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Abstract
Despite recent progress on semantic segmentation,
there still exist huge challenges in medical ultra-
resolution image segmentation. The methods based
on a multi-branch structure can make a good bal-
ance between computational burdens and segmen-
tation accuracy. However, the fusion structure in
these methods requires to be designed elaborately
to achieve desirable results, which leads to model
redundancy. In this paper, we propose a Meta Seg-
mentation Network (MSN) to solve this challeng-
ing problem. With the help of meta-learning, the
fusion module of MSN is quite simple but effective.
MSN can fast generate the weights of fusion layers
through a simple meta-learner, requiring only a few
training samples and epochs to converge. In addi-
tion, to avoid learning all branches from scratch, we
further introduce a particular weight sharing mech-
anism to realize a fast knowledge adaptation and
share the weights among multiple branches, result-
ing in the performance improvement and signif-
icant parameter reduction. The experimental re-
sults on two challenging ultra-resolution medical
datasets BACH and ISIC show that MSN achieves
the best performance compared with state-of-the-
art approaches.

1 Introduction
With the rising up of deep learning, semantic segmenta-
tion achieves prominent progress. However, the seman-
tic segmentation of ultra-resolution image (URI) is seldom
studied, especially in the application of medical diagnosis.
Many medical URIs [Tschandl et al., 2018; Aresta et al.,
2019] contain more than 4 M pixels per image, and as for
whole-slide image (WSI), a special type of medical URIs,
its size even exceeds 40000 × 60000 (about 30 M pixels).
The URIs with huge size require large computational re-
sources, which some most popular semantic segmentation
framework, such as UNet [Ronneberger et al., 2015], PSP-
Net [Zhao et al., 2017], and DeepLab [Chen et al., 2014;
∗Equal contribution.
†Corresponding author.

Figure 1: The statistics of mean and variance of the convolutional
activations for the backbone network (BiSeNet). We train the branch
of X3, and fix the parameters. Then we sequentially input X1, X2

and X3 to calculate their mean and variance. The layer index in red
font indicates the ‘gap layer’.

Chen et al., 2018], are hard to afford.
There are two common ways to process URIs: image

downsampling and sliding patches [Altunbay et al., 2009;
Chang et al., 2015]. The former resizes a large image
to a suitable size, e.g., 512 × 512, then feeds it into the
model, which leads to the great loss of local details, espe-
cially for WSIs. The latter crops original image into many
small patches, then segments on patch-level, and finally com-
bines the segmentation results of these patches. While these
methods can effectively reduce the computational burden, the
global information provided by spatial context and neighbor-
hood dependency is almost abandoned, which makes it diffi-
cult to obtain accurate segmentation results.

The latest representative patch-based method is the
AWMF-CNN [Tokunaga et al., 2019], it is a multi-branch
structure to aggregate contextual information from multiple
magnification patches that contain target regions and recep-
tive fields in different resolutions and scales. As a popular
strategy, multi-branch induced methods have to find a tradeoff
between small inputs and multi-scales, thus, they inevitably
introduce two challenge problems: Firstly, they usually need
a carefully designed fusion mechanism for final result, e.g.,
the fusion layers consist of many stacked convolutions with
relatively more channels or the auxiliary weighting net in
[Tokunaga et al., 2019], resulting in a complicated and redun-
dant structure. Fortunately, by developing a meta-learning fu-
sion method, only a simple structure is needed in our method
to ensure good results. Secondly, all the branches are inde-
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pendent so as to be trained from scratch separately, increasing
overall parameters significantly.

In this paper, we propose a novel multi-branch framework
guided by a meta-learning way for ultra-resolution medical
image segmentation, namely Meta Segmentation Network
(MSN). The negative loss gradient, which contains more de-
tailed information, e.g., the target-specific difference between
prediction and label, can be used as very useful information
to fast generate the convolutional weights, as it has been con-
firmed in [Munkhdalai and Yu, 2017]. Moreover, the struc-
tures of most meta-learning frameworks are quite simple but
highly effective [Finn et al., 2017; Liu et al., 2019], hence the
elaborative structural design is unnecessary.

