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Abstract
Target localization and proposal generation are two
essential subtasks in generic visual tracking, and it
is a challenge to address both the two efficiently.
In this paper, we propose an efficient two-stage ar-
chitecture which makes full use of the complemen-
tarity of two subtasks to achieve robust localization
and high-quality proposals generation of the target
jointly. Specifically, our model performs a novel
deformable central correlation operation by an on-
line learning model in both two stages to locate new
target centers while generating target proposals in
the vicinity of these centers. The proposals are re-
fined in the refinement stage to further improve ac-
curacy and robustness. Moreover, the model bene-
fits from multi-level features aggregation in a neck
module and a feature enhancement module. We
conduct extensive ablation studies to demonstrate
the effectiveness of our proposed methods. Our
tracker runs at over 30 FPS and sets a new state-of-
the-art on five tracking benchmarks, including La-
SOT, VOT2018, TrackingNet, GOT10k, OTB2015.

1 Introduction
Visual object tracking is a fundamental problem in computer
vision which is widely applied in automatic driving and video
surveillance, etc. Given an initial bounding box of an arbi-
trary target in the first frame, it aims to track the target auto-
matically in every frame that follows. The tracking problem
is usually decomposed into a classification task for the target
localization and a regression task for the target state estima-
tion. Commonly, the target location and state are represented
as the target center and a bounding box.

Mainstream trackers perform tracking via a template-
matching strategy which is well-performed in both speed and
accuracy. Following the modern trend in object detection, we
integrate a general pipeline for template-matching trackers in
Figure 1, which uses two siamesed branches and two separate
heads for the classification and the box estimation in a track-
ing problem. The template-matching methods store the target
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Figure 1: An overview of a general template-matching pipeline in a
Siamese-like way. Sharing the same backbone and neck as the fea-
ture extractor, a test branch is used for tracking the test frame while
a reference branch stores template from reference frames. Some up-
date methods are employed in online training trackers. The classifi-
cation (localization) and the proposal boxes regression (estimation)
are performed separately in subnet heads. The correlation operation
between the feature map x and the target model is the core operation
in these trackers.

appearance information in a template formulate the tracking
problem by learning to generate a score map by correlation
operations between features representations of the template
and the search region. However, most trackers overlook the
inherent relation between target localization with discrimina-
tive features and target shape estimation, and try to optimize
two subtasks separately. It results in some inevitable short-
falls, e.g., the lack of discriminative abilities in Siamese-like
trackers [Li et al., 2018a] and the lack of box estimation ca-
pacities in Discriminative Correlation Filter (DCF) methods
[Danelljan et al., 2017].

To overcome aforementioned limitations, we propose a
novel architecture to learn target localization and proposal
generation jointly in an online learning manner. Inspired by
the recently proposed RepPoints [Yang et al., 2019], we intro-
duce a deformable central correlation operation, referred as
DCC, to exploit the relation between discriminative features
for target-background classification and spatial detailed fea-
tures for target state estimation. And we propose a two-stage
process in which we further refine the proposal and improve
robustness. To meet the requirements of the model for both
fine-grained target representations and sematic features, we
design a balanced neck and an effective feature enhancement
module to aggregate multi-level features. Our final tracking
architecture is a unified multi-task network with end-to-end
learning methods. The main contributions of this paper are
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Figure 2: An overview of our tracking architecture. During inference, a test frame is input to the test branch (bottom left), and proposal
bounding boxes are the outputs of a two-stage generation and refinement process with DCC1 and DCC2 which refer to deformable central
correlation in stage 1 and 2. The final output is the proposal with the highest IoU score or predicted score.

three-fold:

• Online learning models with novel deformable central
correlations are developed to perform robust target lo-
calization and accurate proposal generation jointly;

• An efficient two-stage architecture is designed for more
precise box estimation;

• A balanced neck and a feature enhancement module are
proposed to extract aggregated features for two-stage
tracking.

