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Abstract

Vehicle Re-Identification (ReID) has attracted lots
of research efforts due to its great significance to
the public security. In vehicle ReID, we aim to
learn features that are powerful in discriminating
subtle differences between vehicles which are vi-
sually similar, and also robust against different ori-
entations of the same vehicle. However, these two
characteristics are hard to be encapsulated into a
single feature representation simultaneously with
unified supervision. Here we propose a Disentan-
gled Feature Learning Network (DFLNet) to learn
orientation specific and common features concur-
rently, which are discriminative at details and in-
variant to orientations, respectively. Moreover,
to effectively use these two types of features for
ReID, we further design a feature metric align-
ment scheme to ensure the consistency of the met-
ric scales. The experiments show the effectiveness
of our method that achieves state-of-the-art perfor-
mance on three challenging datasets.

1 Introduction
Vehicle Re-Identification (ReID) aims to retrieve all the im-
ages of a given query vehicle identity, from a large im-
age database. Deep learning techniques have greatly pro-
moted the development of vehicle ReID in the past few years.
Many previous works [Bulan et al., 2017] conduct vehicle
ReID as a license plate recognition procedure. However, li-
cense plate recognition requires high-resolution images cap-
tured with front or rear views. Moreover, in some extreme
cases, the license plates may be deliberately removed, oc-
cluded, or even faked. Recent works [Liu et al., 2016b;
Liu et al., 2016c] start to focus on visual feature-based ReID,
where ReID is performed as feature matching between the
query and reference vehicle images.

Orientation is a crucial factor in vehicle ReID. Given two
vehicle images captured from the same orientation, we ex-
pect the extracted features are capable of encoding vehi-
cle subtle details, such as the tissue boxes or air inlet of
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Figure 1: Illustration of vehicle matching. For the same orientation
((a) with (b)), the specific details are important cues for matching.
For different orientations ((a) with (c)), the details may become use-
less, while the interior common characteristics are very important.

engine, as illustrated in Fig.1. These details are orienta-
tion specific information. The works in [He et al., 2019;
Pirazh et al., 2019] use local part and keypoint information
to learn orientation specific features and show the efficacy
of such features for vehicle ReID. In contrast, when given
two vehicle images with different orientations, the learned
features are desired to capture orientation-invariant common
characteristics of the vehicles, such as colors and vehicle de-
sign styles. The methods using orientation invariant feature
embedding [Wang et al., 2017] and viewpoint-aware metrics
[Chu et al., 2019] show the benefits of such orientation invari-
ant information for cross-view ReID. Though orientation spe-
cific and orientation common information are both useful for
vehicle ReID, the previous methods often focus on learning a
single representation which is however difficult to simultane-
ously capture these two types of powerful information.

Actually, such two characteristics are hard to be simulta-
neously obtained with a single feature representation learned
under unified supervision. Moreover, using a single fea-
ture representation, it becomes difficult to flexibly choose the
proper information for vehicle matching under variant con-
ditions. For example, the vehicle details such as decorations
in vehicle front-view are important for retrieving front-view
vehicles, but may even degrade the performances of retriev-
ing the rear-view ones, as shown in Fig. 1. This means when
comparing vehicle pairs under the same orientation, orienta-
tion specific features are often useful, while the orientation
common features are important to recall the same vehicles
with huge orientation variations.
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This motivates us to disentangle the learning of these two
types of features from a single embedding model and design
an adaptive matching method for ReID. Concretely, instead
of learning a single feature representation, we propose a Dis-
entangled Feature Learning Network (DFLNet) to explicitly
learn the orientation specific and orientation common features
concurrently, i.e., the learning of the two types of information
is disentangled yet within a joint network.

Moreover, to learn powerful common features for ReID un-
der variant orientations, we propose a novel “Odd-One-Out”
adversarial scheme that distills the orientation invariant infor-
mation shared by all samples of the same vehicles to obtain
strong orientation independent ability. Besides, to learn ori-
entation specific features, we also design an attention scheme
to mine and focus on the useful detailed information.

To effectively utilize these two types of features, in this
paper, a hybrid ranking strategy with feature metric alignment
is also designed for adaptive matching in the ReID procedure.

Overall, our contributions can be summarized as follows:

• A novel DFLNet is proposed to explicitly learn orien-
tation common and specific features jointly for Vehicle
ReID.

