Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Characterizing Similarity of Visual Stimulus from Associated Neuronal Response

Vikram Ravindra and Ananth Grama

Department of Computer Science, Purdue University, West Lafayette, IN
ravindrv @purdue.edu

Abstract

The problem of characterizing brain functions such
as memory, perception, and processing of stimuli
has received significant attention in neuroscience
literature. These experiments rely on carefully cal-
ibrated, albeit complex inputs, to record brain re-
sponse to signals. A major problem in analyzing
brain response to common stimuli such as audio-
visual input from videos (e.g., movies) or story nar-
ration through audio books, is that observed neu-
ronal responses are due to combinations of “pure”
factors, many of which may be latent. In this paper,
we present a novel methodological framework for
deconvolving the brain’s response to mixed stim-
uli into its constituent responses to underlying pure
factors. This framework, based on archetypal anal-
ysis, is applied to the analysis of imaging data from
an adult cohort watching the BBC show, Sherlock.
By focusing on visual stimulus, we show strong
correlation between our observed deconvolved re-
sponse and third party textual video annotations —
demonstrating the significant power of our analy-
ses techniques. Building on these results, we show
that our techniques can be used to predict neuronal
responses in new subjects (how other individuals
react to Sherlock), as well as to new visual content
(how individuals react to other videos with known
annotations). This paper reports on the first study
that relates video features with neuronal responses
in a rigorous algorithmic and statistical framework
based on deconvolution of observed mixed imaging
signals using archetypal analysis.

1 Introduction

Understanding cognitive processes that underlie perception
of sensory inputs is an active area of research in behavioural
neuroscience. At the heart of these investigations is the design
of suitable sensory stimuli, and analyses of observed response
to these signals. In [Chen et al., 2017], [Hasson et al., 2004]
and [Lahnakoski et al., 2014], subjects are exposed to audio-
visual inputs, such as episodes from TV shows or movies,
also known as naturalistic stimulus. In [Simony et al., 2016]
and [Wilson et al., 2008], natural audio/ speech is provided
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as input. A common goal of these studies is to detect pat-
terns in neuronal responses that are persistent across cohorts.
These responses are indicative of neurological mechanisms
by which the brain processes inputs.

From a methodological standpoint, these studies rely on
correlation measures defined on neuronal responses across
subjects to quantify similarity in responses to stimuli [Wil-
son et al., 2008; Hasson et al., 2004]. These approaches
have demonstrated success in discovering regions of the brain
that manifest responses to the stimulus — regions with ex-
cited neurons, that are common across individuals. These
results have motivated theories about mechanisms, represen-
tations, and processes by which the brain perceives sensory
inputs. However, natural inputs are typically complex; they
are mixtures of “pure” inputs, and often involve latent excita-
tions. For instance, a scene from a thriller movie can simul-
taneously evoke feelings of curiosity and fear. Deconvolv-
ing the two emotions and computing neuronal responses to
pure excitations enables accurate cataloging of regions of the
brain that are responsible for processing various inputs. Con-
versely, we can use neuronal responses themselves to inform
us about the stimulus; i.e., we can predict latent stimuli based
on observed response. Finally, we can also use a catalog of
learned pure stimulus-response pairs to predict neuronal re-
sponses of new (mixed) stimuli for which we have relevant
features. These are profoundly important questions in behav-
ioral neuroscience.

Motivated by these high-level challenges, our goal as
part of this work, is to develop powerful new techniques
for deconvolving observed neuronal responses from imaging
modalities into a combination of basic, constituent represen-
tations (for instance, pure emotional responses). We then use
these pure responses to reason about the stimulus. Our pro-
posed method relies on the concept of archetypal analyses,
which provides a framework for computing pure responses,
or archetypes. These archetypes are modeled as corners of
the smallest convex polytope that envelopes a suitably prepro-
cessed connectomic dataset. In this representation, each indi-
vidual’s connectomic response can be expressed as a convex
combination of the archetypes. These convex coefficients are
used to deconvolve a mixed signal into its constituent parts
based on their similarity to identified archetypes.

