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Abstract
We address the challenging issue of deformable
registration that robustly and efficiently builds
dense correspondences between images. Tradition-
al approaches upon iterative energy optimization
typically invoke expensive computational load. Re-
cent learning-based methods are able to efficiently
predict deformation maps by incorporating learn-
able deep networks. Unfortunately, these deep net-
works are designated to learn deterministic features
for classification tasks, which are not necessarily
optimal for registration. In this paper, we propose
a novel bi-level optimization model that enables
jointly learning deformation maps and features for
image registration. The bi-level model takes the
energy for deformation computation as the upper-
level optimization while formulates the maximum a
posterior (MAP) for features as the lower-level op-
timization. Further, we design learnable deep net-
works to simultaneously optimize the cooperative
bi-level model, yielding robust and efficient regis-
tration. These deep networks derived from our bi-
level optimization constitute an unsupervised end-
to-end framework for learning both features and
deformations. Extensive experiments of image-
to-atlas and image-to-image deformable registra-
tion on 3D brain MR datasets demonstrate that we
achieve state-of-the-art performance in terms of ac-
curacy, efficiency, and robustness.

1 Introduction
Image registration [Maintz and Viergever, 1998], transform-
ing different sets of images into one common coordinate sys-
tem, is one of the most fundamental tasks in computer vi-
sion. Especially, deformable image registration which builds
a dense correspondence between image pairs has wide appli-
cations in medical image analysis such as multi-modality fu-
sion, anatomical change diagnosis, and population modeling.
The high degrees of freedom for the solution space (deforma-
tion maps) and great variations on source/target image pairs
are major challenges for this issue.

Conventional image registration approaches typically for-
mulate the discrepancy between image pairs as well as the

prior constraints on images and deformations into an ener-
gy function whose optimization finds the solution to reg-
istration [Ashburner, 2007]. These approaches are able to
generate plausible deformation maps with desired mathemat-
ical properties, e.g., invertibility, and topology-preserving,
even when significant appearance variations exist. Unfortu-
nately, the iterative optimization process demands calculat-
ing gradients over the high dimensional deformation and im-
age/feature spaces at each step, resulting in extremely high
computational expenses.

Recently, researchers bring deep learning networks that
gain great success in classification/segmentation to image
registration in order to achieve efficient prediction for de-
formations. Balakrishnan et al. develop the VoxelMorph
(VM) network similar to UNet structure [Balakrishnan et al.,
2019], and the works of [Dalca et al., 2019] and [Shen et
al., 2019] combine the learning with the diffeomorphic con-
straint for topology-preserving deformations. Hu et al. [Hu
et al., 2019] develop a multi-scale network to compute the
registration field from convolutional feature pyramids. These
works learn deep features in the image domain and then ap-
ply the learned parameters as the one-step prediction for de-
formation. They just directly learn parameters based on pre-
designed training loss/regularization to output the deforma-
tion filed. So it is hard to adaptively enforce registration in-
formation for the front-end feature learning phase. Conse-
quently, images deviating from the training greatly affect the
performance, yielding unstable registration.

In this work, deformation learning embraces feature learn-
ing in a bi-level optimization framework. We formulate the
energy for deformation in the feature domain as one level of
optimization embedded with the other level of maximum a
posterior (MAP) optimization for features. Hence, two chal-
lenging issues in learning-based approaches, i.e.,, learning
optimal networks for deformation and learning optimal fea-
tures for registration, are cooperatively resolved in one mod-
el. We detail our contributions as:

• We establish a bi-level model to simultaneously address
deformable registration and feature learning. The upper-
level of optimization learns the deformation field in the
feature domain while the lower-level learns the features
required for image registration. We alternately solve the
deformation filed based on the upper-level subproblem
and adjust the features based on the lower-level subprob-
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lem, giving robust and efficient registration.

• We pose the feature learning in the lower-level as proba-
bilistic MAP estimation with Gaussian priors. This lev-
el of optimization adaptively enforces task-based con-
straints for the feature extraction phase, producing opti-
mal features for the upper-level optimization.

• We develop an unsupervised end-to-end training scheme
for the deep networks respective to the two levels of op-
timization. The scheme, training the networks using the
loss function on the feature domain and image domain
respectively, runs more efficiently than training a com-
plicated image-to-deformation network.

Extensive experiments on 3D brain MRI registration tasks
demonstrate that our approach achieves state-of-the-art per-
formance in terms of accuracy, robustness, and efficiency.

