
GestureDet: Real-time Student Gesture Analysis with Multi-dimensional
Attention-based Detector

Rui Zheng , Fei Jiang∗ and Ruimin Shen
Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

zhengr, jiangf, rmshen@sjtu.edu.cn

Abstract
Students’ gestures, hand-raising, stand-up, and
sleeping, indicates the engagement of students in
classrooms and partially reflects teaching quality.
Therefore, fast and automatically recognizing these
gestures are of great importance. Due to limited
computational resources in primary and secondary
schools, we propose a real-time student behavior
detector based on light-weight MobileNetV2-SSD
to reduce the dependency of GPUs. Firstly, we
build a large-scale corpus from real schools to cap-
ture various behavior gestures. Based on such a
corpus, we transfer the gesture recognition task into
object detections. Secondly, we design a multi-
dimensional attention-based detector, named Ges-
tureDet, for real-time and accurate gesture analy-
sis. The multi-dimensional attention mechanisms
simultaneously consider all the dimensions of the
training set, aiming to pay more attention to dis-
criminative features and samples that are impor-
tant for the final performance. Specifically, the
spatial attention is constructed with stacked dilated
convolution layers to generate a soft and learnable
mask for re-weighting foreground and background
features; the channel attention introduces the con-
text modeling and squeeze-and-excitation module
to focus on discriminative features; the batch at-
tention discriminates important samples with a new
designed reweight strategy. Experimental results
demonstrate the effectiveness and versatility of
GestureDet, which achieves 75.2% mAP on real
student behavior dataset, and 74.5% on public PAS-
CAL VOC dataset at 20fps on embedding device
Nvidia Jetson TX2.

1 Introduction
Student behaviors in real classrooms are an important part of
teaching quality assessment. Previous student behaviors de-
pend on the observations of teachers, which can hardly cover
all the students in classrooms. In this paper, we focus on de-
veloping a real-time student behavior analysis system, aim-
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Figure 1: Overview of the real-time student behavior analysis sys-
tem based on GestureDet. The whole system uses video frames
from recorded scenarios as the input. Then our proposed GestureDet
running on CPU or embedded devices outputs the detection results
for further analysis and visualization. Particularly, our GestureDet
is based on MobileNetV2 and three kinds of attention mechanisms
(batch attention, channel attention, and spatial attention) are fused.

ing to automatically recognize student behaviors and assist in
teaching quality evaluation.

To capture various gestures of student behaviors, we build
a large-scale corpus from 200 classrooms, 30+ schools, and
change the behavior recognition tasks into object detections,
where each behavior (hand-raising, stand-up and sleeping)
corresponds to one object.

For object detection, CNN-based algorithms have achieved
impressive results, which can be roughly divided into two
categories: two-stage detectors [Girshick et al., 2014; Ren
et al., 2015] and one-stage detectors [Liu et al., 2016;
Redmon et al., 2016]. Two-stage detectors utilize Region
Proposal Network (RPN) [Ren et al., 2015] as the first stage
to generate Region of Interests (RoIs) and these RoIs are fur-
ther refined through the detection head for better accuracy.
Although two-stage detectors have achieved state-of-the-art
results on the public object detection benchmark [Evering-
ham et al., 2010; Lin et al., 2014], they are too heavy for real-
life computational-constrained scenarios. On the other hand,
one-stage detectors directly predict bounding boxes and class
probabilities, which usually involve less computation. For
this reason, one-stage detectors are widely regarded as the
key to real-time detection [Redmon et al., 2016]. However,
there are still accuracy gaps compared to two-stage detectors
because of the large foreground-background imbalances and
aligned feature representations in one-stage detectors [Lin et
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al., 2017; Chen et al., 2019].
Although several works are proposed to improve the per-

formance of one-stage detector, few works focus on exploring
multi-dimensional attention mechanisms. There are several
reasons for introducing attention mechanisms to one-stage
detector. First, the importance of samples in each mini-batch
are not the same. One-stage detectors directly predict the
classification and localization results, which highly rely on
the training samples. It is crucial that such detectors pay more
attention to the important samples rather than overwhelmed
by those wrong or missing outliers in the dataset. Second,
SENet [Hu et al., 2018] has proved that extracting channel-
wise information is important for both classification and lo-
calization. Channel attention can improve the representation
ability of detectors and generate more effective features for
detection. Third, one-stage detectors face large background-
foreground imbalances due to the lack of region proposal
part. The detectors need to discriminate objects of interests
from numerous background regions. Thus, focusing more
on the foreground regions is extremely important. A mecha-
nism similar to region proposal part in two-stage detectors is
needed.