Archetypes are reliable representations of dynamic states
of the brain, which in turn are indicative of brain activity in
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response to the stimulus. Hence, the archetypes can be used
to make accurate inferences about the stimulus itself. Similar-
ities in archetypes are reflected in corresponding similarities
in the input. We use the functional MRI (fMRI) images of
the Sherlock dataset by [Chen et al., 2017], and show strong
correlations between our computed archetypes and accom-
panying video annotations. Furthermore, we show that the
archetypes are robust across subjects, which allows us to pre-
dict neuronal response of new subjects.

We make the following specific contributions in this paper:

e We formulate our problem of deconvolving mixed re-
sponses from brain fMRI images in the framework of

archetypal analyses (AA).

We use AA on a naturalistic viewing dataset from [Chen
et al., 2017] to find responses that are characteristic/
unique to scenes and similar across individuals.

We show that connectomic features in our new frame-
work are strongly correlated with visual/ textual features
derived from our audio-visual excitation.

We demonstrate the use of our AA framework to pre-
dict neuronal responses in new subjects (individuals who
have not watches Sherlock).

Finally, we use our AA framework to predict neuronal
responses to repeated stimulus in the same subject (how
do we expect the brain to respond when the individual
watches the episode a second time).

In each of these cases, we use rigorous methematical and sta-
tistical models to validate all of our conclusions.

2 Method

We present a brief overview of archetypal analysis and put it
in context of other common factor analysis methods. We then
model our problem as one of finding relevant archetypes that
are descriptive of shared neuronal responses across individu-
als.

2.1 Archetypal Analysis: Preliminaries

Archetypal analysis (AA) of a set of data points in a high-
dimensional feature space, represents each data-point as a
convex mixture of “pure” archetypes — feature vectors that
correspond to extremal representatives in the input [Cutler
and Breiman, 1994]. These extremal representatives can be
thought of as entities that have specialized themselves to pure
functions manifest in data.

AA can be viewed as an instance of factor analysis; in the
same general class as Principal Component Analysis (PCA),
Singular Value Decomposition (SVD), and k-means clus-
tering. Given a matrix A € R™*P and a mixing matrix
M € RP*™ these methods minimize the following objective
function:

min

)

|IX — AM||p (1)
The specific constraints on matrices A and M distinguish
these methods. In PCA, A is constrained to be orthonormal;
in k-means, each row of M is constrained to have all zeros,
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except a single entry, which is 1 (the cluster the correspond-
ing entity is assigned to). Archetypal analyses constrains
columns of A to be corners of the minimal polytope that en-
velops the input dataset, and rows of matrix M to be positive
and sum to 1. These constraints on A and M lend themselves
to intuitive interpretations. Matrix A can be viewed as the
matrix of maximally specialized entities in the input dataset
and M as a convex combination of these entities. Formally,
we can write the objective function of AA as:

min
)

s.t.

IX — AM][r

mi; > 0i={1,...m},j={1,...,n}, (2)
Zm*7k= Lk={1,...,n}
k

Archetypes themselves can be viewed as mixtures of data-
points. We can model them as convex combination of data-
points, i.e., A = XC,¢;; > 0,>, ¢k = 1,Vi,7,k. Our
problem then reduces to one of finding matrices C and S that
minimizes the error:

X — XCM]|¢

arg min
)

s.t. Cl]20722{1,m},j:{17,n}7

ch7*=1,]€=1,...
k

ml] 2072:{1771}7]:{177}7}’

Zm*,k = ]-ak - {Lap}
k

7n7

3)
In this formulation, we need to estimate both C and M. An
Alternating Least Squares method can be used to iteratively
improve the estimates [Cutler and Breiman, 1994]. Under
weak constraints on data, AA has been shown to be unique,
and can be efficiently computed using Principal Convex Hull
Analysis (PCHA) [Mgrup and Hansen, 20121, which we use
in this paper. We summarize other AA algorithms in Section
4.

2.2 Technical Approach

The observed neuronal response to a complex stimulus, as
observed in a functional MRI, results from an overlay of ba-
sic responses to individual components of such stimuli. For
instance, inputs in naturalistic viewing experiments are typi-
cally audio-visual in nature. Hence, it is reasonable to expect
both auditory cortex and visual cortex to be active during the
course of the experiment. Since the two areas of the brain
are physically distinct, it is straightforward to decouple the
two responses and reason about each of them separately. The
more non-obvious inference involves the decoupling, or de-
convolution of neuronal activity when the constituent com-
ponents are not easy to identify. The goal of our work is to
find meaningful constituent signals (or factors) for a natural-
istic viewing stimulus. To do this, we show that our analysis
pipeline yields factors that are strongly correlated with mental
states of viewers, as encoded in the frame-by-frame manual



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

video annotation.