For this purpose, we develop a meta-fusion mechanism,
which can elegantly solve the first challenge in multi-branch
methods. Specifically, we use the negative gradients of the
output layers of branches as the meta-information to train a
meta-learner and directly predict the weights of the fusion
layer. Our method is superior to the training way of tradi-
tional end-to-end BP that needs more iterative steps and more
training samples to converge. It is also noticeable that, unlike
the elaborately designed fusion structure in AWMF-CNN,
i.e., many stacked convolution layers as well as a redundant
weighting net, the structure of meta-fusion contains only two
convolutions with a few channels and a simple meta-learner.

To avoid learning all the branches from scratch, we further
introduce a quite effective weight sharing mechanism. Al-
though the inputs for those branches have different magnifica-
tions, they are still in the same domain. So, we believe that the
knowledge among these branches can be shared to some ex-
tent, i.e., weight sharing. We adopt a special memory mech-
anism to achieve fast knowledge adaptation between meta-
branch and non-meta-branches. The meta-branch represents
a reference branch containing basic parameters that need to
be shared with other branches. Moreover, we experimentally
find that direct weight sharing leads to some knowledge gaps,
as illustrated in Fig. 1. To bridge these gaps, we use the
memory mechanism to store some useful memory (feature)
from the meta-branch, then make a memory transformation
between meta-branch and non-meta-branches to realize a fast
knowledge adaption.

The contributions can be summarized as follows:

• A Meta-fusion mechanism is proposed for a multi-
branch deep model for URI segmentation by utilizing
meta-learning. The weights of fusion layer can be fast
generated through the meta-learner, leading to a simple
but highly effective model.

• A novel weight sharing mechanism is introduced to real-
ize fast knowledge adaptation, resulting in a significant
reduction in the training process and overall parameters.

• The proposed MSN achieves the best performance on
two challenging datasets: BACH and ISIC. Especially,
our method achieves a significant performance improve-
ment over the latest AWMF-CNN, and the overall pa-
rameters are close to that of a single branch. Thus, it is
a practical segmentation method both in resource-saving
and accuracy.

2 Proposed Method
2.1 Architecture of MSN
In this section, we introduce the framework of MSN, which
is illustrated in Fig.2. It mainly contains two components:
the multi-branch structure (Mainbody), and the Meta Fu-
sion Module (Meta-FM). Mainbody is an all-in-one struc-
ture which realizes multi-resolution segments. Unlike the
general multi-resolution structure which requires the multi-
ple branches with a special resolution per branch, Mainbody
only uses one branch to realize the multi-resolution segmenta-
tion. Let’s name the branches as the high-resolution, middle-
resolution and low-resolution branches according to differ-
ent resolution inputs. Mainbody contains three key parts:
the meta-branch, the Memory Feature Pool (Mem-FP) and
the Memory Recall Module (Mem-RM). Mem-FP stores the
meta-features of the meta-branch in Mainbody, while Mem-
RM is deployed in non-meta-branch to complement the dis-
tinctive features from the non-meta branch with the meta-
features stored in Mem-FP, named Memory.

Mainbody outputs two preliminary segmentation maps,
i.e., S1 and S2 in Fig. 2, which will be fused in a meta-
learning way to achieve a final segmentation result. In the
following, we will detail the operating mechanism of Main-
body, Mem-FP, Mem-RM, and Meta-FM.

Mainbody. The architecture of Mainbody is shown in the
middle part of Fig. 2. Let X1, X2 and X3 denote the three
types of inputs with the same size having a different resolu-
tion corresponding to the three branches (e.g., 16×, 4×, 1×).
X3 has the widest receptive field with the lowest resolution,
while X1 is the opposite. As shown in Fig. 2, X1 is the up-
scaled patch centered in X3 signed in a green box and has the
high-resolution and X2 has the middle-resolution. Mainbody
can process the image patches with three resolutions and out-
put the counterpart segmentation maps {S1, S2, S3}.

