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Abstract

The R, G and B channels of a color image gen-
erally have different noise statistical properties or
noise strengths. It is thus problematic to apply
grayscale image denoising algorithms to color im-
age denoising. In this paper, based on the non-local
self-similarity of an image and the different noise
strength across each channel, we propose a Multi-
Channel Weighted Schatten p-Norm Minimization
(MCWSNM) model for RGB color image denois-
ing. More specifically, considering a small local
RGB patch in a noisy image, we first find its nonlo-
cal similar cubic patches in a search window with
an appropriate size. These similar cubic patches are
then vectorized and grouped to construct a noisy
low-rank matrix, which can be recovered using the
Schatten p-norm minimization framework. More-
over, a weight matrix is introduced to balance each
channel’s contribution to the final denoising result-
s. The proposed MCWSNM can be solved via the
alternating direction method of multipliers. Con-
vergence property of the proposed method are also
theoretically analyzed . Experiments conducted on
both synthetic and real noisy color image dataset-
s demonstrate highly competitive denoising perfor-
mance, outperforming comparison algorithms, in-
cluding several methods based on neural networks.

1

Noise corruption is inevitable during the image acquisition
process and may heavily degrade the visual quality of an ac-
quired image. Image denoising is thus an essential prepro-
cessing step in various image processing and computer vi-
sion tasks [Chatterjee and Milanfar, 2010; Ye et al., 2018;
Wang et al., 2018b]; moreover, it is also an ideal test platform
for evaluating image prior models and optimization methods
[Roth and Black, 2005]. As a result, image denoising re-
mains a challenging yet fundamental problem. Early denois-
ing algorithms were mainly devised on the basis of filter and
transformation [Dabov et al., 2007b], such as wavelet trans-
form and curvelet transform [Starck er al., 2002]. State-of-
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the-art denoising methods are mainly based on sparse repre-
sentation [Dabov et al., 2007b], low-rank approximation [Gu
et al., 2017; Xie et al., 2016], dictionary learning [Zhang and
Aeron, 2016; Marsousi et al., 2014; Mairal et al., 2012], non-
local self-similarity [Buades et al., 2005; Dong et al., 2013a;
Hu ef al., 2019] and neural networks [Liu et al., 2018;
Zhang et al., 2017a; Zhang et al., 2017b; Zhang et al., 2018].

Current methods for RGB color image denoising can be
categorized into three classes. The first kind involves apply-
ing grayscale image denoising algorithms to each channel in
a channel-wise manner. However, these methods ignore the
correlations between R, G and B channels, meaning that un-
satisfactory results may be obtained. The second method is
to transform the RGB color image into other color spaces [D-
abov et al., 2007al. This transform, however, may change the
noise distribution of the original observation data and intro-
duce artifacts. The third type of method involves making full
use of the correlation information across each channel and
conduct the denoising task on R, G and B channels simulta-
neously [Zhang et al., 2017al.

Similar to the case of grayscale images, noise from each
channel can be generally, regarded as additive white Gaussian
noise. However, the noise levels of each channel are diverse
due to camera sensor characteristics and the imagery environ-
ment, such as fog, haze, illumination intensity, etc. Moreover,
the on-board processing steps in digital camera pipelines may
also introduce different noise strength assigned to different
channels [Nam et al., 2016]. This reveals the difficulties and
challenges faced by RGB color image denoising. Intuitive-
ly, if we apply the grayscale image denoising algorithm to
color images in a band-wise manner without considering the
mutual information and noise difference between each chan-
nel, artifacts or false colors could be generated [Mairal ef al.,
2008]. An example of this is presented in Fig.1. Here, we
apply a representative low-rank-based method, WSNM [Xie
et al., 2016], and our proposed method, MCWSNM (see Sec-
tion 2), to the Kodak PhotoCD Dataset!. It can be seen from
the figure that WSNM retains a large amount of noise and,
to some extent, introduces some artifacts. Thus, the issue of
how noise differences in each channel should be modeled is
key to designing a good RGB color denoising algorithm.