We preprocess functional MRI data so that it is de-noised
and corrected to account for various factors such as physio-
logical differences, head motion, and magnetic field inhomo-
geneity of MRIs. The images are then co-registered and nor-
malized to a standard space. We describe the data cleaning
process, as well as the dataset in Section 3.1.

Let |v| denote the number of voxels (3D pixels) in each
denoised functional image in the dataset. Functional MRIs
can be abstracted as groups of time-series signals — one signal
per voxel. Let ¢ denote the number of time-steps. Then, the
matrix X € RI?I** represents the functional MRI. As the user
is being exposed to naturalistic data such as videos or audio
playbacks, we break the session into epochs. These epochs
correspond to scenes of a video, or chapters of audio books.
For epoch e, we represent the corresponding fMRI matrix as
matrix X, € RI?I¥t where t. is the number of time-frames
in the e-th epoch. In this notation, our problem now becomes
ming, m, ||Xe — X CsM;||r. However, our goal is to find
archetypes that are persistent across frames of a scene across
all subjects. To achieve this, for a given epoch e, we stack the
frames from all (n) subjects into one population matrix X, €
RIVIX(tex) and solve Y7 | minx, ., [|Xe — X CeM,||5.
A schematic representation of the method is shown in Figure
1

We find archetypes for each of the X, matrices. For conve-
nience, we denote the archetypes by A, (i.e, A, = X.C,).
For each column of Z., we use the closest column in A, as
its proxy.

“

Here, P, € RIVIX(texn) We define “dominant archetypes”
for each time-point as the archetype that was closest to most
subjects at that time-point. The matrix of these dominant
archetypes is the archetypal response to a given stimulus, as
shown in Figure 2.

We note that in this formulation, we consider each scene in-
dependent of all other scenes. This simplification works well
in practice, since sustained neuronal response over the course
of a few continuous time frames (but within one scene) are
captured. Stated otherwise, images with thousands of time-
points are not well approximated using a small number of
archetypes because of their inherent diversity. At the same
time, increasing the number of archetypes does not neces-
sarily mean that the archetypes are interpretable. Therefore,
dividing the session into smaller epochs works well in real
datasets.

Pei = argminAEj ||X€i - A€j||2

3 Results

We describe the dataset — the expermental design, image ac-
quisition protocol, pre-processing and choice of Regions of
Interest (ROIs). We then present three sets of results. First,
we show that the factors corresponding to our archetypes
are representative of neuronal responses across subjects. We
then show that these archetypes encode information that is
strongly correlated with video annotations. Finally, we show
that shared archetypal response can predict neuronal response
of new subjects.
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Figure 2: Visual representation of the computation of dominant
archetypes We compute the proxy matrix P, for epoch e and then
find the closest archetype for each time-frame of each subject. The
consensus across all subjects gives us the dominant archetype. This
final matrix is the archetypal neuronal response. We note that there
may be few gaps (e.g., at t = 4 in out data) due to a lack of consen-
sus across subjects.
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3.1 Dataset

We use the naturalistic movie viewing dataset described in
[Chen et al., 2017]. Briefly, the dataset consists of functional
MRIs of 17 participants who viewed 50-minutes of the BBC
show Sherlock. The entire show is divided into 50 scenes or
epochs. The time period of each epoch was decided on the
basis of various factors such as change of location, shift in
context, and arrival or departure of characters.

After watching the show, the subjects were asked to re-
call the episode from memory to the best of their ability.
The subjects were allowed to recall the scenes out of or-
der, but were asked to describe all the details that they re-
membered. The 3D fMRI images were sampled every 1.5s,
with isometric voxels of side 3 mm (i.e., the voxels were
3mm x 3mm x 3mm). The imaging data is accompanied
by movie related meta-data, such as textual transcript of the
entire episode, scene location and camera angle. Further, four
experts rated each visual segment on arousal (excitement or
engagement or activity level) and valence (positive or nega-
tive mood).