Considering the commonness and difference among the
knowledge of the multi-resolution segmentation, we treat
the low-resolution branch as the meta-branch which shares
the weights with the middle-resolution and high-resolution
branches because it contains the most information, and use
Mem-FP and Mem-RM to adjust the weight learning. In de-
tail, a low-resolution image patch X3 is fed into Mainbody,
and passed through the non-gap convolution layers and gap
convolution layers in the meta-branch. In gap layers, the
obtained feature maps are recorded in Mem-FP. As for the
high-resolution image patch X1, after fixing all the layers
of the meta-branch, it is passed through Mainbody just like
X3 in non-gap convolution layer, when meeting gap convolu-
tion layer, Memory is recalled from Mem-FP, and Memory as
well as the feature maps output by the current gap layer are
fed into the Mem-RM for adjusting the weight learning. So
do the middle-resolution image patch X2. Subsequently, we
fuse the two outputs S1, S2 of non-meta-branches in Meta-
FM. In the following, we introduce Mem-FP, Mem-RM,and
Meta-FM.

Memory Feature Pool. Mem-FP acts as a storage pool. As
shown in Fig. 1, the branches of X1 and X2 have a large
gap with X3 (meta-branch) in some layers of CNN. When

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

545



Figure 2: (a) The architecture of MSN. (b) The expanded structure of Mainbody in (a) without weight sharing, where three branches are
separated. MSN mainly contains two components: Mainbody and Meta-FM, where Mainbody contains three key components: the meta-
branch, Mem-FP and Mem-RM. Mainbody receives different resolution image patches as input, and outputs their segmentation maps. The
input X3 only go through the meta-branch without passing through Mem-FP and Mem-RM, while the other two resolution inputs go through
the meta-branch together with the integrated Mem-FP and Mem-RM to fix the gap layers. Meta-FM is to fuse the results of the branches in a
meta-learning way, where the output channels of two fusion convolutions are both Nc, and Nc is the number of classes.

Figure 3: The architecture of Mem-RM. Mem-RM is added to the
gap layers in the meta-branch. Mem-RM utilizes the meta-features
which are stored in Mem-FP to realize the “memory recall”.

processing the low-resolution image patch X3, feature maps
output by the gap layers in the meta-branch, named Meta-
features, is saved in Mem-FP which will be utilized to com-
pensate other branches. Actually, once X3 is passed through
the meta branch, the obtained Meta-features are stored.

Memory Recall Module. In order to make the meta-branch
adapt to other branches in the weight sharing mechanism,
non-meta-branches should “recall” the missing features in
Mem-FP at these big gap layers. Therefore, we construct
Mem-RM and embed it in the meta-branch as an auxiliary
module to recall the memory of the gap layers in the meta-
branch. Specifically, as shown in Fig. 1, when an image patch
is fed into the non-meta-branch, such asX1 orX2, it is passed
forward along the meta-branch until it meets the gap layers.
At the gap layers, both the pre-saved meta-feature and the
counterpart feature from non-meta-branch are fed into Mem-
RM. As shown in Fig.3, there are two input branches: the top
branch inputs Meta-feature of X3 (A) and the bottom branch
inputs the output feature maps of X1 or X2 (B). In order to
align the feature maps between A and B, we crop the target
region centered in Meta-feature and upscaled to the same size
as B. After that we concatenate them and implement convo-

lutions on them. The process is formulated as:

B̂ = f(cat(B, up(crop(A)))), (1)

where B̂ is the final output of Mem-RM, f(·) is the nonlinear
transformation function, and cat(·, ·), up(·) and crop(·) are
the operations of concatenation, upsampling and cropping,
respectively.

Meta Fusion Module. The final step of our framework is
the fusion of different branches. Since the branches ofX1 and
X2 have already captured the memory of X3, we only need
to consider the fusion of the branches of X1 and X2. One
of the most common way is to use an elaboratively designed
structure that might contain dozens of convolution layers to
perform feature fusion, and then conduct common optimizer,
e.g., SGD [Bottou, 2012], to adjust the parameters of these
convolutional layers. This process may take many iterations
for optimization to achieve convergence.