One well-known color image denoising method is color

"http://rOk.us/graphics/kodak/
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(b) Noisy (c) wsNMm (d) Mmcwsnm

(a) Clean

Figure 1: Denoised results of “kodim07” in the Kodak PhotoCD
Dataset with o, = 50, 0y = 5 and 0, = 20. WSNM performs
in a band-wise manner; MCWSNM jointly processes three channels
jointly and considers their noise differences simultaneously. (It is
best to zoom in on these images on-screen).

block-matching 3D (CBM3D) [Dabov er al., 2007a]. This
is a transformation field method that may destroy the noise
distribution across each channel and introduce artifacts. The
method in [Zhu er al., 2016] concatenates similar patches of
RGB channels into a long vector. However, this concatena-
tion operation regards each channel equally and ignores the
noise level differences across each channel. For a long time,
low-rank theory has been widely used in many fields, such
as recommendation system [Wang et al., 2018a], community
search [Fang et al., 2020b; Fang et al., 2020a], multi-out task
[Liu et al., 2019] and multi-label[Liu et al., 20171, etc.

Recently, based on the non-local self-similarity of an image
and SVD, several low-rank-based denoising algorithms have
been proposed, such as weighted nuclear norm minimization
(WNNM) [Gu et al., 2017] and WSNM [Xie et al., 2016].
The nuclear norm and Schatten p-norm [Xie et al., 2016] are
two surrogates of the rank function [Xu ef al., 2017al. In
WNNM and WSNM, singular values are assigned different
weights using a weight vector. It has been proven that WNN-
M is a special case of WSNM and that WSNM outperform-
s WNNM. Multi-channel WNNM (MCWNNM) [Xu et al.,
2017b] is an extension of WNNM from grayscale image to
color image that operates by introducing a weight matrix to
adjust each channel’s contribution to the final results based
on noise level.

In this paper, based on the low-rank property of the non-
local self-similar patches and the different noise strength
across each channel, we propose a multi-channel weighted
Schatten p-norm minimization (MCWSNM) model for RG-
B color image denoising. More specifically, considering a
small local RGB patch in a noisy image, we first find its non-
local similar cubic patches in a search window with an appro-
priate size. These similar cubic patches are then vectorized
and concatenated to construct a noisy low-rank matrix; then
Schatten p-norm minimization method is performed to recov-
er the noise-free low-rank matrix. Moreover, in order to make
full use of the redundant information across each channel, a
weight matrix is introduced to balance each channel’s con-
tribution to the final denoising results. This model can be
solved via alternating direction method of multipliers (AD-
MM) framework, and each variable can be updated with a
closed-form solution. In addition, the convergence property
of our proposed algorithm is also provided.
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Figure 2: Illusion of the grouped local patches.

2 Our Proposed Method
2.1 Method Formulation

The image denoising task involves recovering a clean image
x. from its noisy observation data y., where ¢ = {r, g, b}
is the index of the R, G and B channels. Here, we assume
that the noisy image is corrupted by additive white Gaussian
noise n, with o, = (o, 04, 03,), where o,., 04, 05 denote the
noise standard deviation in the R, G, B channels, respectively.
Mathematically, y. = x. + n.. Low-rank-based denoising
methods utilize the low-rank property of the grouped non-
local similarity patches; this group procedure is illustrated in
Fig.2. Given a noisy RGB color image y.., each local patch
of size s X s X 3 is extract2ed and stretched into a vector
y = (y) .y, 4y, )" € R, where y,,y,,y, € R® are
the corresponding patches in the R, G and B channels. For
each vectorized local patch y, we find its M most similar
patches (including y itself) by Euclidean distance in a proper
size search window around it. We then stack the M similar
patches vector column by column to obtain the noisy patch

matrix Y = X + N € RBSQXM, where X and N are the
corresponding clean and noise patch matrix, respectively. It
is clear that Y is a low-rank matrix and X can be recovered
using a low-rank approximation algorithm.