2 Related Work
Recently, feature learning has been employed in many image
analysis tasks. Taking advantage of the network to learn the
high-level features has shown impressive results [Liu et al.,
2018a] [Liu et al., 2019a]. Research in [Banerjee et al., 2019]
uses a conditional encoder-decoder network for the segmenta-
tion task. The work of [Sun et al., 2018] estimates the optical
flow on the multi-scale feature space. Replacing handcraft-
ed features with more discriminative learnable feature space
has been extensively developed [Cheng et al., 2018] [Liu et
al., 2019b] [Liu et al., 2018b]. Researchers are tending to-
wards superseding the feature engineering or original image
with learned convolution filters, within end-to-end trainable
architectures. The feature learning designed for the registra-
tion task has also been explored in [Hu et al., 2019] [de Vos
et al., 2019] [Liu et al., 2020]. However, these networks are
designed to learn deterministic features.

Traditional deformable registration techniques include the
b-splines model with control points [Sun et al., 2014], elastic-
type models [Bajcsy and Kovacic, 1989] and diffeomorphic
registration. Diffeomorphic frameworks [Ashburner, 2007]
use smooth flow fields to represent the deformation, regu-
larization is typically introduced as part of the ordinary d-
ifferential equation constraining on the vector fields. Due
to a large number of parameters, numerical optimization be-
comes computationally costly, which is the main limitation of
these traditional methods. Recently, learning-based method-
s [Dosovitskiy et al., 2015] have been widely applied. The
research in [Yang et al., 2017] proposes a supervised learn-
ing approach to rapidly predict 3D deformable registrations,
achieving an order of magnitude speed-up. But ground truth
registration fields are hard and expensive to obtain. Inspired
by the VoxelMorph [Balakrishnan et al., 2019], researchers
have focused on replacing costly numerical optimization with
global function optimization over the training data in an un-
supervised way. The research in [Hu et al., 2019] employs an
unsupervised coarse-to-fine dual-stream registration network,
enabling the capability for handling significant deformations.
Moreover, some researches[Shen et al., 2019] propose to es-
timate the velocity fields or momentum fields, which can be
used to obtain diffeomorphic transformations.

3 The Proposed Method
In this section, we first introduce a novel bi-level framework
to incorporate feature optimizing strategy into deformable
image registration. Bi-level optimization [Colson et al.,
2005] is a special optimization scheme, in which one opti-
mization task is nested within another. The outer level is giv-
en by the constraint inner level problem, referred as upper-
level tasks and lower-level tasks respectively. Then, we pro-
pose our deep architectures, the probabilistic feature learning
module and the deformable registration module to solve the
two nested tasks.

3.1 Bi-level Registration Framework
The proposed bi-level model jointly optimizes the features
and registration fields. In this novel model, the upper-level
problem denotes the deformable registration, while the lower-
level problem is a maximum posterior probability problem.
The outer deformable registration problem is constrained by
the inner feature optimization. Specifically, given a source
image Is and a target image It with a spatial domain Ω ∈ Rd,
we aim at minimizing:

min
ϕ

ED(ϕ; fs, ft) + ER(ϕ),

s.t. fs, ft = arg max
fs,ft

p(fs|Is, ft|It,ϕ),
(1)

where fs, ft are the feature representations of the source and
target image, ϕ : Ω × R → Ω is the final deformation field.
ED is a data matching term, forcing the image similarity. ER
is a regularization term, encouraging the smoothness of the
deformation fields. p(fs|Is, ft|It,ϕ) denotes the posterior
probability of features based on the observation input source,
target image and the deformation field ϕ. Note that, to better
solve the deformable registration problem, we employ the s-
tationary velocity fields. Such that the final registration field
ϕ is obtained via integration of a series of velocity fields over
time. We employ regularization into the registration fields by
introducing the integration of the velocity fields.

The proposed bi-level model considers the feature opti-
mization and deformable registration model simultaneously,
which is different from other models in essence. Our formu-
lation is much more robust than the typical registration model
since it takes feature optimization into consideration.