To pursue a simple but highly effective fusion structure, we
propose using a specific target provided by an auxiliary meta-
learner. It is well known that, the negative gradient, which
is used in SGD to determine the direction of optimization,
contains detail information that measures the difference be-
tween prediction and ground truth. Draw lessons from the
theory of negative gradient, we construct Meta-FM to predict
the weights of these convolutional layers directly. The struc-
ture of Meta-FM is shown in Fig. 2, and Meta-FM receive the
negative gradients (meta-information) of the output layers of
two branches, and output the predicted weights through two
fully connected layers (FC). Meta-FM can be formulated as:

W = [W1,W2] = f(σ), (2)

where W1 and W2 are the parameters of two fusion convolu-
tions, respectively. Note that, W1 and W2 should be reshaped
to the weight matrixes because the output of FC is a vector.
f(·) is a nonlinear function which contains the structure of
FC-Relu-FC. σ is the gradient vector of the output layers of
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two branches, which is formulated as:

σ = cat(v(−∂L(S1, Y1)

∂Wo1
), v(−∂L(S

′

2, Y1)

∂Wo2
)), (3)

where L(·, ·) is the loss function, S1 is the segmentation
prediction of the branch of X1, and Y1 is the ground truth.
S
′

2 = up(crop(S2)), since the resolution of X2 is lower than
X1, we crop the target region from S2 and upsample it to the
size of S1. Wo1 and Wo2 are the weights of the output layers
of the branch of X1 and X2, respectively. The operation v(·)
reshapes the gradient matrix to a column vector.

2.2 Loss Function
We use the cross entropy as the loss function of our model,
which can be formulated as:

L(P, Y ) = −
N∑
i

∑
j∈Pi

Yi,j logPi,j , (4)

where P is the predicted segmentation maps, Y denotes the
counterpart ground truths, N is the total number of samples,
and j is the j-th pixel of Pi. This loss function will be used
in multiple segmentation results of our model, i.e., S1, S2, S3

as well as the final fused result S, to train our model.

2.3 Training
We adopt a 3-step training scheme to train MSN. Step 1. we
train the meta-branch in Mainbody to obtain the meta param-
eters which will be shared with other branches. Step 2. the
Mem-RM is trained for the non-meta-branches to fix knowl-
edge gaps. Step 3. Meta-FM is learned to fuse the multi-
resolution segmentation results. We divide the training data
into two parts: a training set and sub-training set. The train-
ing set is used for the first step, while the sub-training set is
involved in the last two steps. We initialize all layers similar
to [He et al., 2015].
Training Meta-branch. The low-resolution image patch
X3 is fed into the branch and obtain the segmentation map
S3, and then the weights of this branch are updated with the
loss function L(S3, Y3) formulated in Eq. (4).
Training Mem-RM. After Step 1, we have the meta pa-
rameters and fix them. Next, we train Mem-RM on sub-
training set to alleviate the influence of gap layers w.r.t the
meta-branch. We input X1 or X2 to the fixed meta-branch
with their specific Mem-RMs and get the counterpart seg-
mentation results S1 and S2. Then we use the loss function
L(S1, Y1) and L(S2, Y2) to update each Mem-RM which is
specific to the branch of X1 or X2.
Training Meta-FM. Firstly, we fix the trained meta-branch
and Mem-RM. Then we obtain the segmentation maps S1, S2

by using the same way of Step 2. After some operation as
mentioned before, e.g., cropping and concatenation, finally
we feed the processed S1 and S2 to the fusion layers whose
weights are generated by Meta-FM, and obtain the fusion re-
sult S. Since the reshape operation on the weights vector be-
fore padding into fusion layer is differentiable, we thus tune
the parameters of Meta-FM in few epochs by minimizing the
loss function L(S, Y1) on sub-training set.

3 Experiments
In this section, we evaluate our method on two ultra-
resolution medical datasets: BACH and ISIC. We take two
criteria for evaluation: the mean Intersection over Union
(mIoU) and the amount of model parameters.

3.1 Datasets
BACH [Aresta et al., 2019] is composed of Hematoxylin and
Eosin (H&E) stained breast histology microscopy and whole-
slide images (WSI). There are 10 WSIs, with an average size
of 42113 × 62625 pixels (about 3000 M pixels), included in
BACH. These WSIs are stored in a multi-resolution pyramid
structure, i.e., 1×, 4× and 16×. Four classes are presented in
BACH: normal, benign, in situ, and invasive carcinoma. We
randomly split 10 WSIs into 7, 1, 2 images for the training
set, the sub-training set and the test set, respectively.