As a nonconvex surrogate of the rank function, the weight-
ed Schatten p-norm of a matrix Z € R™*"™ is defined as
1Z|w,s, = (Z;n:’f{m’”} wiof)%,o < p < 1, where w =
(w1, wa, . .. ,wmm{m’n})T is a non-negative weight vector
and o; is the i-th singular value of Z. The weighted nuclear
norm [Gu et al., 2017] is a special case of the weighted Schat-
ten p-norm when the power p = 1. It has been proven that the
Schatten p-norm with 0 < p < 1 is a better approximation of
rank function than the nuclear norm [Zhang et al., 2013].

Intuitively, when denoising a noisy color image, if a chan-
nel is heavily polluted, the contribution of this channel to the
final denoised results should be less, and vice versa. Thus,
a weight matrix W assigned to the noise strength of each
channel is introduced. Based on the low-rank property of
the non-local self-similarity, we propose the following multi-
channel WSNM (MCWSNM) model to recover the local low-
rank patch X:

p
w,Sy?

(D

where A > 0 is a tradeoff parameter used to balance the

min [W(Y = X) [ + A X]|
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Algorithm 1 minx [|Y — X||% + M| X[y, 5 via GST
Input: Y, weight {w; }/_,, A\, p, K
1: Singular value decomposition ¥ =
diag{o1,02,...,0.};
2: fori=1:7do X
30 799 (wi, A) = (2Awi(1 — p)) 7 + Aw;p(2Aw; (1 —

uxv?, ¥ =

)
4: if ‘0'1| < TpGST(U)i) then
5: (52‘ = 0;
6: else
7: (Sz(k) = |Ui 5
8: fork=0,1,..., K do
0: 0 = o] — wip(6( 1
10: k=k+1;
11: end for
12: 0; = sgn(ai)él(k);
13:  end if
14: end for
15: A:diag(51,52,...,5r);

Output: X* = UAVT

data fidelity term and the regularization term, while W =
diag(r, I, oI, 1), I € R5**5” i the identity matrix,
(T, T, 7o) = min{o,, 04,08}/ (07, 04, 0p).

2.2 Model Optimization

We utilize the variable splitting method to the MCWSNM
model (1). By introducing an augmented variable Z, model
(1) can be reformulated as a linear constrained optimization
problem. Thus, model (1) can be expressed as follows:

. 2 p —
min WY = X)p + Al Zl,s,, st X = 2. )

Because the two variables X and Z in problem (2) are
separable, this programming problem can be solved using the
ADMM framework. The augmented Lagrangian function of
(2)is

+TH(LT (X - 2))+ 51X - 2|3, 3

where L is the augmented Lagrangian multiplier and p > 0 is
the penalty parameter. By taking derivatives of £ with respect
to X and Z and setting the derivative function to be zero, the
variables can be alternatively updated as follows:

(1) Xp11
. 1

= (WTW + %"I)*%WTWY T %zk - 5Lo). @

(2) Z41
. 1
= argmin 2|12 = (Xp1 + — L) [F+AIZIE, 5, (5
z 2 P or
This is a weighted Schatten p-norm minimization problem.
It was noted in [Xie et al., 2016] that if the weights follow the

non-descending permutation, (5) can be equivalently trans-
formed into independent nonconvex £,-norm subproblems,

Algorithm 2 Solve MCWSNM via ADMM

Input: data Y, weight W, p, K1, u > 1, tol > 0;
1: Initialization: Xg = Zy = 0, Ly = 0, pg > 0, flag =
False, k£ = 0;
2: while flag == False do
3:  Update X by using (4);
4:  Update Z by solving (5);
5: Update L: L1 = Ly + pk(Xk—H — Zk+1);
6.
7
8

Update p: prt1 = pprs

k=k+1,
if (Convergence condition is satisfied) or (k > K;)
then
9: flag = True;
10:  end if
11: end while
Output: X*.

the global optima of which can be efficiently solved by the
generalized soft-thresholding (GST) algorithm. This is sum-
marized in Algorithm 1.