Based on the above discussions, we propose a multi-
dimensional attention-based one-stage detector, named Ges-
tureDet, and build a real-time student behavior analysis sys-
tem, shown in Fig. 1. The multi-dimensional mechanisms,
including batch attention, channel attention, and spatial at-
tention, are introduced to the classical one-stage detector,
MobileNetV2-SSD. First, considering that samples in each
mini-batch are not equally important, we propose a novel re-
weight strategy to put more focus on these important samples
(high IoU with ground-truth but low class confidence) and
suppress these outliers. Moreover, we adopt the context mod-
eling and squeeze-and-excitation modules for channel atten-
tion to generate more representative features. Finally, to solve
the background-foreground class imbalances, we use stacked
dilated convolutions to generate a soft weight mask for detec-
tion features, thus increase the foreground feature responses.

Our main contributions can be concluded as follows:
(1) We build a large-scale student gesture detection dataset,

including 70k hand-raising samples, 20k stand-up samples,
and 3k sleeping samples.

(2) We design a real-time student gesture analysis system
based on classical real-time detector MobileNetV2-SSD with
multi-dimensional attention mechanisms to improve detec-
tion performance with little overhead. A novel feature fusion
strategy is also proposed to further improve the detection per-
formance.

(3) We demonstrate our proposed methods both on our stu-
dent behavior dataset and public PASCAL VOC dataset to
show the effectiveness and versatility.

2 Related Works
With the fast development of deep learning, CNN has been
widely used in traditional vision tasks and achieved impres-
sive results. In this section, we briefly present the CNN-based
object detection and the attention mechanisms in CNNs.

2.1 CNN-based Object Detection
In recent decades, CNN-based object detectors greatly im-
prove the detection performances.

CNN-based Detectors. CNN-based detectors can be
roughly divided into two kinds: two-stage object detectors
(also called region-proposal based detectors) and one-stage
detectors. In two-stage detectors, R-CNN [Girshick et al.,
2014] is among the earliest CNN-based detectors. Since then,
numerous improvements have been proposed for better accu-
racy and faster speed. On the other hand, one-stage detec-
tors [Redmon et al., 2016; Liu et al., 2016] achieve faster in-
ference with competitive accuracy. In this paper, we present
GestureDet based on classical one-stage detectors.

Real-time Object Detection. Real-time object detection is
a huge challenge for CNN-based detectors due to the heavy
computation of deep convolution layers. One-stage detectors
are considered as the key to real-time detection due to the
simpler network design and faster inference speed. For ex-
ample, YOLO [Redmon et al., 2016] and SSD [Lin et al.,
2017] can run in real-time on GPU. Integrated with light-
weight backbone networks like MobileNet [Howard et al.,
2017], these light-weight one-stage detectors such as SSD-
lite [Howard et al., 2017], Tiny-YOLO [Redmon et al., 2016]
and Pelee [Wang et al., 2018], can achieve real-time inference
on mobile devices. In this paper, we use the most popular
real-time detector MobileNetV2-SSD [Sandler et al., 2018]
as the baseline and incorporate multi-dimensional attention
mechanisms to it.

2.2 Attention for Object Detection
Attention mechanism [Vaswani et al., 2017] was first pro-
posed in Nature Language Processing (NLP) tasks and has
been widely used in the following works. In general, attention
means focusing on the more important parts such as particular
locations or feature representations. Due to the effectiveness
of attention in NLP fields, there are several existing works in-
troducing attention mechanisms in computer vision tasks and
achieving impressive results.

Batch Attention. Recently, some hard example mining
strategies such as OHEM [Shrivastava et al., 2016] and Fo-
cal loss [Lin et al., 2017] are proposed to focus on these hard
samples for boosting detection performance. These hard sam-
ples are selected or re-weighted according to their loss val-
ues, higher loss value leading to larger weights. Although
these simple methods achieved impressive boosts on public
datasets, they cannot get optimal results on our student behav-
ior dataset due to some wrong and missing annotations. These
outliers usually affect the stability of the models since they
tend to have higher loss values and larger gradients. A recent
study [Cao et al., 2019] proposed the definition of prime sam-
ples, which means the most important samples for training an
object detector. And the main strategy is to assign higher
weights to those positive samples with higher IoUs with the
ground-truth objects. However, the prime samples are only
defined on positive samples and most samples in one-stage
detectors are negative samples.
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Figure 2: The overall architecture of our proposed GestureDet, which contains the feature fusion module and multi-dimensional attention
modules including batch attention, channel attention, and spatial attention.