We define two regions of interest (ROIs) in the brain. First,
an antomical ROI covering the hippocampal region was se-
lected using the Harvard-Oxford Subcortical Atlas [Desikan
et al., 2006]. Additionally, we also use a Default Mode Net-
work (DMN) ROI that was constructed by identifying voxels
that are strongly correlated with the Posterior Medial Cortex
(PMC) across all subjects. The images were pre-processed
using fMRI Standard Library (http://fsl.fmrib.ox.ac.uk/fsl).
The pipeline included slice-time correction, motion correc-
tion, high-pass filter (with 140s cutoff), registration, and
alignment to the standard MNI 152 standard. The images
were then re-sampled to 3mm isotropic.

3.2 Archetypal Analysis Reveals Factors that are
Stable Across Populations

First, we establish that the archetypes are representative of
brain states in a cohort of subjects. For each epoch e of the
movie, we collect all corresponding fMRI time-frames from
all subjects into a matrix X, € RIVIX("xte) Here |v| denotes
the number of voxels in each frame, n denotes the number of
subjects, and ¢, denotes the number of time points in epoch
e. Each row of this matrix corresponds to the time series of
a voxel and each column-block corresponds to a subject. We
identify a small number of archetypes that are representative
of the population epoch matrices X using the Principal Con-
vex Hull Analysis algorithm [Mgrup and Hansen, 2012].

In Figure 3, we visualize the results for scene 50 of the
dataset by projecting to the two dominant singular vectors.
In this example, we have three archetypes at the three cor-
ners of the triangle and colors represent frame numbers. The
cluster of blue points indicates that the blue archetype is a
good representation of the first 25 time-points, whereas the
red archetype is a good representation of the last 5 data points.
In the figure, we have not included frame 17 as there was no
consensus. We define a consensus threshold of 70%, which
is to say that the archetypal representation of a frame is said
to be consistent across a population when at least 70% of the
subjects are closest to the archetype. In all, we found that
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93.32 % of all frames were stable across the cohort. This
result is important, as it lets us use the stable or dominant
archetypes as proxies for the actual neuronal response.
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Figure 3: An example of scene-wise archetypes for scene 50. The
clusters around the blue archetype show consensus across subjects
for frames 1-16 and 18-25. The red archetype has fewer frames
associated with it. This scene did not use the third archetype. For
the purpose of visualization, the archetypes were projected down
to two dimensions (singular vectors). The epochs corresponding to
scene 50 were given by [Chen et al., 2017]

3.3 Archetypal Analysis Identifies Correlated
Responses from Visual Stimulus

We now present our key result of this paper — video frames
with similar expert scores can be identified from functional
MRI data. As before, we construct the matrix X, for each
epoch. We find a small number of archetypes using PCHA.
Each column vector of X, is then assigned to its closest
archetype . We define the dominant archetype for time ¢,
to be the archetype closest to at least 70% subjects at t.,.
We restrict our analysis to continuous time-frames (at least 3
for visual persistence), that are assigned the same dominant
archetype and stack them into a matrix D.. This matrix repre-
sents segments of the video that are identical in terms of their
archetype assignment. We repeat the procedure for all scenes
to compile the aggregate matrix D formed by concatenating
D.s (D = D, |D,|...|Deg D).

We then find the Pearson Correlations (similarity) between
all pairs of vectors in D. The resulting matrix is shown in
Figure 4a, after thresholding (> 0.9) to retain only highly
correlated frames. We can see a strong block-diagonal struc-
ture in the matrix. Indeed this is expected because we retain
continuous blocks of time-points that were assigned the same
dominant archetype. To validate the hypothesis that highly
correlated archetypes are indicative of similar stimuli, we use
the expert ranked meta-data for the video. We z-score nor-
malize the frame-wise scores and compute the correlation be-
tween them. The resulting similarity matrix after threshold-
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Figure 4: Heatmaps showing (a) similarity of neuronal responses while viewing scenes and (b) similarity of annotations. (c) Overlap of
subfigures (a) and (b). The correlations were thresholded to highlight the similarity of block diagonal structure in the two matrices

ing is shown in Figure 4b. Note the similarity in the block
diagonal structure between the two distance matrices. The
Hadamard Product (or entry-wise product) of the two matri-
ces is shown in Figure 4c.