(3) Liy1 = Ly + pp(Xiy1 — Ziy1)-

(4) pr+1 = ppr, (> 1).

The above alternative updating steps are repeated until ei-
ther the convergence condition is satisfied or the number of
iterations exceeds a preset ;. The ADMM algorithm con-
verges when 1) || Xir1 — Ziyillr < tol, 2) || Xps1 —
Xl < toland 3) || Zx+1— Zi||r < tol are simultaneously
satisfied; here, tol is a small tolerance value. The complete
updating procedures are summarized in Algorithm 2.

2.3 Convergence and Complexity

Although the proposed MCWSNM (1) is nonconvex, the
global optimum also can be obtained for the limitations of
weights permutation in GST. From Fig.3, it can be seen that
[ Xk+1 — Xkll2, | Zk+1 — Zill2 and || Xpq1 — Zgg 1|2 si-
multaneously approach 0 during the iteration process. This
curve is based on a synthetic experiment on Kodak PhotoCD
Dataset and the test image is "kodimO1” (see Experiments
Section in detail).
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Figure 3: The convergence curves of || Xit1 — Xk|l2, || Zx+1 —
Zyll2 and || X411 — Zk41]|2 of image “kodim01” in the Kodak
Dataset.
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We next provide a theorem that theoretically guarantees the
convergence property of Algorithm 2.

Theorem 1. Assume that the weights w are sorted in a
non-descending order and the parameter py, is unbounded;
then the sequences { X}, {Zi} and {Ly} generated in Al-
gorithm 2 satisfy: (a)limg_ oo || Xk+1 — Zit1llr = 05
(b) limp 4 oo | Xpy1 — Xillr = 0; (¢) limg 400 || Zr11 —
Zi|lr =0.

Proof. We first prove that the sequence ;Lk} generated by
Algorithm 2 is upper bounded. U, AV,  denotes the SVD

of matrix —Lk + Xp+1 inthe £ + 1 1terat10n where Ay

is the d1agona1 singular value matrix. By using the GST al-
gorithm for WSNM, we have Z;; = UkAka , where
Ay, = {diag(6},0%,...,67%)} is the diagonal singular value
matrix after generallzed soft—thresholding operation. Then:

Zi) Il

Zi |l

| L1l = Li + pr(Xpg1 —
1

= pell— Ly + Xpt1 —
Pk

= pillUe Ak Vi — Up AV (13 = ol Ak — Axll%

= il Y rwi/pellE = llr Y will
i i

Hence, the sequence { Ly, } is upper bounded.

We then prove that the sequence of the Lagrange function
{L(Xk+1, Zr+1, Li+1, pr+1)} is also upper bounded. The
inequality £(Xy 41, Zr+1, L, pr) < L(Xk, Z, Ly, i) al-
ways holds since we have the globally optimal solution of X
and Z in their corresponding subproblems (step 3 and step 4
in Algorithm 2. Based on the updating rule of L, it yields

L(Xkt1, Zys1, Lig1, prs1)
= W (Y — Xip )7 + 11 Zis1lll,

k
 (Lign, Xiir = Zia) + 252 Xy = Zia |
= L(Xkt1, Zit1, L, pi) + (L1 — L, X1 — Zgya)
k1 — Pk
+ P X~ Zien [
L — L
= L(Xkt1, Zk+1, L, px) + (Lig41 — Ly, %)
P11 — Py L1 — Ly
ML LY B
Pk

+
= L( X441, Ziy1, Li, pr) + pk+217ppk”Lk+l Li| 3.

