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Abstract
With the development of adversarial attack in deep
learning, it is critical for abnormal detector to not
only discover the out-of-distribution samples but
also provide defence against the adversarial at-
tacker. Since few previous universal detector is
known to work well on both tasks, we consider
against both scenarios by constructing a robust and
effective technique, where one sample could be
regarded as the abnormal sample if it exhibits a
higher image reconstruction error. Due to the train-
ing instability issues existed in previous generative
adversarial networks (GANs) based methods, in
this paper we propose a dual auxiliary autoencoder
to make a tradeoff between the capability of genera-
tor and discriminator, leading to a more stable train-
ing process and high-quality image reconstruction.
Moreover, to generate discriminative and robust la-
tent representations, the mutual information esti-
mator regarded as latent regularizer is adopted to
extract the most unique information of target class.
Overall, our generative dual adversarial network si-
multaneously optimizes the image reconstruction
space and latent space to improve the performance.
Experiments show that our model has the clear su-
periority over cutting edge semi-supervised abnor-
mal detectors and achieves the state-of-the-art re-
sults on the datasets.

1 Introduction
Anomaly detection attempts to detect abnormal samples that
are drawn far away from the learned distribution of training
samples. Heading into the deep learning era, deep neural net-
works are used as a general tool for anomaly detection task,
especially in secure authentication scenarios (e.g. , intrusion
detection and fraud detection). Since these techniques pro-
vide protection against abnormal activities, attackers will ex-
ploit some methods to circumvent these deep networks tech-
niques. Therefore, abnormal detection task requires identi-
fying not only the out of distribution samples, but also the
adversarial attackers. To our best knowledge, few universal
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Figure 1: Due to the compactness of the proposed entire latent space
corresponding to images from digit 8, all projections into the latent
space in return produce images of digit 8, even for the out of distri-
bution (digit 1) with higher reconstruction error. In attack example,
compared with CAE, the proposed method could get rid of interfer-
ence and restore to the original image.

detector is known to work well on both scenarios. Hence, it
is necessary for us to construct the robust and effective tech-
nique to against both of adversarial attacks and abnormalities.

A lot of GAN-style methods based on the image recon-
struction error are proposed for abnormal detection task such
as [Perera et al., 2019]. However, using image reconstruction
error to detect abnormal samples is not our original inten-
sion. Actually, our objective is to find more separable latent
representation features between normalities and anomalies by
optimizing the latent space. Besides, due to the imbalance
of capability between generator and discriminator, the train-
ing of GAN-style method is always unstable such that mode
collapse and non-convergence exist, leading to yield blurry
reconstructions.

Motivated by the above limitations, we propose a novel
dual adversarial autoencoder network under the semi-
supervised learning framework. The auxiliary autoencoder
is proposed to make a balance between generator and dis-
criminator, leading to a more stable training process, which
further fully taps the potential of GAN-style network with
lower training loss and high-quality reconstruction, as ver-
ified in section 4.2. Besides, To further identify in a low-
dimensional latent space, mutual information estimator re-
garded as a latent regularizer is expected to distinguish be-
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tween normal samples and abnormal ones in a discriminant
way. To achieve this objective, the most unique information
of the normal samples is extracted by mutual information es-
timator in the training process.

Compared with convolutional autoencoder, the proposed
method could learn the most representive concept of the tar-
get class in latent manifold by using the latent regularizer
and dual adversarial framework. To make an intuitive com-
parison, two learned latent manifolds of (digit 8) images are
obtained by convolutional autoencoder and proposed method
respectively, as shown in Figure 1. In our method, all pro-
jections into the latent manifold in return produce images
of digit 8, even for the out-of-distribution samples (digit 1),
which receives a higher reconstruction error. The main rea-
son is that our method could capture the real concept of tar-
get class (digit 8) in the entire latent manifold under the con-
straint, leading to a more compact learned latent manifold,
from which the abnormal samples could not be represented
well. While, as for the latent space learned from the conven-
tional convolutional autoencoder, the recovery of digital 1 is
more like to itself, which is harmful to distinguish. The sim-
ilar observation will be observed for adversarial attack sam-
ples.

Finally, we summarize the major contributions of this pa-
per:

• We propose a novel latent regularized dual adversarial
autoencoder network by jointly optimizing on recon-
struction space and latent feature space. To generate dis-
criminative and robust latent representations, the mutual
information estimator is adopted to constrain the learned
latent space in an unsupervised manner.

• To obtain more stable training process, an auxiliary au-
toencoder is introduced to make a balance of capability
between generator and discriminator, further fully tap-
ping the potential of GAN style network and achieving
high-quality image reconstruction.

• To present the effectiveness and robustness of proposed
method, multiple scenarios and several challenging de-
tection tasks are adopted to the experiments, where the
experimental results demonstrate that our method out-
performs many state-of-the-art competitors.

• We construct a new stop sign dataset with more com-
plex attacks such as BIM, DeepFool and FGSM, which
will be used to measure the robustness and effectiveness
of abnormal detection methods in adversarial examples
scenarios.

2 Related Work
2.1 Adversarial Attack
The fast gradient sign method (FGSM) [Goodfellow et al.,
2014] attends to find a small perturbation by using the gra-
dients of the neural network to create an adversarial attacks.
The purpose of this method is to let the deep neural network
make the wrong classification result. Instead of applying the
perturbation in a single step, basic iterative method (BIM)
[Kurakin et al., 2016] based on the fast gradient sign method
is applied multiple times with a smaller step size. In this

method, the pixel values of intermediate results are clipped
after each step to ensure that they are in a neighbourhood of
the original image. Moosavi-Dezfooli [Moosavi-Dezfooli et
al., 2016] proposes DeepFool attack method, which makes
a hyperplane separating each class. This method iteratively
linearizes the decision boundary by using a L2 minimization-
based formulation to search for adversarial examples. To de-
sign more complex scenarios, all of these adversarial attack
methods above are considered in the proposed dataset.