With the above contributions, our proposed tracker, re-
ferred as TLPG-Tracker, establishes a new state-of-the-art in
comprehensive experiments while possessing in real-time at
over 30 FPS on five challenging benchmarks: LaSOT [Fan
et al., 2019], GOT10k [Huang et al., 2018], VOT2018 [Kris-
tan et al., 2018], TrackingNet [Muller et al., 2018], OTB-100
[Wu et al., 2015]. We further provide an extensive experiment
to analyze the impact of proposed component with other ex-
isting methods.

2 Related Work
Most of the modern trackers are performed in a template-
matching strategy including DCF approaches [Danelljan et
al., 2017; Bhat et al., 2018] and Siamese networks [Bertinetto
et al., 2016; Li et al., 2018a]. An effective correlation op-
eration is introduced into visual tracking by seminal work
MOOSE [Bolme et al., 2010] to match an explicit template
with a search patch with learnable weights in the frequency
domain. After the rise of deep learning, DCF-based methods
with deep sematic features can achieve impressive robustness
in target localization. However, they are hard to make full use
of the fine-grained features to estimate target shapes.

In contrast to DCF, the recent Siamese networks
[Bertinetto et al., 2016; Li et al., 2018a], which computes
cross-correlation similarities between a template and a search
region in an embedding space, achieve high accuracy and fast
tracking speed. Many Siamese-based trackers can balance
target classification and state estimation tasks with their ex-
tensive architectures in Figure 1. SiamRPN [Li et al., 2018a]
imports an anchor-based region proposal networks from ob-
ject detection tasks, and its extensions [Zhu et al., 2018;
Li et al., 2019] show efficiency of bounding box regres-
sion with better discriminative abilities. To gain more ac-
curate box estimation, ATOM [Danelljan et al., 2019] em-
ploys an IoU-Net [Jiang et al., 2018] based module to predict

Intersection-over-Union (IoU) overlap and select best pro-
posal boxes. More recently, an online learning discriminant
models with Siamese-based structure are proposed [Bhat et
al., 2019] to make up for the deficiency of discriminative abil-
ities in Siamese-based methods. Overall, they still optimize
the classification and estimation separately.

3 Method
In this work, we develop a novel joint learning architecture to
exploit the relation between target localization and proposal
generation with two main principles: (1) the most discrim-
inative features of a target usually locate in the vicinity of
the target center while the target bounding box is supported
by fine-granted features near target borders to fit its shapes;
(2) the target-background classification task and the proposal
generation and regression task are complementary in track-
ing. In terms of the general pipeline, we split our Siamese-
like network into a feature exactor with a neck module, on-
line learning models which perform target localization and
proposal generation by deformable central correlation and a
refinement stage with a feature enhancement module, shown
in Figure 2.

In our two branches framework, feature maps for the test
and the reference branches are extracted from backbone net-
work with a balanced neck module which fuses the sematic
and spatial information from multi-layer features. The tar-
get models are constituted by deformable convolution ker-
nels which are learned online on the target template Z (refer-
ence) during inference time and perform two-stage tracking.
In stage 1, the target in a test frame is tracked by deformable
central correlation between the model f and a feature map
x of the search region (test) which finds coordinates where
suitable target proposal boxes are formed. Followed by a fea-
ture enhance module which aggregates multi-level features,
the proposal boxes are refined by another deformable central
correlation on the enhanced feature x′ in stage 2. We get fi-
nal output bounding boxes with optional post-process, e.g.,
non-maximum suppression as NMS and IoU-Net. We update
weights of the target models by an online-training optimizer
module P .

3.1 Deformable Convolution in Visual Tracking
In order to facilitate the introduction of our target models, we
briefly revisit deformable convolution [Dai et al., 2017] in the
context of visual tracking. For notation clarity, we describe
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Figure 3: An overview of the proposal generation and refinement module. With a feature map x, discriminative features localization and
proposal generation are performed by deformable central correlation near the previous target center in stage 1. Refinement are performed on
top Nc proposals center points in stage 1 after the feature enhancement to get refined bounding boxes in stage 2.

the convolution modules in 2D spatial domain, and the oper-
ation remains the same in each channel in 3D case.