• A novel “Odd-One-Out” adversarial scheme is proposed
to learn representative common features. An attention
module is also designed for specific feature learning.

• A hybrid ranking strategy is designed to take advantages
of specific and common features in the ReID procedure.

• Our DFLNet achieves state-of-the-art performances on
all the evaluated benchmarks. It brings 12% mAP gains
on cross-view ReID compared to the baseline model.

2 Related Work
Vehicle ReID. Recently, vehicle ReID has attracted much
research focus [Liu et al., 2016a; He et al., 2019]. Some
methods [He et al., 2019] focus on improving the discrimi-
native capability of the models to distinguish specific subtle
details of similar vehicles. Liu et al. [Liu et al., 2016a] in-
troduce a mixed difference network in which both the vehicle
model and ID information are used as supervisions for learn-
ing an embedding model. He et al. [He et al., 2019] propose
to use vehicle part information to regularize the global feature
learning. In [Pirazh et al., 2019], Pirazh et al, propose a dual-
path model with adaptive attention model, which is able to get
orientation conditioned keypoints to extract local features.

Some other methods focus on learning orientation invariant
features. In [Wang et al., 2017], Wang et al. propose to use
vehicle keypoint localization to align and generate orientation
invariant features for vehicle ReID. In [Zhou and Shao, 2018],
Zhou et al. propose a multi-view feature inference scheme,
which uses a single-view input vehicle to generate the multi-
view features. In [Tang et al., 2019], Tang et al. propose a
pose-aware multi-task learning method using synthetic data
to learn viewpoint invariant features.

A few methods have considered using these two types of
information simultaneously. In [Chu et al., 2019], Chu et al.
use two triplets constraints for the same and different view-
points in two feature spaces. Bai et al. [Bai et al., 2018] pro-

pose a group sensitive triplet embedding model to build up a
type of “similar attribute, closer distance” feature embedding
by a two-level margin constraint. However, they both learn
and represent these two types of information under the same
optimization objectives, and the differences between these
two types of features have not been explicitly investigated.

Different from all the aforementioned works, we propose a
disentangled feature learning network to learn these two types
of features concurrently. The common features are the invari-
ant and consistent representations shared by all samples of
the same vehicles, and the specific features are the represen-
tations exploiting the subtle difference cues.

Disentangled Representation. Disentangled schemes have
been used in image generation [Ma et al., 2017] and pose-
invariant representation learning [Tran et al., 2017]. Tran et
al. [Tran et al., 2017] propose explicit disentangled repre-
sentations based on face variations through pose codes. Zhao
et al. [Zhao et al., 2019] propose an attribute-driven method
to disentangle several sub-features corresponding to semantic
attribute groups for video-based person ReID. However, these
methods disentangle sub-features based on each separate at-
tribute, and common representations are ignored.

3 Proposed Method
The architecture of our proposed DFLNet is illustrated in
Fig. 2. In training stage, the orientation common features
are learned by adversarial learning with an “Odd-One-Out”
scheme. The orientation specific features are learned by an
attention scheme in a triplet embedding design. During test-
ing, we design a hybrid ranking strategy with a feature metric
alignment scheme. We use common features to get initial re-
call list and use specific features to compare recall samples
with the same orientation as the query for re-ranking.

3.1 Orientation Common Feature Learning by
Odd-One-Out Adversary

To improve feature robustness under variant orientations, the
ideal orientation common features are expected to encode the
information shared by all samples of the same vehicle and ig-
nore the orientation specific information, as the orientation
specific information is often unuseful for cross-view ReID
and may even degrade the performance. This means the com-
mon feature representation needs to be orientation indepen-
dent. However, features learned with general embedding net-
work designs [Schroff et al., 2015a] often contain orientation
specific information. To get ideal common features, here we
disentangle the common features from the base embedding
features and distill the orientation invariant information.

