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Abstract

Applying multi-scale representations leads to con-
sistent performance improvements on a wide range
of image recognition tasks. However, with the ad-
dition of the temporal dimension in video domain,
directly obtaining layer-wise multi-scale spatial-
temporal features will add a lot extra computational
cost. In this work, we propose a novel and efficien-
t Multi-Scale Spatial-Temporal Integration Convo-
lutional Tube (MSTI) aiming at achieving accu-
rate recognition of actions with lower computation-
al cost. It firstly extracts multi-scale spatial and
temporal features through the multi-scale convolu-
tion block. Considering the interaction of different-
scales representations and the interaction of spa-
tial appearance and temporal motion, we employ
the cross-scale attention weighted blocks to perfor-
m feature recalibration by integrating multi-scale s-
patial and temporal features. An end-to-end deep
network, MSTI-Net, is also presented based on
the proposed MSTI tube for human action recogni-
tion. Extensive experimental results show that our
MSTI-Net significantly boosts the performance of
existing convolution networks and achieves state-
of-the-art accuracy on three challenging bench-
marks, i.e., UCF-101, HMDB-51 and Kinetics-400,
with much fewer parameters and FLOPs.

1 Introduction
With the rapid development of various video platforms in the
social network, video is becoming a popular communication
medium among internet users. This has encouraged the de-
velopment of advanced techniques for a variety of video un-
derstanding applications. More specifically, one of the most
fundamental tasks that ensures the success of these techno-
logical advances is human action recognition. Human action
recognition aims to recognize actions by the visual appear-
ance and motion dynamics of the involved humans and ob-
jects in video sequences. Recently, the Convolutional Neural
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Figure 1: The illustration of our proposed MSTI tube. The M-
STI tube mainly consists of two blocks: the multi-scale convolution
block and the cross-scale attention weighted blocks.

Networks (CNNs) demonstrate the high capability of learn-
ing visual representation in image domain and the way that
extends CNNs into video domain is the main proposal for the
action recognition task.

Video actually can be seen as a sequence of images in the
dimension of time. A good model should be able to extract
not only the spatial appearance in images, but the dynamic
motion change over time. Traditional 2D-CNN base method-
s [Simonyan and Zisserman, 2014; Donahue et al., 2015] ne-
glected the joint exploration of spatial appearance and tempo-
ral motion, which could offer a comprehensive representation
of videos and thus enhance the accuracy of action recogni-
tion. For most 3D-CNN based methods [Tran et al., 2015;
2018; Carreira and Zisserman, 2017; Wang et al., 2018b],
they more or less integrated spatial and temporal information.
However, with the addition of a new dimension, the parame-
ters and computational cost of the 3D-CNN based models are
always extremely high compared to the 2D-CNN based mod-
els. The P3D [Qiu et al., 2017] took the lead in separating
the 3D convolution into two separate convolutions, i.e., a 2D
spatial convolution plus a 1D temporal convolution, and thus
significantly reduced the model size. Nevertheless, this kind
of method still ignored the correlation of spatial appearance
and temporal motion.

Recently, the multi-scale representations [Szegedy et al.,
2017; Gao et al., 2019; Liu et al., 2016] are of critical im-
portance to a number of vision recognition tasks. For human
action recognition task, the humans and objects may appear
with different spatial sizes in images, and the actions may also
last for different lengths of time in videos. However, direct-
ly obtaining layer-wise multi-scale spatial-temporal features
requires feature extractors to use a large range of receptive
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fields, which will add a large amount of extra computational
cost. In addition, the interaction between the feature maps at
different scales can guide themselves to pay attention to in-
formative features rather than useless features, since the con-
textual information of an action may occupy a much larger
area than the action itself.