Deformable convolution can be regarded as a self-attention
instantiations of spatial attention mechanisms [Zhu et al.,
2019]. From the aspect of query-key pairs in spatial attention,
an element on each coordinate of a feature map is regarded as
a query element while the elements on sampled coordinates
are regarded as key elements. Based on regular convolution,
which has fixed sampling grid region R and convolutional
weight w, the deformable convolution models the relation
between a query with its corresponding keys by augmenting
learnable 2D offsets {∆pk}Ns

k=1 to R on integral spatial loca-
tions in a feature map x ∈ RW×H which are stored in offset
field o ∈ RW×H×2NS . Ns refers to the number of sample
points in a deformable convolution kernel. For each coordi-
nate pi on output feature map y ∈ RW×H we have output as

y(pi) =
∑

pr∈R w(pr) ∗ x(pi + pr + ∆pk) (1)

In practice, a bilinear interpolation kernel A(., .) is used to
map the fractional p = pi+pr+∆pk to an integral coordinate.

In generic tracking, it is a common sense that coarse local-
ization of the target center is much easier than finding an ac-
curate target bounding box. The main reason is that features
near the border of the target which determine the shape of
the bounding box are unstable and usually mixed with back-
ground, while features near the target center are more con-
stant and fixed to some extent. Intuitively, we can learn the
relation between discriminative features near target centers
and features for target shapes by deformable convolution to
generate proper bounding boxes. Inspired by RepPoints, we
collect the sampled points of deformable convolution at the
coordinate p0 in a feature map as

Pkey = {pu}NS

u=1 (2)

where pu ∈ R2 refers to a position on feature map x. We
define a converting function Γ : Pkey → P , to transform
this point-based representation to a proposal bounding box.
Specially, the proposal P is formed by the distances from the
coordinate p0 to the left-top and bottom-right points as 4D
real vector (l, t, r, b). We adopt a min-max function, which
performs min-max operation over two axes of Pkey to deter-
mine left-top and bottom-right points of P , as the function
Γ.

3.2 Deformable Central Correlation
In this section, we detail how to learn target models and per-
form an online learning deformable central correlation for
tracking. Generally, given a set of training sample Strain =
{(xi, Bi)}ni=1, where xi is a feature map from the feature
extractor and Bi = (li, ti, ri, bi) is the 4D corresponding
bounding box, the target model f is learned online or offline.
In recent template-matching trackers, there are a classifica-
tion task and an estimation task. As for the classification, it
usually performs correlation between the template and the in-
put feature map xi by the model f to discriminate the explicit
target from background distractors, and outputs a score map
s = xi ∗ f where s ∈ RW×H and ∗ denotes correlation oper-
ation. The online learning classification loss is formulated as

lcls = 1
|Strain|

∑n
i=1‖d(s, yi)‖2 + ‖λf‖2 (3)

where the function d(s, yi) computes the residual at every
spatial location on the predicted score map s and a corre-
sponding label yi, and λ is a regularization factor. As for
the estimation, the traditional methods generate Np proposal
bounding boxes {Pit}

Np

t=1 by anchor strategies SiamRPN. The
regression loss is formulated as

lreg = 1
|Strain|

∑n
i=1 r (pit, Bi) (4)

where the function r (Pit, Bi) computes the residual between
the proposal and a bounding box. As mentioned in 3.1, we
adopt a deformable convolution layer in the online learning
model f which is defined as f(x;w, o) and aim to find a coor-
dinate p∗ which generates the most precise proposal bounding
box P ∗. The deformable central correlation shown in Figure
3 is carefully designed with an observation that the most rep-
resentative features are always near the center of mass of the
target rather than the bounding box center.
Proposal Generation. Given a location pj on the feature
map xi, our model will generate a proposal bounding box
Pj with sampled points. We expect to generate accurate pro-
posal bounding boxes of the target on discriminative features
around the vicinity of the target center. So, we use two IoU
thresholds θhi and θlo on the classification label yi to separate
positive and negative training samples. For a positive sample
pj = (px, py) which has IoU(Pj , Bj) ≥ θhi, the regression
target P ∗j is formulated as

l∗ = px − li, t∗ = py − ti, r∗ = ri − px, b∗ = bi − py (5)
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We adopt the smooth l1 distance to the function r(Pj , P
∗
j ) =

Smoothl1(Pj , P
∗
j ) which is easy to optimize online. For a

negative sample pj which has yi(pj) < θlo, we simply mini-
mize the IoU score which is non-negative between Pj and Bj

using the IoU loss as the function r(Pj , Bj) = IoU(Pj , Bj)
in offline training.