Channel Attention. SENet [Hu et al., 2018] first explored
the relationship between channels in CNNs and won first
place on the public image classification challenge. The
Squeeze-and-Excitation (SE) block is proposed to improve
the quality of representations generated by the CNN back-
bones. Typically, SE blocks model the dependencies between
channels of the convolutional features and perform feature re-
calibration. This learnable mechanism can utilize global con-
text information to selectively emphasize informative features
while suppressing the less important ones.

Spatial Attention. Residual Attention Network [Wang et
al., 2017] first proposed combining residual modules and
attention modules to generate attention feature representa-
tions. ThunderNet [Qin et al., 2019] used the RPN output as
the soft-weight mask to generate re-weighted feature maps,
which can be seen as spatial attention in object detection.
However, spatial attention module in one-stage detectors has
been rarely studied.

3 Our Method
In this section, we first give a detailed introduction to the
overall architecture of our proposed GestureDet. Then we
elaborate on the strategies, including the feature fusion mod-
ule, and multi-dimensional attention mechanisms, which we
design for alleviating challenges in the real scenarios.

3.1 Overall Architecture
The overall network architecture of GestureDet is illustrated
in Fig. 2. GestureDet is based on MobileNetV2-SSD [San-
dler et al., 2018] with several improvements. Specifically, we
first propose a novel feature fusion module to enhance the
scale-invariant detection. Then the channel attention module
and spatial attention module are sequenced to strengthen the
original detection features, which assign learned soft weights
to different channels and spatial locations. We use the en-
hanced features to re-construct the feature pyramid for de-
tecting objects of various scales. Moreover, during the train-
ing process, we re-weight the samples in each mini-batch
according to the localization loss and classification loss and

put more efforts into training the selected important samples,
which we called batch attention.

3.2 Feature Fusion Module
Original SSD [Liu et al., 2016] used the outputs from dif-
ferent layers for predictions. However, SSD simply attaches
localization and classification branches to each level without
any feature fusion, which leads to the poor performance on
detection objects of various scales.

To solve the above-mentioned issues, we propose a novel
feature fusion module to aggregate multi-level spatial de-
tails and context information for more discriminative fea-
tures. The multi-level featuresC1, C2, C3 from MobileNetV2
backbone are resized into the intermediate size same to C2,
with nearest upsampling and stride-2-convolutions downsam-
pling. Then we apply 1x1 convolutions to each feature map
for squeezing the channels and reducing computation cost.
The aggregated feature map is then fed into the channel at-
tention module and spatial attention module to get more ro-
bust and discriminative feature responses. Finally, the after-
attention feature map is used to re-construct the feature pyra-
mid with opposite reshape operations, as shown in Fig. 2.

By leveraging both high-resolution spatial details at low
levels and semantic information at high levels, our proposed
feature fusion module effectively enhances the representation
ability of this shallow and thin backbone network. Moreover,
compared to the prior feature pyramid structure, our feature
fusion modules only involve non-parameter resize operation
and 1×1 convolutions, which are more computation-friendly.

3.3 Multi-dimensional Attention Mechanisms
CNNs extract hierarchical features from original images us-
ing convolution operators. Typically, the base data format
of the images and features is [N,C,H,W ], which denotes
batch, channel, and spatial (height, width) respectively. Orig-
inal CNNs extract batch, channel, and spatial information in
a unified way.

In this paper, we propose a multi-dimensional attention
mechanism including batch attention, channel attention, and
spatial attention to the original MobileNetV2-SSD for better
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Figure 3: Batch Attention. The white boxes denote the ground-
truth boxes, while boxes with other colors represent the predictions.
These predictions are re-weighted according to the classification
losses and localization loss.

detection performances. This comprehensive attention mech-
anism covers each dimension of the tensors ([N,C,H,W ])
and enables more discriminative features for detection. In the
following sections, we will give a detailed analysis of these
three kinds of attention modules.