In this paper, we propose a Multi-Scale Spatial-Temporal
Integration Convolutional Tube (MSTI) aiming towards ro-
bust and accurate human action recognition tasks. The M-
STI tube generates multi-scale spatial appearance and tem-
poral motion through multi-group convolution, and then ap-
plies feature recalibration by integrating multi-scale spatial
and temporal features to obtain effective spatial-temporal
features, simultaneously reducing the computational cost.
Specifically, the MSTI tube consists of multi-scale convo-
lution block and cross-scale attention weighted blocks. An
illustration of our MSTI tube is shown in Fig.1. The multi-
scale convolution block divides the input tensor into several
groups, and each group has their own convolutional filters.
For the first group, it’s output feature maps are directly cal-
culated by it’s input feature maps and filters. For the other
groups, the previous group’s output feature maps are sent to
the current group’s filters along with the current group’s in-
put feature maps. The cross-scale attention weighted block-
s integrate multi-scale spatial and temporal features, aim-
ing at selectively emphasizing informative spatial-temporal
features and suppressing less useful ones. In the spatial
branch, the cross-scale attention weighted block takes the
previous group’s spatial feature maps, the current group’s s-
patial and temporal feature maps as inputs, and then gener-
ates optimized spatial feature maps; In the temporal branch,
it takes the previous group’s temporal feature maps, the cur-
rent group’s temporal and spatial feature maps as inputs, and
then generates optimized temporal feature maps.

The main contribution of this work can be briefly summa-
rized as: 1) we design the multi-scale convolution block to
capture multi-scale representations on both spatial and tem-
poral domain; 2) we design the cross-scale attention weighted
blocks which integrate multi-scale spatial and temporal fea-
tures, aiming to perform feature recalibration by selectively
emphasizing informative spatial-temporal features and sup-
pressing less useful ones; 3) a deep network with low com-
putational cost, MSTI-Net, is put forward for learning robust
and accurate video representation. Experiment results show
that our MSTI-Net outperforms other methods on three chal-
lenging action recognition benchmarks, Kinetics-400, UCF-
101 and HMDB-51 with lower computational cost.

2 Related Work
With the rapid development of convolutional neural network-
s in the field of image, the video field is becoming a more
and more popular field people try to expand into. According
to the types of convolutions used in features learning, exist-
ing action recognition works can be briefly divided into two
categories: 2D CNN and 3D CNN based methods.

2D CNN based. Karpathy et al. [Karpathy et al., 2014] pro-
posed a “slow fusion” model which took the lead in fusing
temporal information into 2D CNNs. The model firstly ex-

tended temporal connectivity of all convolutional layers and
then computed activation through temporal and spatial con-
volutions. The two-stream structure proposed by [Simonyan
and Zisserman, 2014] is one of the influential approaches
which directly used two 2D CNNs to capture spatial and tem-
poral information respectively from RGB frames and stacked
optical flows, improving video recognition accuracy. Follow-
ing this idea, several studies have been presented to fuse these
two networks over the appearance and motion, e.g. the ST-
ResNet [Feichtenhofer et al., 2016] and the temporal segment
networks [Wang et al., 2016]. LRCN [Donahue et al., 2015]
tried to explore the possibility of combining LSTM network-
s with frame-level features of 2D CNNs to explicitly model
spatial-temporal relationships. Recently, the multi-scale rep-
resentations which are of great importance to various vision
tasks have been widely used in a number of networks, such
as Inception-Nets [Szegedy et al., 2017] and Res2Net [Gao et
al., 2019]. Meanwhile, at the channel level, the SE-Net [Hu
et al., 2018] extracted different channels’ attention to further
improve the quality of representations produced by a 2D net-
work, which achieved impressed results on image classifica-
tion.
3D CNN based. The 3D Convolutional Networks were first
presented for learning video representations over 16-frame
video clips in the context of large-scale supervised video
datasets [Tran et al., 2015]. Compared to 2D kernels which
merely model the spatial information, 3D convolution ker-
nels have the capability of modeling more complex rela-
tions between appearance and motion. The Res3D [Tran
et al., 2017] made one step further by taking the advan-
tage of residual connections to facilitate training. Similar-
ly, I3D [Carreira and Zisserman, 2017] was proposed to use
the inception network [Szegedy et al., 2017] as backbone
rather than residual networks to learn video representations.
Many architectures were also proposed to improve 3D con-
volution [Tran et al., 2018; Zhou et al., 2018; He et al., 2018;
Wang et al., 2018b]. However, all of these methods de-
manded more than an order of magnitude computational cost
than their 2D competitors. This made them difficult to train
and apply to practical applications. To overcome the limita-
tion of 3D CNN and decrease the number of parameters, the
P3D [Qiu et al., 2017] decomposed a 3D convolution kernel
into a 2D spatial kernel and a 1D temporal kernel to reduce
the computations of a 3D convolutional layer and achieved
better precision at the same time. Wu et al. [Wu et al., 2019a]
further optimized this kind of structure, and proposed a mu-
tually reinforced spatio-temporal convolutional tube (MRST)
to learn the correlation between spatial and temporal fea-
tures. Based on the depth-wise separable convolutions idea,
the work [Wu et al., 2019b] proposed depth-wise separable
3D convolution networks, which commendably simplified the
large inputs tensor.