Specifically, we design a novel “Odd-One-Out” adver-
sarial learning scheme to generate orientation common fea-
tures. A unit consisting of some vehicle images captured
from the same orientation, together with one image captured
from another orientation is constructed, and the “Odd-One”
here means the sample has a different orientation compared
to other samples in this unit. Concretely, we build a unit
<xi, xj , xk> composed of three image samples of the same
vehicle ID. O(xi) = O(xj) and O(xi) 6= O(xk), where
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Figure 2: Illustration of our DFLNet framework. In the training stage, the DFLNet learns specific features and common features by the
similarity constraint and the adversarial constraint, respectively. In the testing stage, we design a feature metric alignment mechanism for
these two features, and a hybrid ranking is performed to get the final results.

O(xi) denotes the orientation of the sample xi. In this case,
sample xk is the odd-one sample.

In our “Odd-One-Out” adversarial learning scheme, the
discriminator D is pushed to learn and recognize which one
is the odd-one sample, while the feature generator G aims
to generate the common features that cannot be recognized
by D. With the adversarial training going on, G will gain the
ability of generating orientation independent features, i.e., the
common features.
Common Feature Discriminator. When training the dis-
criminator D, the generator G serves as an orientation
common feature extractor. Given a vehicle sample unit
<xi, xj , xk> from the same ID, we extract and concate-
nate their common features G(.) as the input of D, i.e.,
[G(xi);G(xj);G(xk)]. D learns to predict which sample in
the unit is the odd-one, and the position of the odd-one sam-
ple in the unit is used as the label for prediction. For example,
for the unit <xi, xj , xk>, if O(xi) = A, O(xj) = A, and
O(xk) = B, then the label of this unit is 3. This odd-one pre-
diction process can be easily implemented as a classification
task by using the cross entropy loss for supervision.
Common Feature Generator. When training the common
feature generator G, the parameters in D are fixed. The ideal
common features are independent to the variant orientations.
Thus, we design a novel uniform loss Luniform, which con-
strains G to generate common features that will make D pro-
duce a uniform probability distribution on the odd-one pre-
diction (classification). Such a constraint drives G to exploit
the orientation independent information and try to eliminate
the specific information in the generated features.

The Luniform is inspired by label smoothing regulariza-
tion [Szegedy et al., 2016] that assigns small values to the

non-groundtruth classes in cross entropy loss.
The standard cross entropy loss is formulated as:

Lentropy = −
K∑

k=1

yklog(ŷk), (1)

where yk is the ground-truth class label vector in one-hot dis-
tribution. ŷk is the prediction probability of the input belong-
ing to class k. For Luniform loss, to be constant over all
classes, the ground-truth class label distribution yk in Eq. 1 is
defined as yk = 1

K . Thus Luniform loss is formulated as:

Luniform = − 1

K

K∑
k=1

log(ŷk),

ŷk =
ezk∑K
j=1 e

zj
,

(2)

where ŷk is derived from the softmax function, and ezk is the
output of the last fully connected layer in D.

In this manner, the adversarial relation between G (with
Luniform) and D (with Lentropy) can be constructed. G at-
tempts to fool D to get a wrong odd-one prediction. Con-
versely, D tries to exploit the orientation specific information
to predict which one is odd. As the adversarial learning goes
on, in order to cheat D, G will try to eliminate the orien-
tation specific information in the common features. Finally,
only the orientation invariant information is reserved in the
common features.

Note that since the common representation still needs to be
discriminative for ReID, the cross entropy loss (for identity
classification) and triplet loss (for distance metric learning)
that will be introduced in Sec. 3.2 are both used during train-
ing the common feature learning modules.
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3.2 Orientation Specific Feature Learning with an
Attention Scheme

The orientation specific features need to exploit and encode
subtle details of the vehicle images. It is beneficial to se-
lectively focus on the informative regions that are useful for
ReID, as shown by the yellow boxes in Fig. 1.

This selectively focusing scheme is also termed as atten-
tion that has been demonstrated to be effective in various ar-
eas, such as machine translation [Bahdanau et al., 2014] and
image caption generation [Xu et al., 2015]. Therefore, we
adopt the visual attention scheme to enable our network to
learn and find the crucial details that need to be focused on.

In our method, the attention module computes the impor-
tance scores for each patch in the feature maps. Let x de-
notes the input and f(x) denotes the representation obtained
after network mapping. Meanwhile, the attention score s(x)
is generated by the attention module, which serves as gates
for the base branch b(x), as follows:

bi,j(x) = fi,j(x)� si,j(x), (3)

where (i, j) indicates the patch position over the feature maps.
This element-wise product can promote the responses on in-
terested regions.