3.2 Probabilistic Feature Learning Module
To learn the most suitable feature representations that are in-
variant to noise and uninformative intensity-variations, we
propose to learn the feature via MAP estimation, correspond-
ing to the lower-level problem in Eq. (1). Specially, we use
the posterior probability to learn the most meaningful non-
linear mapping from the input intensities to feature represen-
tation. We aim to estimate the most suitable feature for the
registration task as follows:

f = arg min
f

ln p(f |I,ϕ), (2)

= arg min
f

ln p(I|f ,ϕ) + ln p(f), (3)

where ϕ is the corresponding registration field, and I is the
input source or target image. The first term is the data likeli-
hood term and the second one is the prior term.
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Figure 1: The pipeline of our bi-level framework. The lower-level task learns a reliable feature representation via MAP estimation. The
learned features are employed to estimate the deformation field in the upper-level. The feature learning and deformation fields are updated
in an alternative and collaborative manner. The single lines indicate the direction of the data propagation. The double lines indicate the
backpropagation of the loss.

We assume the prior p(f) to be a multivariate unit normal
distribution with covariance I . However, the posterior proba-
bility is difficult to compute, we use an approximation poste-
rior probability qθ(f) parametrized by θ to speed it up. We try
to minimize the Kullback-Leibler (KL) divergence between
the really posterior distribution and approximation distribu-
tion, equivalent to maximizing the Evidence Lower Bound
(ELBO) [Kingma and Welling, 2014] as follows:

max
θ
Eq[ln p(I|f ,ϕ)]−KL[qθ(f)||p(f)], (4)

where the first term means samples from the approximate dis-
tribution to perform the registration tasks. The second term
is the KL term, also called Gauss prior term, which encour-
ages the two probability distribution to be close. We model
the approximate posterior qθ(f) as a multivariate normal:

qθ(f) = N (f ;µf ,Σf ), (5)

where N (.;µ,Σ) is the multivariate normal distribution with
the mean µ and covariance Σ. Then we optimize the above
evidence lower bound.

We optimize the variational lower bound by learning the
network parameters of the probabilistic feature learning net-
works using backpropagation methods. The feature learn-
ing networks take the input images/features and output the
approximate posterior probability parameters of feature rep-
resentations, representing mean µf and covariance Σf , then
sample a new feature, which is processed to generate the de-
formation fields at different scale. Specifically, to generate
feature representations/distribution at the kth scale, we use
layers of convolutional filters to downsample the features at
the previous k + 1th pyramid level, by a factor of 2. We
employ three-layers feature learning network, which includes
convolutional layers with 16 filters or 32 filters. Each convo-
lutional layer uses leaky ReLU function and 3× 3× 3 kernel.

3.3 Deformable Registration Module
Diffeomorphic deformable registration [Ashburner, 2007]
can capture large deformations and provide many desirable
mathematical properties, such as invertibility, globally one-
to-one smooth, and topology-preserving. In this work, we de-
velop an optimization scheme to solve the diffeomorphic de-
formable registration, corresponding to the upper-level prob-
lem in Eq. (1), as follows:

Vk+1 = arg min
V
ED(ϕk; fks , f

k
t ) + ER(V), (6)

where each deformation field ϕ is obtained via the integra-
tion of current V , governed by the ordinary differential equa-
tion φt(x, t) = V(φ(x, t), t) over time t, with identity map
φ(0) = Id. And φ1 is the sought-for registration field, with
k standing for scale.

To generate the velocity field sequence, we employ an effi-
cient deep residual architecture, named by the alignment net-
work, to solve the Eq. (6) as follows:

Vk+1 = Vk −A(ϕk, fks , f
k
t ; Wk), (7)

whereWk are the learnable parameters of the alignment net-
work, and the deformation fieldϕ is defined through the ordi-
nary differential equation of V , corresponding to regulariza-
tion module. We implement the regularization module using
the efficient scaling and squaring [Dalca et al., 2019] method.
As for the alignment network, it processes the features and
the deformation field from the previous scale to generate the
current deformation field. The alignment networks at differ-
ent blocks share the same network structure, including three
convolutional layers with {48, 32, 16} filters respectively. All
convolutional layers are followed by a leaky ReLU activation
function except the one that outputs the registration field. And
we use the 3× 3× 3 kernel for all the convolutional layers.
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Dice score Base Elastix NiftyReg ANTs (SyN) VM VM-diff Ours

OASIS 0.580 (0.028) 0.709 (0.023) 0.748 (0.017) 0.765 (0.010) 0.765 (0.010) 0.757 (0.011) 0.777 (0.006)
ABIDE 0.624 (0.024) 0.699 (0.025) 0.747 (0.026) 0.728 (0.029) 0.754 (0.016) 0.773 (0.009) 0.764 (0.016)
ADNI 0.571 (0.049) 0.697 (0.039) 0.737 (0.035) 0.761 (0.021) 0.761 (0.024) 0.768 (0.020) 0.773 (0.017)