3 MSTI Tube and Deep MSTI Network
3.1 MSTI Tube
The multi-scale spatial-temporal integration convolutional
tube (MSTI) applies the bottleneck structure, as shown in
Fig.1, which employs two 1 × 1 × 1 convolutional layers at
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(a) MSTI-spatial branch (b) MSTI-temporal branch (c) Spatial and temporal CAW blocks

Figure 2: The detailed architecture of our proposed MSTI tube. (a) MSTI-spatial branch: a stepped structure, generating spatial outputs which
have four spatial receptive fields and further optimizing them with four spatial CAW blocks. (b) MSTI-temporal branch: a stepped structure,
generating temporal outputs which have four temporal receptive fields and further optimizing them with four temporal CAW blocks. (c)
Spatial and temporal cross-scale attention weighted (CAW) blocks: Utilizing the output spatial-temporal feature maps of previous group and
current group to selectively emphasize informative spatial and temporal features and suppress useless ones.

both ends of the path to reduce and restore the channel dimen-
sions respectively, decreasing the overall computational cost.
In this section, we will first introduce concrete details of the
composition of the MSTI tube, i.e., the multi-scale convolu-
tion block and the spatial and temporal cross-scale attention
weighted blocks. We then present our robust and efficient
deep network, MSTI-Net for human action recognition.

Multi-Scale Convolution Block
In the multi-scale convolution block, we first evenly slice the
3D input feature maps X ∈ RL×H×W×C into four groups,
denoted by Xi ∈ RL×H×W×C̃ , where i ∈ {1, 2, 3, 4}, and
L,H,W, C̃ refer to the length, height, width and the number
of group channels, respectively.

In the MSTI-spatial branch, each group Xi has a corre-
sponding 1 × 3 × 3 spatial convolution, except that the first
group X1 is followed by a 1× 1× 1 spatial convolution. The
corresponding spatial convolution of each group are denoted
by Ks

i , and the outputs of each spatial convolution are named
Si. The whole multi-scale spatial convolution architecture
presents a stepped structure, as shown in Fig.2(a). The output
Si can be written as:

Si =

{
Ks

i (Xi) i = 1

Ks
i (Xi + Si−1) 2 ≤ i ≤ 4

(1)

From the above formula, we notice that each time the spatial
features split Si goes through a 1× 3× 3 spatial convolution-
al kernel, the output result can have a larger spatial receptive
field than Si, increasing by 2 in both the height and width di-
mensions. In this way, we get four different spatial receptive
fields, i.e., 1 × 1 × 1, 1 × 3 × 3, 1 × 5 × 5 and 1 × 7 × 7.
With these multi-scale spatial features, we can learn a more
discriminative spatial representation.