Target Localization. To ensure the discriminative capac-
ity, the model f is commonly defined as a discriminative fil-
ter to locate the target center (cx, cy). However, this defini-
tion is usually faces two problems: (1) data imbalance which
makes the model mainly focus on easy negatives; (2) inherent
ambiguity of the classification label yi. Benefitted from our
proposal generation, the center of mass of the target can be
roughly clustered. Thus, we define CRi(cx, cy, σcwb, σchb)
as the center region of the bounding box Bi, which roughly
covers potential target centers, with a shrink scale σc ∈ (0, 1).
Note that the label of each spatial coordinate insideCRi is set
to 1 while outside the bounding box Bi is set 0. We ignore
the region between CRi and Bi. The intermediate coordi-
nates are smoothed with Gaussian distribution centered at the
box center. We formulate the function d(s, yi) in a hinge-like
form [Bhat et al., 2019],

d(s, yi) = (yis+ (1− yi) max(0, s)− yi) (6)

Both the loss (3) and (4) are applied in online and offline
training. The predicted scores of the proposal which reflect
both localization and estimation are more suitable for the
NMS procedure.

3.3 Center-bias Refinement with Feature
Enhancement

To get more accurate results, we introduce a two-stage refine-
ment method with a multi-layer feature enhancement module.
Note that the ResNet architecture is employed as backbone
and the feature map x has a spatial stride of 16.

Center-bias Refinement. Our ablation experiments show
that multi-stage bounding box regression, which learns the
bias between the proposals and the ground truth, yields poor
performance (see section 4.1). Unlike the regression methods
with fixed centers in anchor-based strategies, the proposed
method gains refinement with the bias of the target center
locations. As shown in Figure 3, we pay more attention to
search representative target features and the target center in
the region of interest in stage 1, and focus on target aligning
in stage 2 with fewer proposals. We select top Nc centers of
the proposal bounding boxes in stage 1 by their IoU scores.
After removing the duplicate locations, they are used as new
centers to generate new proposals in stage 2.

Feature Enhancement. As we discussed in section3.2, the
deformable central correlation actually requires fine-grained
and sematic features. Although the feature map xS1 gains
more target-related features after stage 1, it losses some fine-
grained sematic features around the target because of the
discriminant ability of the model. Thus, we use a multi-
resolution aggregation method to fuse fine-grained features
from multi-level feature maps including C3, C4, C5 with spa-
tial stride of 8, 16, 32, shown in Figure 4. We import refined
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Figure 4: Architecture of the balanced neck and the feature enhance-
ment module. We aggregate multi-level feature maps with the bal-
anced neck by rescaling and explore sematic features and spatial
details for the refinement stage in a full-connected manner.

features form C
′

3 and C
′

5 directly from the neck (see sec-
tion3.4) like residual blocks to form three parallel branches.
Then we fuse three parallel branches in a fully-connection
manner and combine them to get the enhanced feature map
xE . Thus, we use a multi-resolution aggregation method to
fuse fine-grained features from multi-level feature maps, as
shown in Figure 4. Since more spatial details of target ap-
pearance are in lower convolution layers, we import high-
resolution feature map xF1 directly from backbone like a
residual block to keep spatial features. We form three par-
allel branches to get fully aggregated features. To keep the
rich sematic features of the target in current feature map xS1,
we perform regular convolution on xS1 to get xS1

′ with low
resolutions. We use 1 × 1 convolution to unified the num-
ber of channels in xF1 and xS1

′. Then we fuse three parallel
branches in a fully-connection manner and combine them to
get the enhanced feature map xE .