ISIC [Tschandl et al., 2018; Codella et al., 2018] is an
ultra-resolution medical dataset for pigmented skin lesions,
which total contains 2596 images. Its average resolution is
up to 9 M, while the highest resolution is up to 6748× 4499.
The dense annotations contain two classes: lesion, normal.
We randomly divide the dataset into training, sub-training and
testing sets with 2077, 360 and 157 images.

3.2 Implementation Details
In our model, we use BiSeNet [Yu et al., 2018] as the
backbone, i.e., the CNN structure in Mainbody which con-
tains three branches: the high-resolution branch, the middle-
resolution branch and the low-resolution branch. We feed the
patch with the size of 256 × 256 into MSN. We firstly crop
out X1 from left to right in the image without overlapping
except the last patch in each row. Then we align the center of
the target area to crop out X2 and X3, if the cropping patch
exceeds the boundary, then 0 is padded. As for BACH, we
use the professional tool “OpenSlide” [Goode et al., 2013]
to read the multi-resolution pyramid in WSI, where the res-
olutions of the input patches fed into the three branches are
16×, 4×, and 1×, respectively. We finally get training, sub-
training and test set with 9520, 2379 and 75603 patches for
each resolution. As for ISIC, we set three resolutions as 4×,
2× and 1×, where the original image is considered as the
highest resolution. Then we crop out X1, X2 and X3 in
these three-resolution images, respectively. The number of
patches in each resolution for training, sub-training and test
set is 21471, 3001 and 52166, respectively. We train the meta-
branch for 30 epochs, and tune the non-meta-branches as well
as Meta-FM for only 10 epochs, with the batch size of 32.
The optimizer Adam [Kingma and Ba, 2014] is utilized with
an initial learning rate 0.0001 to update the parameters of the
network. The whole model is trained in PyTorch [Ketkar,
2017] with a single 1080Ti GPU.

3.3 Comparisons with State-of-the-art Methods
Result on BACH Dataset. We compare our method with
five state-of-the-art methods: UNet [Ronneberger et al.,
2015], PSPNet [Zhao et al., 2017], BiSeNet [Yu et al., 2018],
DeepLab-V3+ [Chen et al., 2018] and AWMF-CNN [Toku-
naga et al., 2019], where the first four methods are repre-
sentative general semantic segmentation frameworks, and the
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Method mIoU (%)
# Parm (M)

X1 X2 X3 Fusion

UNet (2015) 25.2 31.7 37.9 - 7.8
PSPNet (2017) 29.0 36.3 45.3 - 48.8
DeepLab-V3+ (2018) 26.6 30.8 42.9 - 40.9
BiSeNet (2018) 28.6 31.3 42.5 - 12.8

AWMF-CNN† (2019) 26.8 32.1 42.2 42.7 76.3
AWMF-CNN‡ (2019) 19.4 35.5 37.1 37.7 61.2
AWMF-CNN† (fixed) (2019) 28.6 31.3 42.5 42.9 76.3
AWMF-CNN‡ (fixed) (2019) 25.2 31.7 37.9 38.7 61.2

MSN† 46.4 47.2 42.5 47.6 15.6
MSN‡ 37.8 38.6 37.9 39.1 9.2
MSN†

∗
47.2 47.9 42.5 48.1 15.6

Table 1: Comparison results on BACH. X1 and X2 are the non-
meta-branches in our method, and X3 is the trained meta-branch.

last one is the latest powerful multi-branch method for pro-
cessing medical URIs. Because the first four methods are not
the multi-branch structure, the fusion results are not available,
which are denoted by “-” in Table 1. All methods have pub-
licly provided code except AWMF-CNN, thus we reproduce
it using the same backbone. We train all competitors by us-
ing Eq. (4) on the training set. For the first four methods,
we train each model with a specific resolution for 30 epochs.
For AWMF-CNN, we adopt two training ways: 1) Similar
to the original way in AWMF-CNN, firstly we pretrain its
three branches for 10 epochs, then train the fusion parts. Af-
ter that, we alternately train the multi-resolution branches and
fusion part for 20 epochs. 2) we only train its fusion part for
30 epochs with the fixed trained branches, we denote it as
AWMF-CNN (fixed). For the convenience of expression, we
use different marks in the superscript to denote the different
settings: (1) “†”: use BiSeNet as backbone; (2) “‡”: use UNet
as backbone; (3) “∗”: similar to other comparison methods.