Similar to the MSTI-spatial branch, in the MSTI-temporal
branch, each input group Xi has a corresponding 3 × 1 × 1
temporal convolution, except that the first group X1 is fol-
lowed by a 1 × 1 × 1 temporal convolution. We denote the
corresponding temporal convolution of each group by Kt

i, and
named each temporal convolution’s outputs Ti, as shown in
Fig.2(b). The output Ti can be calculated by:

Ti =

{
Kt

i(Xi) i = 1

Kt
i(Xi + Ti−1) 2 ≤ i ≤ 4

(2)

Each time the temporal features split Ti goes through a
3 × 1 × 1 temporal convolutional kernel, the output’s tem-
poral receptive field increases by 2 in the length dimension-
s. Therefore, we obtain multi-scale temporal representation
with four different temporal receptive fields, i.e., 1 × 1 × 1,
3× 1× 1, 5× 1× 1 and 7× 1× 1.

In addition, the multi-scale (MS) convolution can also be
applied to reduce the impact of the large Cin or Cout on com-
putational complexity. We present the parameters of the 3D
convolution and our MS convolution in terms of formulas,
which can be shown as follows:

P(3D) = d× k × k × (Cin × Cout)

P(MS) = d× k × k ×N × (Cin/N × Cout/N)

= d× k × k × (Cin × Cout)/N = P(3D)/N

(3)

where d and k×k refer to the temporal and spatial kernel size,
respectively. We can see that compared to the original 3D
convolution, the MS convolution can reduce the number of
parameters by a factor ofN , and in the meantime keeping the
height, width as well as the length of feature maps unchanged.
We set N = 4 in our multi-scale convolution.
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Figure 3: Visualization of the spatial and temporal feature maps at
different scales. The left picture is a frame extracted from the base-
ball pitching video in UCF-101. The middle column of pictures are
the small-scale (1×3×3) and large-scale (1×7×7) spatial feature
maps of the left frame; The right column of pictures are the small-
scale(3× 1× 1) and large-scale (7× 1× 1) temporal feature maps
of the left frame and its adjacent frames.

Cross-Scale Attention Weighted Blocks
The spatial and temporal cross-scale attention weighted
(CAW) blocks in the MSTI tube are applied after the multi-
scale convolution block. The detailed architecture of spa-
tial and temporal CAW blocks are illustrated with Fig.2(c).
In the spatial and temporal CAW blocks, we integrate spa-
tial feature maps, temporal feature maps and the previous-
scale feature maps to further optimize spatial and tempo-
ral features, respectively, selectively emphasizing informative
spatial-temporal features and suppressing less useful ones.

We make a visualization of spatial and temporal feature
maps at different scales, as shown in Fig.3. we find that the
spatial feature maps (middle column) mainly concentrate on
the objects with surrounds, such as the human appearance and
the backgrounds, and the temporal feature maps (right colum-
n) mainly concentrate on the objects which are in continuous
motion, such as the human’s body and legs. Integrating spa-
tial and temporal feature maps can give a guideline to perfor-
m feature recalibration, which can pay more attention to the
humans and objects’ spatial appearance and temporal motion
rather than the backgrounds. In addition, compared to the
large-scale feature maps (the second row) which have larger
receptive fields and contain more spatial-temporal informa-
tion, the resolution of the small-scale feature maps (the first
row) is much finer, which can guide the attention of large-
scale resolution areas. Besides, in terms of the multi-scale
convolution structure, the previous group’s outputs are a part
of the current group’s inputs. Thus, the small-scale feature
maps is instructive to the large-scale feature maps.