3.4 Balanced Neck
The proposed balanced neck module serves as a connection
between a backbone and head networks, and outputs a single
feature map which balances spatial details and robust sematic
features for the head network.

We observe that different feature levels at different resolu-
tions of a backbone usually contribute unequally to the fused
output. Thus, we design a simple neck structure with bounded
weight ni (per-feature), where Σini = 1. As for the ResNet
architecture, we first unify the multi-level features C3, C4,
C5 to the same channel number as C4 with 1 × 1 convolu-
tion as C

′

3, C
′

4, C
′

5. Unlike the bottom-top integrating strat-
egy used in FPN [Lin et al., 2017], we balance semantic and
fine-grained features by rescaling and averaging them with a
scalar weight as

x = 1
3

∑5
l=3 nlC

′

l (7)

Note that C3 and C5 are resized to C4 as C
′

3 and C
′

5 by
average-pooling and linear interpolation after 1 × 1 convo-
lution respectively.

3.5 Implementation Details
As for online learning, we set the kernel size of DCC to 5× 5
in our target models for two stages. To speed up convergence
of online training, we use Steepest Descent (SD) in DiMP. We
train 10 iterations at the first frame as initialization. The mod-
els are updated in an optimizer module P every 25 frames dur-
ing inference, and store 50 most recent tracked frames as the
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RC+IoU DC+IoU DC+Reg+IoU DCC+NMS DCC+IoU
AUC(%) 57.7 58.0 58.8 60.0 60.3

Table 1: Analysis of the deformable central correlation on the com-
bined datasets. The baseline and further adding components are
trained with pretrained backbone ResNet-50 and the balanced neck.

Single Stage BReg BReg+EN CReg CReg+EN
NMS 60.0 60.0 60.1 60.3 60.7
IoU 60.3 60.4 60.5 60.6 60.8

Table 2: Comparison of different proposal refinement methods and
analysis of the feature enhancement on the combined datasets.

template. As for offline training, we train our architecture ef-
fectively with a mixed training set created from TrackingNet,
LaSOT and GOT10k. We sample various classes of images
to form a mini-batchMtrain andMtest to train the entire net-
works for 60 epochs with ADAM [Kingma and Ba, 2015]
optimizer with learning rate decay of 0.2 every 15 epochs.
We set σc = 0.3 for classification labels and set θhi = 0.6
and θlo = 0.5. In stage 2, we set the maximum of Nc to 25.

4 Experiments
Our new TLPG-tracker is implemented in Python with Py-
Torch and evaluated on five challenging tracking benchmarks:
LaSOT [Fan et al., 2019], VOT2018 [Kristan et al., 2018],
GOT10k [Huang et al., 2018], TrackingNet [Muller et al.,
2018], OTB2015 [Wu et al., 2015]. Employing with ResNet-
50 as backbone, we achieve a tracking speed of 36 FPS with
IoU-Net and 41 FPS with NMS on a single GeForce RTX
2080 Ti GPU.

4.1 Ablation Study
In this section, we analyze the effectiveness of three pro-
posed components in TLPG-tracker with a combined dataset
which contains 200 various video sequences randomly sam-
pled from LaSOT, VOT2018 and OTB2015 datasets. The
AUC metric is used in the evaluation.

Deformable Central Correlation. We investigate the im-
pact of key aspects of the proposed deformable central cor-
relation by incrementally adding each part of the module at
a time which shows in Table 1. The baseline [Bhat et al.,
2019] contains an online learning regular convolution version
filter (RC) with IoU-Net (IoU) as post-process. By replac-
ing the filter with an online learning raw deformable con-
volution (DC), it gains a 0.3% AUC score on the combined
dataset. Adding a proposal boxes regression loss (Reg) to
the deformable convolution filter improves the AUC score by
0.8%. The deformable central correlation (DCC), which is
performed only once during inference for fair comparisons,
leads to a major improvement of 1.2% in AUC score with
NMS and 1.5% in AUC score with IoU-Net. It shows that
the combination of the localization, the representative target
features and target shapes with the online learning loss fully
exploit the correlation between target localization and shape
generation. The deformable central correlation suits the post
process well with a total improvement of 2.6% AUC score.