For learning orientation specific features, the triplet loss
[Schroff et al., 2015b] and cross-entropy loss are used for
metric learning as below:

Lemb = ωLentropy + (1− ω)Ltriplet, (4)

where ω is the weight in optimization. Using this scheme
with the attention module, our network is thus able to learn
discriminative orientation specific features.

3.3 Hybrid Ranking Strategy
To effectively take advantages of both the orientation com-
mon features and specific features, we propose a hybrid rank-
ing strategy for vehicle ReID, in which the common and spe-
cific features are adaptively used for distance computation.
Concretely, given a query image, we use common features
to get initial recall list, then use specific features to compare
samples with the same orientation as the query. Then, the
hybrid ranking procedure can be formulated as:

d(xi, xj) =

{
dc if O(xi) 6= O(xj),
λdc + (1− λ)falign(ds) otherwise,

(5)

where dc and ds are the common and specific feature dis-
tances, respectively. The sample’s orientation O(·) is ob-
tained by training an orientation classification model. As ori-
entation classification is a very simple task, we empirically
observe the orientation can be recognized very accurately,
e.g., using MobileNet V2 [Sandler et al., 2018] can achieve
99.5% classification accuracy on VehicleID dataset.

Note falign in Eq. 5 is the feature distance mapping from
specific feature to common feature, as we can not simply
compare these two feature distances, since they are learned in
different feature spaces. The feature distributions are shown
in Fig. 3. The different distributions indicate the evaluation

Figure 3: Distance distributions of (a) common feature, (b) specific
feature, and (c) mapping specific feature to common feature. The
mapped common feature distance distribution well fits the real com-
mon feature distance distribution.

metrics in two feature spaces are different. The distances can
only be compared under the same evaluation metric. Thus we
design an effective feature metric alignment scheme falign
before ranking, as follows.
Feature Distance Metric Mapping. The feature distance
metric can be obtained from distance distribution. If two dis-
tributions are the same, consistent metric values can be ob-
tained under any metrics. Therefore, we first analyze the fea-
ture distribution statistics in training set. We sample a large
number of image pairs and calculate pair distances in two fea-
ture spaces. As shown in Fig. 3(a)(b), The median of the
distances for common features is 13.67, while for the spe-
cific features is 9.85, i.e., half of the distances are less than
13.67 and 9.85 in two feature space respectively. Therefore,
the distance 13.67 for common features and 9.85 for specific
features are the same evaluation metric scale in two feature
spaces. The median is the special case of kth smallest. More
generally, the kth smallest distance values can be selected to
calculate mapping dictionary. By dense sampling, we obtain
the mapping dictionary ( key-value pairs) between common
and specific feature distances.
Chebyshev Polynomials. The obtained mapping dictio-
nary is discrete, but we hope to obtain a continuous mapping
function to fit it. Thus we take a further step to fit it by us-
ing Chebyshev polynomials[Rivlin, 1974] that can provide
an effective near-optimal approximation under the maximum
norm. The Chebyshev polynomials of the first kind are de-
fined by the recurrence relation:

T0(x) = 1, T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x).
(6)

Given the mapping dictionary, the Chebyshev approxima-
tion is to find the coefficients {c0, ..., cn} to represent the
mapping relation,

f(θ) ∼
∞∑
i=0

ciTi(θ). (7)

By truncating the function with n terms, we have the ap-
proximation function f̃(θ) =