We suppose each group’s multi-scale spatial and tempo-
ral convolution output tensors have the same size Si,Ti ∈
RL×H×W×C̃ . Then we can rewrite them as Si =
[si1, si2, . . . , siC̃ ] and Ti = [ti1, ti2, . . . , tiC̃ ], where sic, tic
refer to the features of the c-th channel in Si and Ti, respec-
tively. We first utilize three 1 × 1 × 1 convolutional layers

to integrate the spatial-temporal feature maps of the current
group and the optimized feature maps of the previous group,
except that in the first group, we only apply two 1×1×1 con-
volutional layers to integrate it’s spatial and temporal feature
maps. In the spatial and temporal CAW blocks, we calculate
the i-th group integrated features Ui as follows:

USi = W∗
SSS∗

i−1 + WSSSi + WTSTi

UTi = W∗
TT T∗

i−1 + WTT Ti + WST Si
(4)

where USi and UTi refer to the i-th group integrated spatial
and temporal features, respectively; W∗

SS , WSS , WTS re-
fer to the parameters of the three 1 × 1 × 1 convolutional
layers in spatial CAW block, and W∗

TT , WTT , WST refer
to the parameters of the three 1 × 1 × 1 convolutional lay-
ers in temporal CAW block. We can further rewrite Ui as
Ui = [ui1, ui2, . . . , uiC̃ ].

We then use a global average pooling operation to gener-
ate channel-wise statistics. Formally, a statistic zi ∈ RC̃ is
generated by shrinking the i-th group integrated features Ui

through its spatial-temporal dimensionsL×H×W , therefore
the c-th element of zi is calculated by:

zic = Fgp(uic) =
1

L×H ×W

L∑
k=1

H∑
m=1

W∑
n=1

uic(k,m, n)

(5)
To make a good use of the information aggregated in the

global average pooling operation, we follow it with an exci-
tation operation aiming to fully capture channel-wise depen-
dencies. The excitation function must firstly be capable of
learning a nonlinear interaction between channels, and sec-
ondly it must learn a non-mutually-exclusive relationship s-
ince we would like to ensure that multiple channels are al-
lowed to be emphasized. Thus, we apply the fully connected
layer and the sigmoid function to make the excitation opera-
tion, and the i-th group attention output is denoted by ai. The
function can be shown as follows:

ai = Fex(zi,W) = σ(Wzi) (6)

where σ refers to the sigmoid function, and W ∈ RC̃×C̃ de-
notes the weights of the fully connected layer.

The final outputs of the spatial and temporal CAW blocks
S∗
i and T∗

i are obtained by re-scaling multi-scale convolution
outputs Si and Ti with the activation ai:

s∗ic = Fweighted(sic, aisc) = aisc · sic
t∗ic = Fweighted(tic, aitc) = aitc · tic

(7)

where S∗
i = [s∗i1, s∗i2, . . . , s∗iC̃ ], T∗

i = [t∗i1, t∗i2, . . . , t∗iC̃ ] and
the weighted function refers to channel-wise multiplication
between the output attention and the spatial-temporal feature
maps.

Finally, we concatenate each group’s optimized spatial and
temporal features S∗

i and T∗
i together and calculate the final

outputs of our MSTI tube X∗ as follows:

S∗ = concat(S∗
1, S

∗
2, S

∗
3, S

∗
4)

T∗ = concat(T∗
1,T

∗
2,T

∗
3,T

∗
4)

X∗ = S∗ + T∗
(8)
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MSTI-Net
layer Repeat Kernel Strides output size
Input 16 × 224 × 224 × 3
conv1 1 3 × 7 × 7 (1, 2, 2) 16 × 112 × 112 × 64

MaxPool 3 × 3 × 3 (1, 2, 2) 16 × 56 × 56 × 64

conv2 x 1
2

MSTI (2, 1, 1)
(1, 1, 1)

8 × 56 × 56 × 256

conv3 x 1
3

MSTI (1, 2, 2)
(1, 1, 1)

8 × 28 × 28 × 512

conv4 x 1
5

MSTI (1, 2, 2)
(1, 1, 1)

8 × 14 × 14 × 1024

conv5 x 1
2

MSTI (1, 2, 2)
(1, 1, 1)

8 × 7 × 7 × 2048

global average pooling, fc layer with softmax 1 × 1 × 1 × N

Table 1: Architecture of the deep MSTI-Net. The details of each
convolutional layer are shown in brackets, in the order of the repeat
times, kernel, strides and output size. The dimensions of kernel and
strides are given by time, height, and width. The dimensions of
output size are given by time, height, width and number of channels.