Batch Attention
CNN-based detectors, including two-stage detectors and one-
stage detectors, are usually trained to classify and localize the
sampled regions. Therefore, the selection of these sampled
regions is crucial to the final detection results. Most detec-
tors simply treat these sampled regions as equally important
and are trained to optimize the average loss among these sam-
ples. However, in our scenarios, most of the sampled regions
are located in the background, which leads to an inaccurate
average loss for poor optimization.

Inspired by the prior works, we propose a batch attention
mechanism that combines hard negative mining and positive
samples re-weighting. Specifically, instead of using all the
negative examples, we sort them using the highest confidence
loss for each default box and pick the top ones so that the ratio
between the negatives and positives is at most 3:1, following
the hard mining practice in original SSD [Liu et al., 2016].

And the positive samples are re-weighted according to the
localization loss and classification loss, as shown in Eqn. (1).
In general, we want the detectors focusing more on samples
that have higher IoUs with ground-truth objects but have low
confidence scores. These truly hard examples are more im-
portant and have more possibilities to have objects we inter-
ested in. Moreover, the classification losses represent the con-
fidence scores of objects, while the localization losses are a
good estimation of IoUs with ground-truth. We give higher
weights to samples with low localization loss and high clas-
sification loss to avoid these important samples being filtered
by the Non-Maximum-Suppression post-processing. The re-
weight strategy is shown in Eqn. 1, where l

′

cls and l
′

loc denote
the original classification loss and localization loss of each
sample. We choose α and β as 0.5 for simplicity and more
hyper-parameter combinations will be explored in the future
work.

wi = α

1
l′loc∑n

k=1
1

l′loc

+ β
l′cls∑n
k=1 l

′
cls

(1)

Figure 4: Channel Attention. The feature maps are shown as feature
dimensions, where C×H×W denotes a feature map with channel
number C, height H and width W.

⊕
denotes broadcast element-

wise addition.

With the proposed re-weight strategy, the classification loss
(Lcls) can be rewritten as Eqn. 2, where n and m are the
numbers of positive and negative samples respectively, c and
ĉ denote the predictions and targets. Following the practice
in PISA [Cao et al., 2019], we also normalize the weights to
remain total classification losses unchanged. CE represents
Cross Entropy loss here.

Lcls =
n∑

i=1

w′
iCE (ci, ĉi) +

m∑
j=1

CE (cj , ĉj) (2)

w′
i = wi

∑n
k=1 CE (ck, ĉk)∑n

k=1 wkCE (ck, ĉk)
(3)

What’s more, most object detectors use a multi-task loss
to solve the classification and regression (localization) tasks
simultaneously. This leads to the issues of possible range in-
consistencies among classification and regression losses. A
technique to solve it is to assume classification and regression
tasks are correlated and combine these two loss terms. In this
paper, with our designed batch attention mechanisms shown
in the above equations, the classification and regression losses
are explicitly linked together. Thus, these two branches can
get additional supervision from others and enable extra gra-
dient flow, which benefits the training of detectors.

Channel Attention
To indicate the channel-wise feature dependencies, a chan-
nel attention mechanism is designed followed the practice in
SENet, as shown in Fig. 4. First, a global average pooling is
adopted to model the global context. Then, we use 1×1 con-
volutions with LayerNorm to estimate the relative importance
between channels. The main difference between our chan-
nel attention module and SE block is that we use broadcast
element-wise addition to generate the final enhanced features
rather than sigmoid activation and multiplication in the SE
block.

Spatial Attention
Spatial attention in object detection aims to filter unimportant
background and focus more on the foreground objects. As
we mentioned above, the region proposal part in two-stage
detectors can be viewed as a special kind of spatial attention
mechanisms and is the key to the impressive detection per-
formances. Due to the lack of the region proposal part, one-
stage detectors face extremely imbalanced classification and
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Figure 5: Spatial Attention. The convolution layers with gradually
increasing dilation rates are sequentially stacked to generate the at-
tention weight mask. Moreover, a residual shortcut is used to con-
struct identity mapping.

perform poorly compared to two-stage detectors. To make
matters worse, as GestureDet utilizes a light-weight backbone
network and the small input image, it is harder for such thin
model to learn a proper feature distribution. Thus, we softly
re-weight the feature maps with learned weight masks to ad-
dress the extreme background-foreground imbalances.