PPMI [1] 0.610 (0.033) 0.730 (0.021) 0.765 (0.015) 0.778 (0.013) 0.775 (0.013) 0.781 (0.011) 0.787 (0.010)
PPMI [2] 0.613 (0.057) 0.724 (0.034) 0.777 (0.030) 0.773 (0.026) 0.757 (0.035) 0.765 (0.023) 0.778 (0.023)

Table 1: Qualitative comparison between our framework and other methods. The higher Dice score indicates the more accurate alignment.
The first column shows the affine results. The last two rows give the Dice scores on the unseen PPMI dataset for image-to-atlas [1] and
image-to-image [2] registration. Standard deviations are in bracket.

Figure 2: Boxplot indicates the Dice scores for ANTs (SyN), VM, VM-diff and our algorithm over sixteen anatomical structures including
Cerebral White Matter (CblmWM), Cerebral Cortex (CblmC), Lateral Ventricle (LV), Inferior Lateral Ventricle (ILV), Cerebellum White
Matter (CeblWM), Cerebellum Cortex (CereC), Thalamus (Tha), Caudate (Cau), Putamen (Pu), Pallidum (Pa), Hippocampus (Hi), Accum-
bens area (Am), Vessel, Third Ventricle (3V), Fourth Ventricle (4V), and Brain Stem (BS).

4 End-to-end Training Strategy
All the modules are differentiable, thus we learn the network
parameters with the end-to-end training. The proposed prop-
agation network is jointly trained using stochastic gradien-
t descent-based methods in an unsupervised way. The loss
functions are as follows:
Loss on feature space. The training loss on feature space
consists of the task-specific reconstruction loss and the KL
loss, forcing the encoded distribution to be close to the prior
probability distribution. The hypothesis is that to better opti-
mize the reconstruction loss, the feature learning networks at
each scale make use of the provided posterior probability in-
formation of features, resulting in the feature optimizing. For
the task-specific reconstruction loss, we scale the image pairs
and warp [Jaderberg et al., 2015] the down-sampled images
with the deformation fields at different scales, then compute
the similarity loss using the Local Normalized Cross Corre-
lation. Therefore, the deformation fields at each scale can in-
fluence the previous featuring learning. Specifically, we use
different window sizes to compute the local normalized cor-
relation coefficient at each scale, with a smaller window size
for the lower resolution. From the zeroth to the second scale,
the window sizes are set to {5, 5, 7}, respectively. For the KL
term, we obtain Σf and µf from the feature learning module,
then compute it in the closed-form as:
KL[qθ(f)||p(f)]= 1/2(tr(Σf ) + ||µf || − ln det(Σf )− k),

(8)
with Σf to be diagonal, and k is const. We use the multi-scale
training loss, computing the sum of the losses at different s-

cales.
Loss on final deformation field. We also consider the in-
formation on the image domain, using the final deformation
field as follows:

L(Is, It;ϕ) = LNCC(Is ◦ϕ, It) + LReg(ϕ), (9)

we take the Local Normalized Cross Correlation as image
similarity loss, with the window size as 9. For the regular-
ization term, we also employ a diffusion regularizer on the
final deformation field.

5 Experiments
In this section, we first introduce our experiment setup, in-
cluding datasets, evaluation metrics, baseline methods, and
our implementation. Next, to demonstrate the superiority
of our method, we compare it with the state-of-the-art de-
formable registration techniques on the accuracy, efficiency
as well as diffeomorphism preservation of the deformation
fields. Then we explore the impact of the inner task of our
paradigm.
Data Preparation. Evaluations are conducted in two dif-
ferent sights, one aligning all the source data to a common at-
las, called image-to-atlas registration, and the other address-
ing general registration between two arbitrary volumes, called
images-to-image registration. For both of these two cases,
368 T1 weighted MR volumes from three publicly available
datasets: ADNI [Mueller et al., 2005], ABIDE [Di Martino
et al., 2014] and OASIS [Marcus et al., 2007] are selected
and split into 281, 17, and 70 for training, validation, and
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Source Target Warped Lsource Ltarget Lwarped Warp field

Figure 3: Example MR coronal slices of input source, target, and warped image for our method with corresponding labels of ventricles,
thalami, and hippocampi. The last column shows the RGB image of the registration field. Each row refers to an example registration case.
The source images are well aligned to the target, demonstrating the good registration performance of our approach.