3.2 Deep MSTI Network
We propose an efficient and effective MSTI-Net based on
the ResNet-50 structure. The proposed MSTI-Net has 50
layers, which contains an initial convolutional layer (con-
v1), a max-pooling layer, four convolutional residual blocks
(conv2-conv5) and a fully connected layer. The main idea
of the residual block is to learn the additive residual function
with reference to the unit inputs which is realized through a
shortcut connection, instead of directly learning unreferenced
non-linear functions [He et al., 2016]. The repeat times, ker-
nel size, strides and output size of each convolutional block
are all shown in Table 1. In the conv1 layer which is mainly
proposed to learn rough spatial-temporal features, we apply
3 × 7 × 7 as kernel. And in the other convolutional blocks,
we apply the MSTI tube as kernel. We don’t apply the tem-
poral pooling in the last three convolutional blocks in order to
ensure the effectiveness of multi-scale convolution and multi-
scale spatial-temporal information interaction.

4 Experiments
4.1 Datasets and Implementation Details
Datasets. We use three widely-used and challenging bench-
marks, i.e. Kinetics-400 [Kay et al., 2017], UCF-101 [Soom-
ro et al., 2012], and HMDB-51 [Kuehne et al., 2013] in the
experiments. The large-scale Kinetics-400 dataset consists
of about 300, 000 videos from 400 action categories. The
UCF-101 dataset is composed by 101 action categories and
13,320 manually labeled video clips in total. The HMDB-51
dataset is collected from various sources, e.g. movies and we-
b videos. It is composed by 51 categories and 6,849 labeled
video clips in total. Both UCF-101 and HMDB-51 consists of
three training/test splits provided by the datasets organizers.
We report the accuracy by averaging over all 3 splits.

Implementation details. Our data augmentation includes
random clipping on both spatial dimension (by firstly resizing
the smaller video side to 256 pixels, then randomly cropping
a 224 × 224 patch) and temporal dimension (by randomly
picking the starting frame among those early enough to guar-
antee a desired number of frames). To obtain the video pre-
dictions, we average clip predictions uniformly sampled from

method UCF-101 HMDB-51
P3D-B[Qiu et al., 2017] 86.9% 60.8%

Multi-Scale Convolution(T) 88.4% 64.2%
Multi-Scale Convolution(S) 89.6% 64.7%

Multi-Scale Convolution(ST) 90.7% 67.3%
MSTI 92.8% 70.4%

Table 2: Ablation study. Performance of our proposed MSTI
tube compared with P3D-B baseline and multi-scale convolution on
UCF-101 and HMDB-51. They use the same network backbone and
they are all pre-trained on Kinetics-400.

the long video sequence. We apply batch normalization and
ReLU nonlinearities [Nair and Hinton, 2010] to all convolu-
tional layers in our proposed network. We use the Adam Gra-
dient Descent optimizer with an initial learning rate of 1e−4

to train the MSTI-related networks from scratch. The drop
out ratio is set to 0.5 and the weight decay rate is set to 5e−5.
The gradient descent optimizer has the 1e−5 initial learning
rate, and it is adopted with a momentum of 0.9 to train our
MSTI-Net initialized with the Kinetics-400 and ImageNet-1k
pre-trained model. To prevent over-fitting, we further employ
a higher drop out ratio of 0.9 and a weight decay rate of 5e−4.

4.2 Ablation Study
To demonstrate the effectiveness of each component of our
proposed MSTI tube, we conduct a series of ablation exper-
iments on UCF-101 and HMDB-51 datasets. We choose the
P3D-B [Qiu et al., 2017] architecture as our baseline, which
is the only parallel structure in all three P3Ds. All architec-
tures use the same network backbone (with 8 convolutional
layers, 5 max-pooling layers, and 2 fully connected layers)
and the same 3D input size for a fair comparison. All archi-
tectures were pre-trained on the Kinetics-400 dataset.