Inspired by the recent state-of-the-art semantic segmenta-
tion model DeepLabV3 [Chen et al., 2017], we propose to use
stacked dilated convolutions with gradually increasing dila-
tion rate for generating the learnable weight masks. Suppose
the original feature map is F and θ(·) denotes the stacked
dilated convolutions, the output feature map FSP is defined
as:

FSP = F · (1 + sigmoid(θ(F ))) (4)

As shown in Fig. 5, convolution layers with increasing di-
lation rates (1, 2, 4, 8) are sequentially stacked to capture both
local and global context. The last convolution layer will out-
put a same-size mask with attention weights. Then this mask
is fed into a sigmoid activation to constrain the value within
[0, 1] and estimate the relative importance between each spa-
tial region. The spatial attention module will output the same-
size soft attention weights, which are then multiplied with the
original feature value for better feature distributions. There-
fore, during the training process, these attention masks can be
used to distinguish foreground features from numerous back-
ground features. What’s more, to stabilize the earlier training
process with initial noisy attention weights, we add a resid-
ual shortcut to combine the original features with the after-
attention features.

Our proposed spatial attention module can not only alle-
viate the imbalanced classification in one-stage detectors but
also achieve more focused and effective training due to the
re-weighted backward gradients.

4 Experiments
To demonstrate the effectiveness and versatility of our pro-
posed GestureDet, we conduct extensive experiments both on
our student behavior dataset and the public PASCAL VOC
dataset. For both datasets, we show the results with metrics
of PASCAL VOC [Everingham et al., 2010]: mean Average
Precision (mAP).

baseline ablations ours

+feature fusion? – X X X X X
+batch attention? – X X

+channel attention? – X X
+spatial attention? – X X

mAP (%) 70.7 71.6 74.5 72.7 74.7 75.2

Table 1: Experiment results of baseline and our methods on our stu-
dent behavior dataset.

4.1 Implementation Details
We implement on PyTorch library. The detectors are trained
end-to-end on one GPU using SGD with a weight decay of
0.0001 and a momentum of 0.9, following the settings in prior
works. The input image resolution is 300×300 pixels for ef-
ficiency and the batch size is set to 64 images. The data aug-
mentation strategies are the same as the original SSD [Liu et
al., 2016]. The learning rate starts from 0.002 with warm-up
epochs and decays exponentially every step. Note that, we do
not use other tricks like multi-scale training and better post-
processing like Soft-NMS. What’s more, we use network
inference time (without pre-processing and post-processing)
tested on GPU (1080Ti), CPU (Intel i7-8700K) and embed-
ding devices (Jetson TX2) to evaluate the inference speed of
models and FLOPs (floating point operations) to evaluate the
computation cost of models.

4.2 Experiments on Our Student Behavior Dataset
We perform our proposed GestureDet on the student behav-
ior dataset, including 70k hand-raising samples, 20k stand-
up samples, and 3k sleeping samples. The behaviors we
captured are collected from 1080P cameras in 30+ different
primary and middle schools in Minhang distinct, Shanghai,
China.. Our dataset are really challenging due to the various
scales, large class imbalances, and less high-quality annota-
tions. There are large scale variations among different behav-
iors of almost 25 times, such as hand-raising (about 40×40
pixels) and standing (about 200×200 pixels). To make mat-
ters worse, nearly 70% of the objects in our dataset only oc-
cupy less than 0.5% part of the whole image, which intro-
duces the challenge of detecting very small objects.

We use 29k images (out of 40k images in total) for training,
then validate performances on the rest 11k subset. Original
MobileNetV2-SSD is used as the baseline for comparison to
demonstrate the effectiveness of our proposed methods.

As shown in Table 1, our proposed GestureDet achieves
better performance than the baseline. The feature fusion
strategy already improves the baseline to 71.6% mAP. Based
on this higher result, the multi-dimensional attention mech-
anisms still outperform by 3.6% mAP. From the ablations
columns, we can see continuous improvements of our multi-
dimensional attention mechanisms. The batch attention and
channel attention significantly improves the mAP by 3.8%
and 2%, respectively. Moreover, the batch attention module
is only performed on the training process and the channel at-
tention module introduces little computation overhead. With
the spatial attention module, the mAP is increased by 4% with
a slightly higher computation cost.
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Model GPU (ms) CPU (ms) Jestson TX2 (ms)

baseline 4.5 240.7 54.0
+feature fusion 5.9 253.2 54.4

ours 7.3 259.9 54.9

Table 2: Inference time tests of baseline (MobileNetV2-SSD) and
our methods on our student behavior dataset.