3

Since { L} is upper bounded, the sequence { Ly 1 — Ly} is
also upper bounded. Denote by a the upper bound of { L1 —
Li} forall k > 0,ie. {Lxy1 — Lg} < a,Vk > 0. We
therefore conclude that

L(Xpy1, Zrs1, Ly, prs1)

k+1 T Pk
< L(Xns1, Zrsr, Li, pr) + PR 2

207

640

< L(X1,Z1, Lo, po) + a® Y50, Letatee

2p3;

= L(X1,Z1, Lo, po) + 0> S p 5ol

Pott
a? 00
< L(X1,Z1, Lo, po) + o > ko ﬁ

< +o00.

Thus, {£(Xk+1, Zk+1, Li+1, pr+1)} is upper bounded.

We next prove the sequences of { X, } and {Z},} are upper
bounded. Since {L(Xy, Zk, Lk, px)} and {L} are upper
bounded and

WY — X)lIF + | Zll%, S,
= L(Xk, Zy, L1, pr—1) — (Lie—1, X1, — Zy,)
Pk 1
1 X% — Z ||
= »C(kazkakahpkfl) —

Pi—1 L —Lip—1 9
- | I3

(Li—1,(Ly — Li—1)/pr—1)

[ Li—1]F —
2pk—1

L 2
:‘C(Xk’zk7Lk—l7pk—1)+ || k”F

and the sequence {W (Y — X},)} and { Z, } are upper bound-
ed. Since L1 = Ly + pr(Xp41 — Zr11), {Xi} is also
upper bounded. Thus, there exists at least one accumulation
point for { X, Zi. }. More specifically, we obtain that

. 1
hm | Xkt1 — Zksi1llp = lim —||Lgy1 — Lgllrp =0
k—+oo Pk

k—

and that the accumulation point is a feasible solution to the
objective function. Thus, equation (a) is proved.

Finally, we prove that the change of sequence { X} and
{Zk} in ad]acent iterations tends to be 0. For X} and
X = (Lk—Lk 1) + Zj, we have

m [ X1 — Xellr
k—o0

, 1
= lm [(WTW + 20 WIWY + 2z, - S Ly
c— 00

2
1
- (Lp — Ly—1) — Zi||F
Pr—1
— lim [(WTW + %I)_I(WTWY -~ WTwz,
—00
1 1
- iL’“) - E(Lk = Lig1)|r

< lim [[(WTW + %I)*l(WTWY —WTwz,
—00

1 1
—5Lellr + ——|[(Lx — Lx—1)|F
PE—1

=0.
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Since Zj 1 = pikLk — ,,%Lkﬂ + X}.41, we conclude that

lim ||Zk+1 — Zk”F

= lim ||—Lk — p—Lk+1 + Xi+1— ZillF

k—oo = Pk

= lim ||Xk+ Lk—l —Zyx + Xit1
k—o0 Pr—

1
- X — L _ 1+_Lk__Lk+1||F
Pk—1 Pk Pk
. Tw;
<1 X - X
< hmo ||Z \F+ [ X1 kl
+||p—Lk 1__Lk+ Lk+1||F—0

This completes the proof. O

The main computational cost in a single iteration of Algo-
rithm 2 consists of two parts. The first part involves updat-
ing X, in which the time complexity is O(max{s*M, M3}).
The second part involves updating Z. The predominant cost
of this updating is the SVD and the calculation of X™*. It-
s complexity is O(min{s*M, s2M?} + s2r*M). The costs
for updating L and p can be ignored. Therefore, the total
time complexity of our MCWSNM for solving problem (1) is
about O(K;M?).