Table 2 provides the comparison results in terms of the
Top-1 classification accuracy on both UCF-101 and HMDB-
51 datasets. We notice that compared to the P3D-B base-
line the multi-scale temporal convolution improves accura-
cy by 1.5% on UCF-101 and 3.4% on HMDB-51, and the
multi-scale spatial convolution can improve the performance
by 2.7% and 3.9% on UCF-101 and HMDB-51, respectively.
Applying multi-scale convolution on both spatial and tem-
poral dimensions can further improve the performance com-
pared to the multi-scale temporal convolution and multi-scale
spatial convolution, achieving 90.7% accuracy on UCF-101
and 67.3% accuracy on HMDB-51, which demonstrates that
the multi-scale convolution is effective and can greatly im-
prove performance. We also observe our final MSTI tube
which contains the spatial and temporal CAW blocks gets the
best performance, obtaining 92.8% and 70.4% accuracy on
UCF-101 and HMDB-51, respectively. This can demonstrate
the importance of integrating multi-scale spatial and tempo-
ral features, which aims to perform feature recalibration by s-
electively emphasizing informative spatial-temporal features
and suppressing less useful ones. Overall, we verify the ef-
fectiveness of two proposed blocks (multi-scale convolution
block and cross-scale attention weighted blocks) in our pro-
posed MSTI tube and we can see that the MSTI tube gets a
tremendous increase compared to the baseline P3D-B.
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Method Backbone Input×clips number Kinetics-400 #Params FLOPs
C3D [Tran et al., 2015] - [16× 3× 112× 112]× 1 56.1% 79.0M 296.7G

LRCN [Donahue et al., 2015] - [25× 3× 224× 224]× 1 63.3% 9.0M 41.5G
ARTNet [Wang et al., 2018a] ResNet18 [16× 3× 112× 112]× 25 69.2% 35.2M 25.7G

I3D-RGB [Carreira and Zisserman, 2017] BN-Inception [All × 3× 256× 256]× 1 71.1% 12.7M 544.4G
StNet [He et al., 2018] ResNet101 [25× 15× 256× 256]× 1 71.4% 52.2M 310.5G

R(2+1)D-RGB [Tran et al., 2018] ResNet34 [32× 3× 112× 112]× 10 72.0% 63.8M 152.4G
S3D [Xie et al., 2018] BN-Inception [All × 3× 224× 224]× 1 72.2% 8.8M 518.6G

MRST-Net [Wu et al., 2019a] ResNet101 [16× 3× 224× 224]× 20 74.1% 31.7M 99.6G
CFST [Wu et al., 2019b] ResNet34 [16× 3× 224× 224]× 50 74.6% 12.9M 14.1G

Nonlocal-I3D [Wang et al., 2018b] ResNet50 [32× 3× 224× 224]× 10 74.9% 35.3M 163.3G
SlowFast [Feichtenhofer et al., 2019] ResNet50 [64× 3× 224× 224]× 10 75.6% 32.9M 36.1G

MSTI(ours) ResNet50 [16× 3× 224× 224]× 20 76.1% 16.4M 46.3G

Table 3: Performance comparison with the state-of-the-art results on Kinetics-400 with only RGB frames as inputs. The dimensions of input
are given by the number of frames in a clip, the number of channels, the frame height and width size. Here, “All” means using all frames in
a video. Our detailed MSTI-Net architecture is shown in Table 1. #Params means the total number of model parameters and FLOPs means
floating point operations which both are the significant indicators to measure the computational cost.

4.3 Comparison to the State-of-the-Art Methods

We further demonstrate the advances of our proposed MSTI-
Net in comparison with state-of-the-art methods for human
action recognition. For fair comparison, all methods use only
RGB inputs. The detailed structure of our MSTI-Net is shown
in Table 1. We uniformly sample 20 clips per video and av-
erage these clip predictions to obtain the final video predic-
tion. The results on Kinetics-400, UCF-101 and HMDB-51
are shown in Tables 3 and 4, respectively.