∑n
i=0 ciTi(θ) to fit the map-
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VeRI-776 VehicleID
Settings Test Size= 11579 Settings Query Number= 800 Query Number= 2400
Methods mAP r = 1 r = 5 Methods mAP r = 1 r = 5 mAP r = 1 r = 5
FACT +Plate + STR [Liu et al., 2016c] 27.77 61.44 78.78 Mixed Diff [Liu et al., 2016a] 54.6 48.93 75.65 45.5 41.05 63.38
VAMI [Zhou and Shao, 2018] 50.13 77.03 90.82 VAMI [Zhou and Shao, 2018] - 63.12 83.25 - 47.34 70.29
EALN(VCCM) [Lou et al., 2019a] 57.44 84.39 94.05 Defense Triplet[Hermans et al., 2017] 68.9 65.2 77.93 61.37 57.20 71.91
FDA-Net (VGGM) [Lou et al., 2019b] 55.49 84.27 92.43 FDA-Net (VGGM) [Lou et al., 2019b] 68.94 65.91 86.15 61.84 55.53 74.65
RNN-HA(Resnet50) [Wei et al., 2018] 56.80 74.79 80.51 RNN-HA(Resnet50) [Wei et al., 2018] - 68.8 81.9 - 62.6 77.0
AAVER(Resnet50) [Pirazh et al., 2019] 58.52 88.68 94.10 AAVER(Resnet50) [Pirazh et al., 2019] - 70.03 89.81 - 59.04 80.60
VANet(Googlenet) [Chu et al., 2019] 66.34 89.78 95.99 HDC + Contrastive [Yuan et al., 2016] 65.5 - - 57.5 - -
MLSL(Mobilenet) [Alfasly et al., 2019] 61.13 90.04 96.00 MLSL(Mobilenet) [Alfasly et al., 2019] - 74.21 88.38 - 66.55 78.67
PAMTRI(Dense201) [Tang et al., 2019] 71.88 92.86 96.97 EALN(Resnet50) [Lou et al., 2019a] 77.5 75.11 88.09 71.0 69.30 81.42
Specific feature only 67.72 89.39 95.94 Specific feature only 76.85 69.04 93.23 69.69 61.42 88.55
Common feature only 70.28 91.06 96.54 Common feature only 79.18 76.28 92.95 73.62 66.81 88.54
Simple combination of two features 71.39 91.49 97.13 Simple combination of two features 79.62 75.71 91.30 73.94 66.36 89.29
DFLNet (Resnet50) 73.29 93.21 97.56 DFLNet (Resnet50) 82.83 78.83 95.01 75.40 69.78 90.59

Table 1: Performance comparisons (%) with state-of-the-art methods on VeRI-776 and VehicleID datasets.

ping dictionary. In our work, when the order n is set to 4, the
mapping can be well fitted.

The mapped common feature distance distribution is illus-
trated in Fig. 3(c), which well fits the real common distance
distribution. The KLD (Kullback-Leibler divergence) calcu-
lated by these two distributions is 0.007. It shows the pro-
posed feature metric alignment is reasonable and precise.

3.4 Implementation Details
The backbone of DFLNet is ResNet50 [He et al., 2016].
DFLNet has two branches after “pool5” layer. One branch is
two fully-connected (fc) layers withLemb in Eq. 4 for specific
features. The attention module in specific branch consists of
two 1×1 convolution layers (channel 1st layer: 2048→ 512,
2nd layer: 512→ 1). The other branch is an embedding layer
with adversarial learning for common features. The dimen-
sions of the common and specific features are both 128. We
adopt a hard example mining mechanism to obtain a strong
baseline. The discriminator for common feature learning is
a small network with three fc layers followed by a classifier.
The number of classifier output is the size of odd-one unit,
and we set it to 3. The input channels for each fc layer are
384 (128x3), 128 and 128. The DFLNet is optimized by SGD
algorithm. Regarding parameters, we set ω as 0.5 and triplet
margin as 0.6 in metric learning following [Lou et al., 2019b],
and λ = 0.5 in hybrid ranking. The models are trained for 50
epochs. Learning rate starts from 0.003. The size of the input
image is 256× 256.

4 Experiments
4.1 Experiment Setting
Dataset. We conduct experiments on VehicleID [Liu et al.,
2016a], VeRI-776 [Liu et al., 2016c] and VERI-Wild [Lou
et al., 2019b] datasets, which are widely used vehicle ReID
benchmarks. VehicleID consists of 26,267 vehicle IDs, and
most of the vehicles only have two views: front-view and
rear-view. VeRI-776 is a small-scale vehicle dataset contain-
ing 776 vehicle IDs, which are captured by 20 cameras in
unconstrained traffic scenarios. VERI-Wild is a large-scale
vehicle dataset, which contains in total 416,314 images of

40,671 IDs captured by 176 surveillance cameras in the wild.
The images in VehicleID dataset have 2 (front, back) orienta-
tions, and images in VeRI-776 and VERI-Wild datasets con-
tain 5 (front, front-side, side, back-side, back) orientations.