To quantify these results, we performed a statistical sig-
nificance test. We restrict ourselves to the common block
diagonal parts of the two matrices (i.e, the non-zeros in Fig-
ure 4¢). In over 1000 trials, we observe that the similarity of
frame annotations along the block-diagonal is higher than off-
diagonal entries. In fact, on average, the archetypal similarity
and average annotation similarity along the block-diagonal
are both > 0.9. In contrast, for the remaining elements, the
average archetypal similarity is —0.12 and for average anno-
tation similarity is 0.02.

3.4 Dominant Archetype Predicts Neuronal
Response

We show that the archetypes we choose as “dominant
archetypes” can generalize to new subjects. To do this, we
use archetypes as proxies for neuronal responses, and show
that they approximate the real signals well. This exploits the
fact that archetypes are representatives of function, therefore
they capture the general cognitive state of subjects.

We split the set of subjects into a training set of 12 sub-
jects and a test set of 5 subjects. As before, for each scene e,
we create the matrix X, and find representative archetypes.
We compute the frame-wise dominant archetypes as before
(i.e., most commonly occurring archetype for each frame).
We then create our predicted response matrix D, € RIVI*te,
For each of the test subjects, we compute the [-2 norm be-
tween their (actual) neuronal response and our archetypal
response. As a control (background distribution), we com-
pute the distance between the neuronal response of all other
archetypes. We find that we predict the correct response in
79.31 + 4.4% frames, across different runs of test subjects.
We fit the two (predicted response and the background) dis-
tributions to Standard Gaussians, as shown in Figure 5. The
dominant archetypes (blue) fit to a Gaussian with y = —0.79
and o = 0.45, whereas the background archetypes (red) fit to
the Gaussian parameterized by ¢ = 0.93 and o = 0.66.

612

-

p = -0.79 Dominant archetype
0.9 a=0.45 Other Archetypes -
0.8
0.7 p=093
2
g a= 0.66
5 0.6 ‘
e I
gos ‘ :
2 : :
£ 04 i i
o i I
& ! !
0.3 | |
i i
02 | :
i i
) I
0.1 i
|
I
.

Prediction Error

Figure 5: The error (2-norm distance) while using archetypes as
proxies to neuronal responses of subjects in test set. The errors
are fitted to Gaussian distributions. The blue distribution represents
the distance between fMRI response of test subjects and dominant
archetypes (across subjects in the training set) for the same set of
movie frames (i.e., the same visual stimulus). The red distribution
represents the distance between fMRI response of test subjects and
all non-dominant archetypes. The separation between the two distri-
butions demonstrates the power of our method.

3.5 Archetypes as Predictors for Repeated Stimuli

Finally, we show that archetypes that describe an epoch of vi-
sual stimulus can be used as predicted responses for the same
visual stimulus captured in another session. Recall that the
functional MRIs collected by [Chen et al., 2017] were col-
lected over the course of two sessions, with a short break be-
tween them. The first scene in both the sessions is an ani-
mated musical Let’s all go to the lobby. We use this limited
data in a test-retest framework: we perform archetypal anal-
ysis on the first (test) scene to find four archetypes that are
closest to each time-frame for each subject separately. Then,
we use the closest archetype as the predicted response and
measure distance to actual response (retest) of the same sub-
ject. We find that on average, 70.19 £ 8.21 frames across
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subjects in the retest scene are closer the corresponding clos-
est archetype of the test scene, than any other archetype.
Note that a random assignment would have a one-in-four
chance of success. A caveat for this final result is the lim-
ited amount of available data (functional MRI responses to
same scene), compounded by the fact that the first few frames
are usually dropped. However, this experiment suggests that
over longer test-retest sessions archetypal responses are re-
producible with strong statistical significance.

4 Related Research

We use archetypal analysis (AA) over other formulations of
factor analysis. We briefly discuss the other alternatives and
present our justification for AA. We also summarize other AA
methods, which find application in fMRI studies.