As shown in Table 1, we observe that our method achieves
the best results. Note that, with the help of our special weight
sharing mechanism, we improve the result significantly for
the non-meta-branches by almost 10% mIoU compared with
the counterpart branches of BiSeNet and UNet, respectively
(For example, the branch of X1 of MSN† achieves 46.4%
mIoU, while the one of BiSeNet only gets 28.6%). Mean-
while, the result can be further boosted with our meta-fusion.

It is obviously observed that our method already obtained
the best results by only training on the small sub-training set,
e.g., MSN†, while other compared methods are trained on
the training set. When we also train on the training set, e.g.,
MSN†

∗
, we can get better performance. Therefore, it can be

concluded that MSN is more flexible in data requirements.
The amount of parameters of MSN is almost the same as

that of a single network (see MSN† vs BiSeNet and MSN‡
vs UNet), and is much smaller than AWMF-CNN, thus our
model has lower complexity and is more practical.

Result on ISIC Dataset. The comparison results on ISIC
are shown in Table 2. For fast implementation without loss
of generality, we compare MSN with the latest three meth-
ods: DeepLab-V3+, BiSeNet and AWMF-CNN. MSN also
achieves the best result with a comparable amount of param-
eters compared to other methods.

Method mIoU (%)
# Parm (M)

X1 X2 X3 Fusion

DeepLab-V3+ (2018) 42.8 47.7 48.1 - 40.9
BiSeNet (2018) 45.1 46.4 46.1 - 12.8

AWMF-CNN† (2019) 43.8 42.7 45.9 45.5 76.3
AWMF-CNN† (fixed) (2019) 45.1 46.4 46.1 48.9 76.3

MSN† 49.0 48.8 46.1 49.4 15.6
MSN†

∗
52.8 48.5 46.1 54.6 15.6

Table 2: Comparison results on ISIC.

Figure 4: The visualization results on BACH and ISIC. The first
row contains the examples of image patches and counterpart labels.
The second row is the results of our backbone BiSeNet, where three
branches are trained separately. The third row is ours, where the first
two columns of each dataset are our non-meta-branches, and the last
column is our fusion result.

Visualization. Finally, we visualize the results on BACH
and ISIC. Due to space limitation, we directly compare our
method (BiSeNet as the backbone) with BiSeNet that trains
three branches separately. The results are illustrated in Fig.
4. Obviously, with the special weight sharing mechanism,
the non-meta-branches of MSN significantly outperform all
the branches of BiSeNet. More importantly, with our meta-
fusion mechanism, some details can be further refined, which
makes the final result more complete.

3.4 Ablation Study
Effectiveness of Weight Sharing Mechanism. The special
weight sharing mechanism can not only significantly reduce
the number of parameters of the multi-branch model, but also
realize the knowledge transfer between the branches. Thus
the results of the non-meta-branches can be promoted on the
basis of the meta-branch, which has been verified in Section
3.3. To further verify its effectiveness, we design the follow-
ing experiments:

Firstly, we compare four methods: (1) Meta-branch: we
only use the trained meta-branch to obtain the results of all
resolution inputs, without fixing the gap layers. (2) Multi-
branch: all branches in this structure are separately trained
from scratch. (3) MSN† and (4) MSN†

∗
. The backbone of

all methods is BiSeNet. For a fair comparison, we also con-
duct our meta-fusion mechanism on the first two compared
methods. The results are shown in Table 4. It is observed
that our non-meta-branches outperform other methods signif-
icantly, it shows that our weight sharing mechanism can ef-
fectively eliminate the gaps between meta-branch and other
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Method mIoU (%)

X1 X2 X3 Fusion

Meta-branch 21.1 31.8 42.5 39.3
Multi-branch 28.6 31.3 42.5 44.4
MSN† 46.4 47.2 42.5 47.6
MSN†

∗
47.2 47.9 42.5 48.1

Table 3: The effectiveness of the weight sharing of MSN on BACH.