Evaluation Metrics. We use mean Average Precision
(mAP) and Cumulative Match Curve (CMC) in experiments.

4.2 Experimental Results Analysis

Evaluation on VehicleID Dataset
The results on VehicleID dataset are shown in Table 1. Us-
ing specific features only, we can achieve a strong base-
line with the attention module and the hard example mining
scheme. Our DFLNet outperforms EALN method by 5.33%
(mAP). EALN uses a hard negative generation scheme for
discriminative feature learning and a cross-view generation
scheme to improve cross-view vehicle ReID. In Top 5 recall,
DFLNet can achieve 9% mAP advantages over EALN. Be-
sides, HDC+Contrastive cascades a set of GoogleNet which
is a more complex method than a single network in our model,
which further demonstrates the effectiveness of DFLNet.
VAMI aims to infer viewpoint aware attentive regions for
multi-view feature representation and AAVER proposes an
adaptive attention mechanism to capture discriminative fea-
tures. Compared with these methods, DFLNet achieves better
performance with a disentangled learning scheme.

Evaluation on VeRI-776 Dataset
The results on VeRI-776 dataset are shown in Table 1.
Compared to using specific features, the proposed DFLNet
can significantly improve the performance from 67.72% to
73.29% mAP via introducing another common feature. Such
gains demonstrate that by disentangling specific and common
features, more adaptive feature representation and matching
can be achieved. Our DFLNet significantly outperforms the
state-of-the-art method PAMTRI, and it is worthy noting that
PAMTRI uses DenseNet201 and the dimension of feature is
1024, while we use a simple ResNet50 network and two 128-
dimension features in DFLNet. Such observation verifies that
DFLNet can better promote feature representation.
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Figure 4: Left(a): the ReID performance by setting different scale λ in the ranking strategy. Middle(b): the discriminator classification
accuracy in “odd-one-out” adversarial learning. Right(c): the Top 6 ReID results on VehicleID dataset. The green/red boxes indicate
right/wrong results. Compared with common feature results, the rank changes after using our hybrid ranking scheme.

Settings Small Medium Large
FDA-Net (VGGM)[Lou et al., 2019b] 35.11 29.80 22.78
Softmax (Resnet50) [Liu et al., 2016c] 49.76 41.28 30.91
Triplet (Resnet50) [Schroff et al., 2015a] 57.69 46.81 34.73
MLSL (Mobilenet) [Alfasly et al., 2019] 46.32 42.37 36.61
FDA-Net (Resnet50) [Lou et al., 2019b] 61.57 52.69 45.78
Specific feature only 59.36 50.81 39.61
Common feature only 62.42 51.84 42.97
Simple combination of two features 63.48 52.91 43.05
Hybrid ranking w/o alignment 50.12 40.86 27.89
DFLNet 66.21 58.28 47.16

Table 2: The mAP performance on the VERI-Wild dataset.

Evaluation on VERI-Wild Dataset
The results on VERI-Wild dataset are illustrated in Table 2.
Compared with FDA-Net that uses GAN to generate hard
negative samples, we get better performance under same net-
work backbone. Moreover, we show the comparisons be-
tween hybrid ranking and simple combination of common
and specific features. Simple combination directly weighted
two distances of common and specific features, i.e. λdc +
(1 − λ)ds. As shown in Tables 1 and 2, the simple combi-
nation can also bring performance gains, but is lower than
hybrid ranking. We vary the value of λ in ranking scheme as
shown in Fig. 4(a). The hybrid ranking can get consistent per-
formance superiority over different λ. Since specific features
focus on subtle differences, using it for cross-view ReID may
degrade the cross-view ReID performance. We also provide
the results of hybrid ranking without alignment, the perfor-
mance drops significantly. This is mainly due to the feature
distance distribution differences between these two features.

Ablation Study of Common and Specific Features
In Table 3, we present the ablation results of DFLNet. EALN
[Lou et al., 2019a] is the first work that reports the same-view
and cross-view performances. Specifically, given a query ve-
hicle, for cross-view ReID, we treat the reference vehicles
belonging to this query but with the same view as the junk
samples, which are not involved in mAP computation. Sim-
ply comparing specific and common features, it can be ob-
served that specific features are good at finding the same view
vehicles while the common features are good at finding cross-
view vehicles. Such results show the effectiveness of our dis-
entangled feature learning scheme.