3 Experiments

To illustrate the performance of the proposed MCWSNM, we
implement MCWSNM on synthetic and real color noisy im-
ages. We also compare the proposed method with several re-
cent proposed methods, including NC [Lebrun e al., 2015],
NCSR [Dong et al., 2013b], PGPD [Xu et al., 2015], M-
CWNNM [Xu et al., 2017b], DnCNN [Zhang er al., 2017al,
FFDNet [Zhang et al., 2018] and IRCNN [Zhang et al.,
2017b]. In more detail, NC is an online blind image denois-
ing platform, NCSR and PGPD are designed for grayscale
images and MCWNNM is a color image denoising method
while DnCNN, FFDNet, and IRCNN are three methods that
operate on the basis of convolutional neural networks. All the
parameters of the comparison algorithms are either optimally
assigned, or chosen as described in the reference papers.
Noise level of MCWSNM and most comparative methods
should be provided as parameters. In the synthetic experi-
mental case, the noise (o, 04, op) in the R, G and B channels
are assumed to be known. In the case involving real noise,
we utilize the noise estimation method outlined in [Chen et
al., 2015] to estimate the noise level of the noisy image for
each channel. We implement the grayscale denoising meth-
ods, NCSR and PGPD, on the color noisy images in a band-
wise manner with the corresponding channel noise level.

3.1 Synthetic Noisy Color Image Experiments

The Kodak PhotoCD Dataset is first utilized in our synthetic
experiments. It includes 24 color images, each of which is
either 768 x 512 or 512 x 768 in size. The noisy image is
generated by adding zero mean Gaussian noise with o, = 40,
04 = 20 and 0, = 30. In MCWSNM, we set the local search
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Figure 4: Line graph of the denoising results in Kodak Dataset.
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Figure 5: Denoised images of “kodim1” in Kodak PhotoCD Dataset
with o, = 40, o4 = 20 and o, = 30. ((a): Original, (b): Noisy,
(c): NC, (d): NCSR, (e): PGPD, (f): MCWNNM, (g): DnCNN, (h):
FFDNet, (i): IRCNN, (j): MCWSNM).

(b) Noisy

(a) Original (c) Nnc (d) Ncsr (e) pGPD

(h) FFDNet (1) IRCNN

(f) McwNNM

(g) DnCNN (j) MCcwsNm

Figure 6: Denoised images of cropped “kodim3” in the Kodak Pho-
toCD Dataset with o, = 40, o4y = 20 and o, = 30.

window size of each patch as 20, the similar patch number
M = 70, each patch size s = 6, K1 =10, K =4, c = 2V/2,
A=0.6,p=0.999 and p = 3.

The line graph of the PSNR results for MCWSNM and the
comparison methods are presented in Fig.4. It can be seen
from this graph that our proposed method outperforms the
other competing methods in most cases. Moreover, Fig.5 and
Fig.6 show the denoised results of "kodim1” and “kodim3”
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B>

(a) #1 (b) #2 (c) #3

(f) #6 (&) #7

(d) #4 (e) #5

(h) #8

i) #9 () #10

Figure 7: Ten noisy images in the CC Dataset.

(a) ot (b) Noisy (c) Nc (d) Ncsr (e) rGPD
(f) mcwnNM () DoeNN (h) FFDNet (1) reNN  (§) MCWSNM

Figure 8: Denoised images of cropped #7 in real Dataset CC.

in Kodak PhotoCD Dataset, respectively. Visual inspection
reveals that MCWSNM can obtain the best visual result and
clear texture information. Color artifacts are generated by
NCSR and PGPD, while NC over-smooths the image. While
MCWNNM, DnCNN, FFDNet and IRCNN can get a clean
image, some of the detailed information is lost compared with
the original image.

3.2 Real Noisy Color Image Experiments

We implement the WCWSNM on a real noisy color image
dataset, CC [Nam et al., 2016], to evaluate the method’s per-
formance. This dataset includes 11 static scenes. The noisy
images were captured in an indoor environment with differ-
ent cameras and camera settings. For each scene, 500 images
were taken using the same camera and camera settings. The
mean image of each scene was then calculated to generate
the noisy-free images, which were roughly regarded as the
ground truth (GT). As the size of the original image is very
large, 60 cropped smaller images with size 512 x 512 were
provided in [Nam et al., 2016]. In this paper, we select 10
cropped images (see Fig.7) to conduct the experiment.