Folds Elastix NiftyReg ANTs (SyN) VM VM-diff Ours

img-to-atlas 91 (0.001) 6105 (0.088) 393 (0.005) 40674 (0.591) 0 0
img-to-img 642.2 (0.009) 10065 (0.146) 39699 (0.576) 52798 (0.767) 0 0

Table 2: The number of folds occurred in deformation fields with the percentages parenthesized under two experiment setting.

testing, respectively. Also, the unseen PPMI [Marek et al.,
2011] dataset containing 59 scans is employed for testing.
Specifically, for the image-to-atlas registration, we use the at-
las provided by [Balakrishnan et al., 2019] as target, and for
image-to-image case, the target images are randomly select-
ed from datasets. Considering the large disparity among dif-
ferent datasets, standard pre-processing operations were con-
ducted, including motion correction, NU intensity correction,
normalization, skull stripping, and affine registration, as de-
scribed in the research [Balakrishnan et al., 2019]. To reduce
memory usage, the images are cropped to 160× 192× 224.

Evaluation Metrics. To achieve a more comprehensive e-
valuation, both the average Dice score [Dice, 1945] over reg-
istered testing pairs and the Jacobian matrix over the com-
puted deformation are considered as evaluation metrics, to
evaluate the anatomical overlap correspondences of the reg-
istered volume pairs and the smoothness of the deformation
fields. To calculate the Dice score, segmentation is performed
with FreeSurfer on each of the testing volumes to extract 30
anatomical structures, on which the average Dice is calculat-
ed. The Jacobian matrix Jφ(x) = ∇φ(x) captures the local
properties of φ around voxel x, such as stretching and rotat-
ing, negative determinants mean the loss of the one-to-one
mapping [Ashburner, 2007]. So the local deformation is dif-
feomorphic at the locations where |x : Jφ(x) > 0|. We count
all the folds, the negative Jacobian locations, and use Folds to
represent the number of folds.

Baseline Methods. We compare our method with state-of-
the-art registration techniques, including three optimization-
based tools: Elastix [Klein et al., 2010], Symmetric Normal-
ization (SyN) [Avants et al., 2008], NiftyReg [Sun et al.,

2014], and two learning-based methods: VoxelMorph [Bal-
akrishnan et al., 2019] and its diffeomorphic variant [Dalca
et al., 2019] (referred as VM and VM-diff, respectively). For
the SyN algorithm, we use the version implemented in the
ANTs [Avants et al., 2011] package. The parameter settings
of the conventional methods are as follows. For Elastix, we
run B-spline registration with Mattes Mutual Information as
cost function and set the control point spacing to 16 voxels.
Four scales are used with 500 iterations per scale. For the
SyN algorithm, we take Cross Correlation as the similarity
measure metric and use the SyN step size of 0.25, Gaussian
parameters (9, 0.2), at three scales with 201 iterations each.
As for NiftyReg, we use the Normalized Mutual Information
cost function. We run it with 12 threads using 1500 itera-
tions. We run Elastix, ANTs (SyN), and NiftyReg on a PC
with i7-8700 (@3.20GHz, 32G RAM), while learning-based
methods on NVIDIA TITAN XP.
Implementation. We implement our networks with Ten-
sorFlow [Abadi et al., 2016] package. It takes about 12 hours
to train our model from scratch with 28100 iterations. During
training, we use Adam optimizer [Kingma and Ba, 2015] with
a learning rate of 1e−4. We set the batch size as 1. Compu-
tation on the full resolution may easily exhaust the memory,
thus we choose to output a half-resolution smooth enough de-
formation field and up-sample it to full-resolution.

5.1 Comparison Results
First, we quantitatively evaluate the accuracy, rationality and
time consumption of all these techniques for both cases of
image-to-atlas and image-to-image registration. Tab. 1 de-
picts the stability of the methods in terms of the Dice score on
the different datasets, where higher values and lower variance
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Runtime (s) Elastix NiftyReg ANTs (SyN) VM VM-diff Ours

img-to-atlas 90 (10) 486 (40) 4529 (1010) 0.615 (0.010) 0.512 (0.010) 0.351 (0.007)
img-to-img 67 (10) 323 (39) 4799 (1030) 0.697 (0.025) 0.586 (0.011) 0.360 (0.006)

Table 3: Comparison of time-consuming under two experiment settings.