In Fig. 4(c), we visualize the retrieval results. During test-
ing, we use common features to get initial recall list (second

Methods ALL Same View Cross View
EALN[Lou et al., 2019a] 77.5 89.2 42.6

Specific feature 76.85 87.19 46.67
Common feature 79.18 84.29 56.83

DFLNet 82.83 90.22 58.69

Table 3: The ReID performance (mAP) of same-view and cross-
view on the small scale (TestSize=800) test set in VehicleID.

row), then use specific features to further compare samples
with same orientation as query to get hybrid ranking results
(third row). The wrong samples with the same orientation as
query can be further filtered by specific features. Therefore,
the performance of hybrid ranking is superior than only using
specific or common features in both same and cross view.

The “Odd-One-Out” Adversarial Learning Analysis
We design a toy experiment to verify whether orientation spe-
cific features learned by embedding network contain enough
orientation specific information. For VehicleID and VeRI-
776 dataset, the “Odd-One-Out” classification accuracy is up
to 93.28% and 87.69%, respectively. That means for well-
trained embedding networks, the specific information is im-
plicitly encoded in the features and the discriminator has the
ability to recognize the odd one in given specific supervision.

For adversarial learning, as the training continues, the
classification accuracy for odd-one prediction gradually de-
creases, as shown in Fig. 4(b). Thus, the expected orientation
common features can be learned.

5 Conclusion
In this paper, we focus on exploiting the common and spe-
cific features to improve vehicle ReID performance. A novel
disentangled feature learning network is proposed to jointly
learn these two features. Such a unified end-to-end solution
lays the groundwork for the subsequent improvements of ve-
hicle ReID in terms of discriminative and invariant feature
learning. Experiments demonstrate the effectiveness of the
proposed method.

Acknowledgements
This work was supported by the National Natural Science
Foundation of China under Grant U1611461, and was partly
supported by the SUTD SRG project (T1SRIS20153).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

479



References
[Alfasly et al., 2019] Saghir Alfasly, Yongjian Hu, Haoliang

Li, Tiancai Liang, Xiaofeng Jin, Beibei Liu, and Qingli
Zhao. Multi-label-based similarity learning for vehicle re-
identification. IEEE Access, 7:162605–162616, 2019.

[Bahdanau et al., 2014] Dzmitry Bahdanau, Kyunghyun
Cho, and et al. Neural machine translation by jointly
learning to align and translate. Computer Science, 2014.

[Bai et al., 2018] Yan Bai, Yihang Lou, and et al. Group sen-
sitive triplet embedding for vehicle re-identification. IEEE
Transactions on Multimedia, 2018.

[Bulan et al., 2017] Orhan Bulan, Vladimir Kozitsky, Pal-
ghat Ramesh, and Matthew Shreve. Segmentation-and
annotation-free license plate recognition with deep local-
ization and failure identification. IEEE Transactions on In-
telligent Transportation Systems, 18(9):2351–2363, 2017.

[Chu et al., 2019] Ruihang Chu, Yifan Sun, Yadong Li,
Zheng Liu, and et al. Vehicle re-identification with
viewpoint-aware metric learning. In IEEE International
Conference on Computer Vision, pages 8282–8291, 2019.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[He et al., 2019] Bing He, Jia Li, Yifan Zhao, and
Yonghong Tian. Part-regularized near-duplicate vehicle
re-identification. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 3997–4005, 2019.

[Hermans et al., 2017] Alexander Hermans, Lucas Beyer,
and Bastian Leibe. In defense of the triplet loss for person
re-identification. arXiv preprint arXiv:1703.07737, 2017.

[Liu et al., 2016a] Hongye Liu, Yonghong Tian, and et al.
Deep relative distance learning: Tell the difference be-
tween similar vehicles. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2167–2175, 2016.

[Liu et al., 2016b] Xinchen Liu, Wu Liu, Huadong Ma, and
Huiyuan Fu. Large-scale vehicle re-identification in urban
surveillance videos. In IEEE International Conference on
Multimedia and Expo, 2016, pages 1–6. IEEE, 2016.