(a) Detection results of baseline.

(b) Detection results of ours.
Figure 6: Examples of detection results obtained on some images
from the test-set. The top and bottom rows show the detection results
of the baseline and our methods, respectively. Compared with the
results of baseline, our methods can detect more behaviors.

Table 2 shows that our proposed GestureDet can still
achieve a fast speed on CPU and embedding devices (Nvidia
Jetson TX2), which shows a more suitable accuracy/speed
trade-off for real classrooms. Note that, the inference time
only calculates the network forward time on GPU or CPU
without pre-processing and post-processing time for a fair
comparison. The image-preprocessing and post-processing
are usually executed asynchronously with other tasks on
CPU. Thus, the actual inference speed should be very close
to our test results.

4.3 Experiments on PASCAL VOC
PASCAL VOC [Everingham et al., 2010] dataset consists
of natural images drawn from 20 classes. The detectors are
trained on the union set of VOC 2007 trainval and VOC 2012
trainval, and tested on VOC 2007 test. The results are shown
in Table 3. Note that, for the comparison algorithms, experi-
mental settings are the same as in their publications.

GestureDet outperforms original MobileNetV2-SSD with
2.2% mAP. Moreover, our proposed GestureDet significantly
surpass prior state-of-the-art light-weight one-stage detectors
such as Tiny-YOLO [Redmon et al., 2016], Pelee [Wang et
al., 2018] and Tiny-DSOD [Li et al., 2018] while maintain
similar computation cost. Furthermore, GestureDet achieves
comparable results with state-of-the-art one-stage object de-
tectors such as SSD300 [Liu et al., 2016] and YOLOv2 [Red-
mon and Farhadi, 2017], but significantly reduce the compu-
tation cost and accelerate the inference.

Model Input MFLOPs mAP

SSD300 [Liu et al., 2016] 300 × 300 31750 77.5
YOLOv2 [Redmon and Farhadi, 2017] 416 × 416 17400 76.8

Tiny-YOLOv2 [Redmon and Farhadi, 2017] 416 × 416 3490 57.1
MobileNet-SSD [Howard et al., 2017] 300 × 300 1150 68.0

Pelee [Wang et al., 2018] 304 × 304 1210 70.9
Tiny-DSOD [Li et al., 2018] 300 × 300 1060 72.1

MobileNetV2-SSDLite (baseline) 300 × 300 1480 72.3
GestureDet (ours) 300 × 300 1830 74.5

Table 3: Experiment results on VOC 2007 test. GestureDet achieves
superior performances with similar computation cost.

5 Conclusion
Privacy Issues. One of the potential issues of analyzing
classrooms is privacy protection. In our system, we try our
best to balance between positive use cases and abuses. Firstly,
these behavior samples in the dataset are captured from open
excellent courses in 30+ different schools in our distinct,
where the teachers and students are informed and agreed that
the classes are recorded and analyzed by experts of schools.
And we gain the permissions from schools and parents to an-
alyze behaviors of students and teachers to assist teaching
quality estimation. Secondly, the dataset cannot access with-
out permission to avoid possible leakage. Thirdly, our system
only provides masking data rather than personalized data for
school administrators. We will always put privacy protection
as our primary concerns and are open to public scrutiny.
System Performances. In this paper, we propose a real-
time detector named GestureDet with multi-dimensional at-
tention mechanisms, including batch attention, channel at-
tention, and spatial attention. These three kinds of atten-
tion modules are proposed and fused to the classical real-
time detector MobileNetV2-SSD. The batch attention is con-
structed with re-weighting the samples in each mini-batch
and put more effort into these important samples. The chan-
nel attention consists of context modeling and squeeze-and-
excitation blocks for more discriminative feature representa-
tions. The spatial attention uses stacked dilated convolutions
to generate a learnable weight mask for addressing the ex-
tremely imbalanced classification in one-stage detectors. Ex-
periments demonstrate the effectiveness and versatility of our
proposed methods both on real classroom scenarios and the
public PASCAL VOC benchmark. Our proposed GestureDet
can run at a fast speed on CPU or embedded devices.
Future Work. In the future, we would like to further im-
prove the detection performances with other attention mech-
anisms and integrate incorporate more student behaviors into
our system to help better understand the teaching status.
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