Method mIoU (%)

X1 X2 X3 Fusion

on non-gap layers 33.7 30.3 42.5 34.5
MSN† 46.4 47.2 42.5 47.6

Table 4: The impact of gap layers on our weight sharing. ‘on non-
gap layers’ denotes that we add Mem-FP and Mem-RM only to the
non-gap layers.

Dataset Method mIoU (%) # F (M)
X1 X2 X3 Fusion

BACH
w/o Meta

46.4 47.2 42.5
23.7 0.0004

AWMF-CNN 47.1 37.9
MSN 47.6 0.01

ISIC
w/o Meta

49.0 48.8 46.1
36.8 0.0001

AWMF-CNN 48.2 37.9
MSN 49.4 0.006

Table 5: The effectiveness of meta-fusion on BACH and ISIC. # F
denotes the parameter amount of the fusion part of each method.

branches, then improve the performance by leveraging exist-
ing knowledge. And the fusion results are based on branches’
results, therefore, the improvement of branches is also con-
ducive to the improvement of the final performance.

Secondly, we compare the convergency of the non-meta-
branches of MSN and the ones of Multi-branch (training on
training set). The curves are illustrated in Fig. 5. It shows
that our method not only performs on segmentation better,
but converges faster. And when we use the training set rather
than the sub-training set for training (MSN†

∗
), we can obtain

better convergence performance.
Thirdly, to explore the impact of ‘gap layers’, we attempt

to only add Mem-RM at the ‘non-gap layers’, i.e., the layers
whose index in black font in Fig. 1. As expected, the result of
this approach drops a lot, which shows that our effort to fix the
gaps between meta-branch and other branches is reasonable.

Effectiveness of Meta-fusion. To verify the effectiveness
of the meta-fusion mechanism, we compare three methods:
(1) w/o Meta: the same fusion structure as ours without the
meta-fusion mechanism, i.e., two 3× 3 convolution layers in
Fig. 2, and we train it end-to-end from scratch. (2) AWMF-
CNN: the fusion mechanism in AWMF-CNN, which intro-
duces a heavy weighting net for branches weighting, then
uses some convolution layers training from scratch for fusion.
(3) MSN: our meta-fusion mechanism. For a fair comparison,

Figure 5: The train trend on BACH of non-meta-branches, i.e., the
branches of X1 and X2.

Figure 6: The train trend of our meta-fusion and the fusion of Non-
meta on the sub-training set of BACH and ISIC.

we fix the results of three resolutions, which come from our
trained three branches, and then we train the fusion part of all
comparison methods on the sub-training set.

The comparison results on BACH and ISIC are shown in
Table 5. It is observed that our method outperforms w/o Meta
significantly. Although we have more parameters than it, it is
almost negligible due to the small order of magnitude. The
performance of AWMF-CNN is a little lower than ours, but
its fusion structure is more complicated than ours, resulting
in a sharp increase in the number of parameters.

We further illustrate the train trend of meta-fusion mecha-
nism and w/o Meta’s on BACH and ISIC in Fig. 6. As ex-
pected, our method achieves an extremely better convergency.
e.g., it converges in almost 1 epoch.

4 Conclusions
In this work, we propose MSN for the effective segmentation
of medical URIs. A novel meta-fusion module with a very
simple but effective structure is introduced for branches fu-
sion through a meta-learning way. Moreover, MSN achieves
a lightweight multi-branch structure with the help of our par-
ticular weight sharing mechanism. The experimental results
on BACH and ISIC demonstrate that our method achieves the
best comprehensive performance.

Acknowledgments
This work is supported by the National Natural Science Foun-
dation of China under Grant 61876161, Grant 61772524,
Grant U1065252 and partly by the Beijing Municipal Nat-
ural Science Foundation under Grant 4182067, and partly by
the Fundamental Research Funds for the Central Universi-
ties associated with Shanghai Key Laboratory of Trustworthy
Computing.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

549



References
[Altunbay et al., 2009] Dogan Altunbay, Celal Cigir, Cenk

Sokmensuer, and Cigdem Gunduz-Demir. Color graphs
for automated cancer diagnosis and grading. IEEE Trans-
actions on Biomedical Engineering, 57(3):665–674, 2009.

[Aresta et al., 2019] Guilherme Aresta, Teresa Araújo,
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