For MCWSNM, we set the local search window size for
each patch as 20, the similar patch number M = 60, each
patchsize s =5, K1 =10, K =4,¢=2V2, A= 0.6,p =
0.999 and p = 3. Because the GT are provided, a quantitative
assessment of each method is accessible. PSNR results for
different cameras and camera settings are provided in Table
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Figure 9: Denoised images of cropped image #10 in the real Dataset
CC.
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Figure 10: The influence of changing p on denoised results under
different noise levels (o, 0g4,05) on 24 images in the Kodak Pho-
toCD Dataset.

1. It can be seen from the table that the proposed MCWSNM
obtains the highest PSNR value in most noisy images. Fig.
8 and Fig. 9 show the visual results of #7 and #10 images
in CC dataset, respectively. Compared with other methods,
MCWSNM gets the best visual effect. It not only remove the
noise completely, but also preserve the detailed information
effectively.
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Camera Settings # NC NCSR PGPD MCWNNM DnCNN FFDNET IRCNN MCWSNM
Canon 5D, ISO=3200 1 385689 37.8693 36.8979 40.8160 40.8445 40.6137 41.3212 42.1242
2 35.0985 34.7144 33.8614 36.5158  35.7199 35.6380 36.0826 35.8209
Nikon D600, ISO=3200 3 36.8310 36.4562 35.8916 38.9327 38.9287 38.7748 39.3098 37.9467
4 38.6322 36.3762 35.9296 40.1002  39.3217 38.7881 40.4201 40.4434
Nikon D800, ISO=1600 5 38.2259 36.8040 36.2972 39.4494  39.8094 39.5719 399118 40.0471
6 39.0023 37.3847 36.4443 423815 40.6930 40.2738 42.8365 41.9094
Nikon D800, ISO=3200 7 36.5622 34.2501 33.9318 39.5804  36.7582 36.2557 38.9257 41.5596
8 359500 33.8988 33.5135 36.7548  36.0972 35.8297 38.2784 37.8922
Nikon D600, ISO=6400 9 33.2295 31.1022 30.7797 36.5241  32.1810 31.9962 33.4272 38.2520
10 32.2609 30.6858 30.4058 32.2105 31.6635 31.4748 327171 32.4324

Table 1: PSNR results (dB) of real color image CC Dataset.

3.3 Analysis of Power p

It is necessary to analyze the most appropriate setting of pow-
er p for different noise levels (o, 04, 05). We utilize 24 im-
ages in Kodak PhotoCD Dataset to test the proposed MCWS-
NM with different p under different noise levels added to the
R, G and B channels. The results are presented in Fig.10. In
each subfigure, the vertical coordinate represents the average
PSNR value under a certain noise level, while the horizon-
tal coordinate denotes the values of p changing from 0.1 to
1 with interval 0.05. We use six levels in this test: o, =
{(10, 15, 20), (30, 35,40), . . ., (60, 65, 70), (80, 85,90)}. It
is clear from the histogram that at low and medium noise lev-
els, the best value for p is 1, while at a high noise level, the
best value of p is 0.1. This is mainly because, in the strong
noise case (which means more rank components of the data
are contaminated) highly ranked parts should penalized heav-
ily, while lower-ranked parts should be penalized less.

4 Conclusion

In this paper, based on the low-rank property of the non-local
self-similarity, we propose a MCWSNM method for color
image denoising. For noisy color images, which generally
hold different noise strength in each band, a weight matrix
assigned to the noise level of each channel is introduced in
order balance each channel’s the contribution to the final es-
timation result. MCWSNM can be efficiently solved via AD-
MM optimization framework. Theorem 1 theoretically an-
alyzes the convergence property of our proposed algorithm.
Experiments on synthetic and real datasets demonstrate that
the proposed method can obtain satisfactory results on the
color image denoising task.
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