4.1 Rationale for Archetypal Analysis

To reiterate from Section 2.1, we do not use PCA/ SVD
due to the unnecessary orthogonality constraint and the ab-
sence of a non-negativity constraint. Independent Compo-
nent Analysis (ICA) is another popular method used in fM-
RIs studies. However, ICA also does not impose a non-
negativity constraint, and is therefore unsuitable for our pur-
pose. Non-negative matrix factorization (NMF) methods con-
strain (XC);; > 0. There are indeed connections between
NMEF and AA, which have been explored by [Damle and Sun,
2017] and [Javadi and Montanari, 2019]

Clustering algorithms such as k-means provide alternative
approaches. However, there are two arguments against such
methods: (i) hard cluster assignments can hide subtle infor-
mation. For instance, if a subject strongly experiences fear,
while also feeling somewhat curious clustering algorithms
can ignore the latter; (ii) Cluster centers are chosen on the
basis of (some notion of) distance from other points, but are
not indicative of cognitive states.

Finally, Generalized Linear Models (GLMs) present an-
other possible solution. Indeed, many fMRI studies success-
fully use GLMs in their applications. Briefly, the observed
fMRI response Y is expressed in terms of design matrix X
and coefficients 3 using a linear model., i.e., Y = XS + ¢,
where € is the estimated error. The design matrix encodes ex-
pected haemodynamic response to a given stimulus. These
methods can be used to model block experiments and other
simpler stimuli. Block experiments are carefully crafted
experiments with well defined on-periods and off-periods,
which makes the design matrix reasonably simple to estimate.
However, this is extremely hard to estimate in our applica-
tion of naturalistic viewing. While workarounds to this have
been implemented in [Hasson et al., 2004], the strength of
our approach is that it does not assume any knowledge of ex-
pected response. To the best of our knowledge, the only other
work that uses archetypal analysis on fMRI data is [Hinrich
et al., 2016]. Their method finds a common matrix C across
subjects, which creates a shared convex combination of data
points to create convex hulls for each of the subjects. In our
application, we find strong correlation with video annotation
(which is our goal) when we find archetypes that are common
across subjects (i.e., a shared A, = X.C,).
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4.2 Other Archetypal Analysis Methods

In this study, we have used Principal Convex Hull Analysis
(PCHA), as described by [Mgrup and Hansen, 2012]. How-
ever, other algorithms include Minimum Volume Simplex
Analysis (MVSA) [Li and Bioucas-Dias, 2008], where the
linear mixing model is solved by a sequence of quadratically
constrained subproblems to fit a minimumum volume sim-
plex, minimum-volume enclosing simplex (MVES) [Chan et
al., 2009], where the authors do not assume that pure data-
points are realizable, and alternating decoupled volume max-
min (ADVMM) and successive decoupled volume max-min
(SDVMM) [Chan et al., 2012], which constructs a simplex by
minimizing the Winter Criterion. A probabilistic framework
for AA was developed by [Seth and Eugster, 2016]. This
framework accommodates binary and integer vectors. Indeed,
many of these methods also perform well for our applica-
tion. Our objective is not to compare and contrast these meth-
ods, rather, our focus has been to model the problem so as to
make it amenable to archetypal analysis, and to demonstrate
its power in accurately characterizing neuronal response.

5 Conclusions and Discussion

Naturalistic stimuli are realistic inputs to the brain that model
many day-to-day situations, where complex multi-modal in-
puts are received and processed by the brain. Since the in-
puts are complex, the corresponding brain responses are also
mixed. In this paper, we present a novel method to decon-
volve brain-states using archetypal analysis. We show that
the computed archetypes are stable across populations, cor-
relate well with manually annotated video labels which en-
code higher-order cognitive states, and that they can be used
to predict neuronal responses of new individuals. An interest-
ing follow-up to our work is to find shared response between
the video viewing and recall sessions, which would allow us
to develop theories of common mechanisms while creating
memories and when recalling from memory.

While our experiments were focused on the dataset due to
[Chen er al., 20171, other datasets may yield interesting in-
sights. For instance, [Honey et al., 2012] release a dataset
in which subjects listen to the same audio-books in two dif-
ferent languages. AA on this dataset may reveal language-
independent archetypal responses to the storyline.

More generally, AA can be used as an alternative to In-
dependent Component Analysis. However, this may require
specialized algorithms that handle instrumentation-related
complexities that arise due to differences in MRI hardware
across sites, and the variance in neuronal responses for large
populations. Furthermore, it may be interesting to develop
and test multi-stage AA pipelines that find archetypes within
subjects, and to combine them into a group analysis, analo-
gous to the two-stage Generalized Linear Models.
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