[Liu et al., 2016c] Xinchen Liu, Wu Liu, Tao Mei, and
Huadong Ma. A deep learning-based approach to pro-
gressive vehicle re-identification for urban surveillance. In
IEEE International Conference on European Conference
on Computer Vision, pages 869–884. Springer, 2016.

[Lou et al., 2019a] Yihang Lou, Yan Bai, and et al. Em-
bedding adversarial learning for vehicle re-identification.
IEEE Transactions on Image Processing, 2019.

[Lou et al., 2019b] Yihang Lou, Yan Bai, and et al. Veri-
wild: A large dataset and a new method for vehicle re-
identification in the wild. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3235–3243,
2019.

[Ma et al., 2017] Liqian Ma, Qianru Sun, and et al. Dis-
entangled person image generation. arXiv preprint
arXiv:1712.02621, 2017.

[Pirazh et al., 2019] Khorramshahi Pirazh, Amit Kumar,
Neehar Peri, and et al. A dual path modelwith adaptive
attention for vehicle re-identification. IEEE International
Conference on Computer Vision, 2019.

[Rivlin, 1974] Theodore J Rivlin. The Chebyshev polynomi-
als. Wiley, 1974.

[Sandler et al., 2018] Mark Sandler, Andrew Howard, and
et al. Mobilenetv2: Inverted residuals and linear bottle-
necks. In IEEE conference on computer vision and pattern
recognition, pages 4510–4520, 2018.

[Schroff et al., 2015a] Florian Schroff, Kalenichenko
Dmitry, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. In Computer Vision
and Pattern Recognition, pages 815–823, 2015.

[Schroff et al., 2015b] Florian Schroff, Dmitry
Kalenichenko, and James Philbin. Facenet: A uni-
fied embedding for face recognition and clustering.
In IEEE Conference on Computer Vision and Pattern
Recognition, pages 815–823, 2015.

[Szegedy et al., 2016] Christian Szegedy, Vincent Van-
houcke, and et al. Rethinking the inception architecture
for computer vision. In the IEEE conference on computer
vision and pattern recognition, pages 2818–2826, 2016.

[Tang et al., 2019] Zheng Tang, Milind Naphade, and et al.
Pamtri: Pose-aware multi-task learning for vehicle re-
identification using highly randomized synthetic data. In
IEEE International Conference on Computer Vision, pages
211–220, 2019.

[Tran et al., 2017] Luan Tran, Xi Yin, and et al. Disentan-
gled representation learning gan for pose-invariant face
recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1415–1424, 2017.

[Wang et al., 2017] Zhongdao Wang, Luming Tang, and
et al. Orientation invariant feature embedding and spa-
tial temporal regularization for vehicle re-identification. In
IEEE International Conference on Computer Vision, pages
379–387, 2017.

[Wei et al., 2018] Xiu-Shen Wei, Chen-Lin Zhang, and et al.
Coarse-to-fine: A rnn-based hierarchical attention model
for vehicle re-identification. In Asian Conference on Com-
puter Vision, pages 575–591. Springer, 2018.

[Xu et al., 2015] Kelvin Xu, Jimmy Ba, and et al. Show, at-
tend and tell: Neural image caption generation with visual
attention. Computer Science, pages 2048–2057, 2015.

[Yuan et al., 2016] Yuhui Yuan, Kuiyuan Yang, and Chao
Zhang. Hard-aware deeply cascaded embedding. arXiv
preprint arXiv:1611.05720, 2016.

[Zhao et al., 2019] Yiru Zhao, Xu Shen, and et al. Attribute-
driven feature disentangling and temporal aggregation for
video person re-identification. In IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[Zhou and Shao, 2018] Yi Zhou and Ling Shao. View-
point aware attentive multi-view inference for vehicle re-
identification. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 6489–6498, 2018.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

480


	Introduction
	Related Work
	Proposed Method
	Orientation Common Feature Learning by Odd-One-Out Adversary
	Orientation Specific Feature Learning with an Attention Scheme
	Hybrid Ranking Strategy
	Implementation Details

	Experiments
	Experiment Setting 
	Experimental Results Analysis
	Evaluation on VehicleID Dataset
	Evaluation on VeRI-776 Dataset
	Evaluation on VERI-Wild Dataset
	Ablation Study of Common and Specific Features
	The ``Odd-One-Out" Adversarial Learning Analysis


	Conclusion