Center-bias Refinement with Feature Enhancement. We
compare the proposed refinement method with classical

NO NECK FPN Balanced Neck
ResNet-50 59.5 60.1 60.8
DetNet-59 59.8 60.3 60.7

Table 3: Comparison of different neck modules on the combined
datasets.

bounding box regression. Here, NMS can indicate whether
predicted scores of the proposal reflect the accuracy of both
target localization and estimation while IoU-Net (IoU) show-
ing the best accuracy of the proposal. We form a basic regres-
sion version (BReg) by replacing our center-bias refinement
(CReg) with bounding box regression which refines the resid-
ual between proposal boxes and corresponding ground truth
with extra convolution layers. Refinements are formed by us-
ing the feature enhancement (EN) or not, as shown in Ta-
ble 2. Without enhancement, the center-bias refinement out-
performs bounding box regression by 0.3% AUC score with
NMS. The feature enhancement module gains up to 0.4%
with center-bias refinement and NMS, but improves little with
bounding box regression. It means that the center-bias refine-
ment is compatible with NMS procedure.

Balanced Neck. It is crucial to choose proper feature maps
from backbone in tracking tasks. We compare our balanced
neck module with FPN [Lin et al., 2017] on two similar back-
bones, ResNet-50 and DetNet-59 [Li et al., 2018b], used in
image classification and object detection, to analyze the im-
pacts of resolution and receptive fields. Backbone feature
layers conv3, conv4, conv5 are involved. Using features of
same spatial stride from neck modules or backbone as out-
put feature maps, the performance of the Balanced Neck and
FPN is shown in Table 3. The proposed balanced neck with
ResNet-50 gains 1.3% AUC score improvement on the com-
bined dataset and is 0.7% higher than FPN, which indicates
features with balanced spatial details and sematic information
are more suitable for object tracking. Note that DetNet-59
preforms better than ResNet-50 by 0.3% without a neck be-
cause it maintains high resolution in conv4 and conv5 while
FPN aggregates the adjacent feature levels in a bottom-up
manner. But they are less likely to provide balanced features.

4.2 State-of-the-art Comparison
The proposed TLPG-Tracker, which employs the backbone
ResNet-50 and the post-process IoU-Net, is compared with
the state-of-the-art methods including DiMP [Bhat et al.,
2019], SiamRPN++ [Li et al., 2019], SiamMask [Wang et
al., 2019b], ATOM [Danelljan et al., 2019], SPM [Wang et
al., 2019a], LADCF [Xu et al., 2019], SiamGragh [Tu et al.,
2019], SiamRPN R18 [Li et al., 2018a], MFT[Kristan et al.,
2018], UPDT [Bhat et al., 2018], StructSiam [Zhang et al.,
2018], MHIT [Bai et al., 2018], VITAL [Song et al., 2018],
DRT [Sun et al., 2018], DaSiamRPN [Dai et al., 2017],
BACF [Kiani Galoogahi et al., 2017], ECO [Danelljan et
al., 2017], DSiam[Guo et al., 2017], SiamFCv2 [Valmadre et
al., 2017], GOTURN [Held et al., 2016], SiamFC [Bertinetto
et al., 2016], CCOT[Danelljan et al., 2016], MDNet [Nam
and Han, 2016] on following five challenging tracking bench-
marks.
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ECO DRT UPDT SiamMask DaSiamRPN MFT LADCF ATOM SiamRPN++ DiMP TLPG
EAO (↑) 0.281 0.356 0.378 0.380 0.384 0.385 0.389 0.401 0.414 0.440 0.459

Accuracy (↑) 0.483 0.519 0.536 0.609 0.586 0.505 0.503 0.590 0.600 0.597 0.606
Robustness (↓) 0.276 0.201 0.184 0.276 0.276 0.140 0.159 0.234 0.204 0.153 0.149

Table 4: State-of-the-art comparison on the VOT2018 dataset in terms of expected average overlap (EAO), robustness and accuracy.