Results on Kinetics-400. Table 3 shows the performance
comparison of our proposed MSTI-Net (pre-trained on
ImageNet-1k) against ten state-of-the-art methods in terms of
Top-1 classification accuracy on Kinetics-400. The proposed
MSTI-Net achieves 76.1% Top-1 classification accuracy, and
the total number of parameters is 16.4M and the FLOPs is
46.3G. We can see that our MSTI-Net surpasses existing
methods, improving the baseline C3D network[Tran et al.,
2015] by 20.0% at Top-1 classification accuracy. Moreover,
our MSTI-Net improves the second best compared method
SlowFast[Feichtenhofer et al., 2019] by 0.5% in terms of
Top-1 classification accuracy. In addition to this, the total
number of parameters and FLOPs of our MSTI-Net are much
fewer than those of most methods in the table. Compared to
the C3D baseline, the MSTI-Net has only 1/5 of the parame-
ters and 1/6 of the FLOPs. In short, the comparison indicates
that our MSTI-Net can learn more effective spatial-temporal
features much more efficiently.

Results on UCF-101 and HMDB-51. We also evaluate
the fine-tuning MSTI-Net (pre-trained on ImageNet-1k and
Kinetics-400) on UCF-101 and HMDB-51 datasets to inves-
tigate the generality and robustness. From Table 4, we can
observe that our proposed MSTI-Net outperforms all the ex-
isting state-of-the-art methods with only RGB inputs on both
UCF-101 and HMDB-51, which obtains 97.1% Top-1 classi-
fication accuracy on UCF-101 and 76.8% Top-1 classification
accuracy on HMDB-51. Compared to the second best method
R(2+1)D-RGB[Tran et al., 2018] on UCF-101, our MSTI-
Net improves 0.3% Top-1 classification accuracy. Compared
to the second best method MRST-Net[Wu et al., 2019a] on

Method UCF-101 HMDB-51
Two-stream[Simonyan and Zisserman, 2014] 73.0% 40.5%

C3D[Tran et al., 2015] 82.3% 51.6%
ST-ResNet-50[Feichtenhofer et al., 2016] 82.3% 48.9%

ST-ResNet-152[Feichtenhofer et al., 2016] 83.4% 46.7%
TSN[Wang et al., 2016] 85.7% 54.6%
Res3D[Tran et al., 2017] 85.8% 54.9%

P3D ResNet[Qiu et al., 2017] 88.6% -
MiCT-Net[Zhou et al., 2018] 88.9% 63.8%
ARTNet[Wang et al., 2018a] 94.3% 70.9%

I3D-RGB[Carreira and Zisserman, 2017] 95.6% 74.8%
R(2+1)D-34-RGB[Tran et al., 2018] 96.8% 74.5%

MRST-Met[Wu et al., 2019a] 96.5% 75.4%
MSTI(ours) 97.1% 76.8%

Table 4: Action recognition accuracy on UCF-101 and HMDB-51,
averaged over three splits. The top part of the table refers to relat-
ed methods with the Sports-1M pre-trained, the lower part refers to
related methods with the Kinetics-400 pre-trained.

HMDB-51, our MSTI-Net gets 1.4% Top-1 classification ac-
curacy improvement.

5 Conclusion
In this work, we address the problem of building highly effi-
cient deep neural networks for human action recognition from
the perspectives of generating multi-scale representations and
integrating multi-scale spatial-temporal features. We propose
a novel Multi-Scale Spatial-Temporal Integration Convolu-
tional Tube in which the multi-scale convolution block gen-
erates multi-scale spatial appearance and temporal motion,
and the cross-scale attention weighted blocks perform feature
recalibration by integrating multi-scale spatial and temporal
features. Benefiting from the two blocks, our MSTI-Net re-
quires significantly less computational resources yet achiev-
ing the state-of-the-art action recognition accuracy.
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