXs for all BCs given that their
definition directly extends to the non-binary case [Shih ez al., 2018].


http://archive.ics.uci.edu/ml/index.php
https://www.icpsr.umich.edu/icpsrweb/NACJD/studies/26521
https://www.bnlearn.com/bnrepository/discrete-medium.html
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Dataset Ex Mean  Number of explanations of length:
(size,| X \{e})) P: length 0% 1-25% 26-50% 51-75% 76-100%
Voting MCX 100% O 0 0 0 485
Records PIX 42% 0 10627 108023 16828 0
(435, 16) CFX 76% 0 0 40 161 234

? CEX! 3% 375 41 14 5 0
Parole PIX 50% 0 141 1132 691 10
Violation CFX 75% 0 0 35 438 202
(675,8) CFEX! 3% 547 126 2 0 0
Child PIX 13% 0 3264 84 0 0
(1080, 18) CFX 86% 0 0 0 108 972

’ CFX! 29% 0 330 749 1 0

Table 3: Length of explanations (as a percentage of | X'\ {e}|) for the
three BCs, where CFX! counts only the CIs in the CFXs.

Voting Records Parole Violation

250
200
150
100

50

0
1 4 71013161922252831343740434649 12 3

4 5

6 7 8 9 101112131415

Figure 3: Number of evaluations (y-axis) vs. number of modifica-
tions required (x-axis) by selecting a random influence (solid blue)
vs. an optimised PI (translucent green) in the path walk simulations.

To show the usefulness of PIs in CFXs, we demonstrate
that PIs can highlight paths towards Cls by performing path
walk simulations. For the two naive BCs, for each evalua-
tion we count the steps it takes to achieve a change in the
classification. At each step, we select a CI to change if one
is available, and if not, we select a PI and change it to the
value which generates the lowest number of PIs in the modi-
fied evaluation’s CFX. As a baseline, instead of selecting ran-
dom PIs, we choose a random influencer. For the first case
we also do not change any variable twice whenever possible,
a strategy which causes dead ends in the baseline. Figure
3 shows the results when averaged over 1000 random seeds.
We see much quicker convergence to a change with PlIs, re-
ducing the mean required steps from 9.5 to 4.7 and from 3.0
to 2.1 for Voting Records and Parole Violation, respectively.

Our final assessment pinpoints single CFXs to demonstrate
their usefulness in real world situations. Consider an evalu-
ation from the Voting Records BC where only water project
cost sharing, physician fee freeze, El Salvador aid, religious
groups in school, crime are positive, and this record is pre-
dicted to be from a Republican; a user may wish to know
why this is the case. The CFX shows 13 PIs and 0 CIs, and
changing one of these Pls, e.g. adoption of the budget res-
olution, does not change the prediction but means that the
CFX now contains a CI, physician fee freeze (Theorem 4).
Changing this CI changes the class to Democrat (Theorem
3) and the user is informed of two observations which were
pivotal in the original classification. For this evaluation, 115
PIXs are generated (with a mean length of 8.0), a potentially
overwhelming amount of information for a user, while the
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MCX gives physician fee freeze as its only (positive) variable.
Clearly, other variables with a negative evaluation contributed
towards this classification (in fact, changing this variable to -
does not change the classification) but this information is lost
in MCXs. This is due to the fact that they (by definition) do
not discriminate between observations with a different eval-
uation to that of the classification. Another example can be
seen in Table 2, where the observations windy and humidity
are clearly factors in determining play outside (see the PIXs
and CFXs), but they are not used by the MCXs as they affect
it non-monotonically, e.g. when they are +, o is likely to be -.

In the context of the Parole Violation BC, we show the
ability of CFXs to highlight problematic factors in classifi-
cations, e.g. to an expert user checking for bias. Consider the
evaluation with observations female, white, 39-46y/o0, other
state, 5-6 prison, 11.8-13.4 sentence, multi-offender, larceny
and classification non-violator. The CFX shows two CIs of
white and female: a change in either one of these alone would
change the classification, thus highlighting potential racial or
sexist bias in the BC. Note that since Theorem 5 does not hold
for non-binary BCs, this bias is not highlighted by PIXs.

Finally, in the Child BC, evaluation { LowerBodyO2=12+,
LVHreport=no, XrayReport=Asy/Patchy, RUQO2=5-12,
CO2Report=<7.5, GruntingReport=Yes, Age=0-3 days} has
classification Disease=Lung, and the corresponding CFX
shows a CI of LungParench=Abnormal, itself with a CI
of Grunting=Yes. Each CI is a pivotal factor towards the
evaluation (Theorem 2). Consideration of the intermediate
classifications (i.e. BCs’ internal reasoning) when explaining
a classification is clearly useful in settings such as health
but is absent in PIXs/MCXs, e.g. in Table 2, raining plays a
huge role towards play outside and is included in all but two
CFXs, but cannot be handled by PIXs and MCXs. Note that
this would also be the case for the flat explanations generated
by the model-agnostic methods mentioned in Section 4.

6 Conclusions

We have introduced a novel method for explaining the pre-
dictions of BCs via CFXs and have proven theoretically and
provided some empirical evidence that the explanations are
informative and appropriate for various settings. Our empir-
ical results show for multiple datasets and BCs that CFXs
provide important counterfactual information regarding the
pivotal factors that could change a classification, opening up
many applications for users ranging from non-experts (e.g
counterfactually explaining a medical diagnosis) to experts
(e.g. detecting bias in a BC in parole violation prediction).

For future work we will explore, from a HCI perspective,
how CFXs should be delivered to users. We also plan to de-
velop more efficient algorithms for the generation of R, and
R .. We will consider how other Al methods represented by
decision functions could be explained by CFXs, e.g. (discre-
tised) neural networks may be well suited to our method, with
influences from inputs to intermediate features (e.g. see [Bau
et al., 2017]) to outputs. Finally, we will compare with other
(possibly probabilistic) notions for evaluating Bayesian net-
works, e.g. value of information measures [Chen et al., 2015]
such as same-decision-probability [Choi et al., 2012].
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