MDNet ECO CCOT GOTURN SiamFCv2 SiamRPN R18 SPM ATOM DiMP TLPG
AO(%) 29.9 31.6 32.5 34.7 37.4 48.3 51.3 55.6 61.1 62.9

SR0.50(%) 30.3 30.9 32.8 37.5 40.4 58.1 59.3 63.4 71.7 73.5

Table 5: State-of-the-art comparison on the GOT10k test set in terms of average overlap (AO) and success rate (SR) at overlap threshold 0.5.
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Figure 5: Success plots on the LaSOT test dataset.

LaSOT. The LaSOT dataset contains a large-scale, high-
quality dense annotations with 1,400 videos in total. The
evaluation is performed on the test set consisting 280 videos.
The success plots are shown in Figure 5. The TLPG-Tracker,
with an AUC score of 58.1%, outperforms the previous best
tracker DiMP which employs online learning strategies with
pretrained ResNet-50 features by 2.2% in success rate. The
results demonstrate the powerful joint learning of target lo-
calization and proposal generation.

VOT2018. We evaluate our method on the VOT2018 chal-
lenge in terms of the measurement of robustness (failure rate)
and accuracy (average overlap in the course of successful
tracking) on the test split consisting 60 videos. Results are
ranked by EAO (Expected Average Overlap) which are shown
in Table 4. Previous results show that SiamMask is the most
accurate of the short-term real-time challenge tracking results
and DiMP is the beat in the comprehensive performance with
EAO score of 0.440. With impressive robustness, our TLPG-
Tracker obtains the best EAO score of 0.459 and the second
accuracy score of 0.606.

GOT10k. GOT10k is a large tracking dataset containing
over 10,000 videos which populate a majority of 563 target
categories and over 80 motion patterns belong to real objects.
Specially, all object classes between training videos and test-
ing videos are non-overlapping except for the person class.
We train our tracker only on the train split of GOT10k for fair
comparisons. Results on the GOT10k test set are shown in Ta-

UPDT SPM SiamGraph SiamRPN++ ATOM DiMP TLPG
Precision(%) 55.7 66.1 63.8 69.4 64.8 68.7 70.6
Success(%) 61.1 71.2 70.9 73.3 70.3 74.0 75.8

Table 6: State-of-the-art comparison on the TrackingNet test dataset
in terms of precision and success.

ATOM DiMP SPM ECO SiamRPN++ MHIT UPDT TLPG
AUC(%) 66.9 68.4 68.7 69.1 69.6 69.8 70.2 69.8

Table 7: State-of-the-art comparison on the OTB2015 dataset in
terms of area under the curve (AUC) score.

ble 5. Our method outperforms the most progressive perfor-
mance approaches DiMP with average overlap (AO) scores
of 62.9% and success rates (SR) at thresholds 0.5 of 73.5%.

TrackingNet. TrackingNet is a huge dataset for target
tracking, containing more than 30, 000 videos. As the re-
sults shown in Table 6, our TLPG-Tracker outperforms most
advanced algorithms on TrackingNet test set, with the best
precision rate of 70.6% and success score of 75.8%.

OTB2015. The standardized OTB2015 benchmark contain-
ing 100 videos with various challenging factors provides a
fair testbed on robustness. Among all compared methods in
Table 7, our TLPG-Tracker achieves a competitive result with
an AUC score of 69.9% while UPDT obtaining the best per-
formance with an AUC score of 70.2%.

5 Conclusion
We propose a novel two-stage tracking architecture that learn
both target localization and proposal generation simultane-
ously by deformable central correlation in online training
manner. The proposals are generated on discriminative fea-
tures near target centers in stage 1 and refined by center-
bias refinement to provide more accurate results. The model
benefits from multi-level aggregation of fine-grained and se-
matic features in a neck and a feature enhancement module.
With robust localization and accurate estimation, our TLPG-
Tracker sets a new state-of-the-art on 5 datasets while operat-
ing at over 30 FPS.
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