Model 2-scales 3-scales 4-scales
w/o PFL w/ PFL w/o PFL w/ PFL w/o PFL w/ PFL

Test Dice 0.713 (0.034) 0.736 (0.028) 0.756 (0.020) 0.773 (0.014) 0.765 (0.017) 0.770 (0.016)
LNCC 0.214 (0.006) 0.228 (0.005) 0.232 (0.005) 0.244 (0.004) 0.234 (0.005) 0.239 (0.004)

PPMI Dice 0.740 (0.023) 0.758 (0.019) 0.773 (0.013) 0.785 (0.011) 0.779 (0.011) 0.789 (0.011)
LNCC 0.213 (0.005) 0.225 (0.004) 0.229 (0.004) 0.240 (0.004) 0.230 (0.004) 0.235 (0.004)

Table 4: Ablation analysis of the lower-level task and the number of scales. Standard deviations are in bracket.

indicate a more accurate and stable registration. Our method
gives an obvious lower variance with a comparable mean of
Dice for both these two cases, showing stronger stability. As
shown in Tab. 2, only VM-diff and our method can decrease
the number of folds to zero, preserving the diffeomorphism.
Besides, as Tab. 3 shows, our approach requires less running
time, benefiting of the well-designed network architectures.
Dealing with half-resolution rather than the original scale fur-
ther accelerates the registration process.

To have a better understanding of the alignment result-
s, we illustrate the Dice score of 30 anatomical structures
in Fig. 2. Limited by space, besides our method, we only
present ANTs (SyN), VM and VM-diff as the representatives
for the optimization-base and learning-based techniques. We
can see that compared with the conventional method ANTs
(SyN), the deep methods VM, VM-diff give evenly accura-
cy but perform much less stable among different anatomical
segmentations. While our deep model achieves a good bal-
ance between accuracy and stability. In summary, the robust-
ness, accuracy, and speed are all the key performance indexes
for the registration method. And extensive validation exper-
iments indicate that our method performs favorably against
state-of-the-art methods in practice.

Fig. 3 shows our representative registration results, from
which we can see that our approach can ideally handle large
changes in shapes. As shown, our method can ideally pre-
serve the contour of anatomical structures, guaranteeing the
topology of the registered volumes.

H(ft) H(fs) H(ϕ)

Figure 4: Example uncertainty of target feature, source feature and
final registration field. Higher H(.) value means lower uncertainty.

5.2 Ablation Studies
We investigate the roles of probabilistic feature learning, the
lower-level optimization in our bi-level model, and the scales
of learned features. Experiments were conducted on the test-
ing data from multiple datasets the mixed datasets (referred
to as Test) and the unseen PPMI dataset (referred to as PP-
MI). We substitute our probabilistic learning feature pyramids
(PFL) with handcrafted image pyramids as the case of ‘w/o
PFL’ and compare the performance gap between these two
cases. Tab. 4 lists the registration accuracy in terms of both
the Dice score and Local Normalized Correlation Coefficient
(LNCC) at 2, 3 and 4 scales of features. We can see that our
probabilistic feature learning evidently increases the accura-
cy in terms of both metrics. As the table shows, the features
with three scales output the superior accuracy over the other
scales. we observe in our experiments that more scales have
more risks of overfitting when a limited number of training
examples are available. Therefore, we adopt the probabilistic
feature learning with three scales in all our experiments.

Fig. 4 shows the confidence maps of learned features for
one slice of the target and source images, and the deforma-
tion fields in order to give a more intuitive illustration of the
probabilistic features and uncertainty estimation, we show
uncertainty maps. The features with higher confidences are
coincident with prominent image structures. Therefore, the
registration upon aligning these structures is able to produce
stabler outputs than deterministic learning.

6 Conclusions
We introduce a bi-level optimization model to simultaneously
address the deformable registration and feature optimization.
It takes the energy for deformation computation as the upper-
level optimization while formulates the maximum a posteri-
or for features as the lower-level optimization. Such defor-
mation learning policy with adaptive registration feature ex-
traction is completely different from existing straightforward
learning-based image registration methods. Then we employ
efficient deep architectures to simultaneously propagate de-
formation fields and perform feature optimization. The losses
on the feature space and image domain are utilized in our un-
supervised end-to-end learning framework. We conduct two
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groups of image registration experiments on 3D brain MRI
datasets including image-to-atlas and image-to-image regis-
trations. Extensive results show that our method achieves
state-of-the-art performance with extreme efficiency. We
have demonstrated our performance on the mon-modal reg-
istration task, and future validation remains on multi-modal
registration.
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