2.2 Out-of-distribution Samples Detection
Recently, deep learning based autoencoders [Rushe and
Mac Namee, 2019] are used to learn the real distribution
of normal behaviors and exploit reconstruction loss to detect
anomalies. For example, variational autoencoder (VAE) tack-
les the problem by learning a mapping to a lower dimensional
representation, where the real distribution is modeled. Out-
of-distribution samples will obtain high image reconstruction
error from the learned latent space. Some GAN-style work
[Perera et al., 2019; Sabokrou et al., 2018] also rely on im-
age reconstruction error to detect out-of-distribution samples.
However, original objective of abnormal detection task is to
make normal and abnormal samples more separable in the la-
tent representation features. All of these methods ignore the
importance of optimization in latent feature space. Besides,
GAN-style methods suffer from training process issue, lead-
ing to the blurry reconstructions.

2.3 Adversarial Samples Detection
To detect the adversarial samples, multiple strategies are pro-
posed to improve the robustness of deep networks. One part
of methods [Tramèr et al., 2017] is built upon the idea of ad-
versary training by taking adversarial samples into the train-
ing process. Another way of strategies [Liang et al., 2018]
is to design and train a subsidiary model to detect adversar-
ial samples. All of these methods need available adversarial
samples. However, in the real world applications, it is im-
practical to take all types of adversarial samples (maybe un-
known attack) into account, meanwhile collecting adversarial
samples for training is costly and time-consuming in the su-
pervised learning.

3 Proposed Method
3.1 Network Architecture
Proposed adversarial dual autoencoder network, which is
shown in Figure 2, consists of four components: two autoen-
coder networks, a discriminator and a mutual information es-
timator.

The first autoencoder served as generator attempts to gen-
erate the input image to fool the discriminator. To avoid be-
ing fooled, the discriminator learns the real characteristic of
input images to distinguish input images from generated im-
ages. Generator and discriminator compete with each other
while collaborating to understand the underlying concept in
the target class to obtain high-quality generated images.

The auxiliary autoencoder has the same structure as the
generator without sharing parameters. To deal with the unsta-
ble training process issue of adversarial learning, the auxiliary
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Figure 2: Our framework consists of two autoencoders, one discriminator and mutual information estimator.

autoencoder is proposed to make a balance between generator
and discriminator, leading to a more stable training process
and fully tapping the potential of GAN style network with
lower training loss. The objective of almost all prior abnor-
mal detection methods is to minimize the reconstruction error.
They hope to learn more discriminative latent representations
and use these representations directly to distinguish the nor-
mal samples from abnormal ones. However, the discrimina-
tive ability of the latent representations is not strongly related
to the reconstruction error. They ignore the significance of
optimization to the latent feature space. Therefore, We hope
that the representation regularized by mutual information es-
timator helps us to identify the sample from the input images.
In other words, the most unique information should be ex-
tracted from the input by mutual information estimator.

3.2 Overall Loss Function
In the training process, we define a loss function in equation
(1), consisting of five terms, the adversarial loss, the image re-
construction loss, the mutual information loss, the latent rep-
resentation loss and the dual autoencoder loss, which can be
formulated as :

L = wiLirec+waLadv +wzLzrec+weLe+wdLdual, (1)

where wi, wa, wz , we, and wd are the weighting parameters
balancing the impact of individual item to the overall object
function.

Adversarial Loss. Adversarial loss is adopted to train the
first generator G and discriminator D. According to the pre-
vious work, this adversarial game could be formulated as:

Ladv =min
G

max
D

(Ex∼px [log(D(x))]

+Ex∼px [log(1−D(G(x)))]) .
(2)

Image Reconstruction Loss. In order to fool the discrim-
inator, the generator tries to generate high-quality images in
the process of training by minimizing the pixel-wise error be-
tween original input images x and generated images G(x).

Lirec = Ex∼px∥x−G(x)∥1 (3)

Latent Representation Loss. Only for target class sam-
ples, the auxiliary autoencoder can reconstruct the latent rep-
resentation z well from generated image x′. Besides, the la-
tent regularizer might incur the distribution distortion in latent
feature space, the feature representation z′ can be regarded as
the anchor to prevent z from drifting. Hence, we consider to
add a constraint by minimizing the distance between latent
feature of input images Ge(x) from generator and encoded
latent feature of generated image Ge′(x

′) from auxiliary en-
coder as follows.

Lzrec = Ex∼pX
∥Ge(x)−Ge′(x

′)∥2 (4)

Dual Autoencoder Loss. we regard the auxiliary autoen-
coder as a discriminatorD′. Compared with conventional ad-
versarial loss, we match distribution between losses, Ldirec

and Lgirec, not between samples. The training objective of
this discriminator is to reconstruct the realistic inputs x faith-
fully while fail to do so for generated input G(x), as shown
below:

Lgirec = ∥x−D′(x)∥1,Ldirec = ∥G(x)−D′(G(x))∥1, (5)

Ldual = Lgirec − kLdirec, (6)

where k controls how much emphasis is put on the pixel-wise
error of generated input Ldirec during gradient descent.

Mutual Information Loss. Mutual information [Yang et
al., 2019] measures the essential relevance of two instances,
which can also be adopt to estimate the similarity between the
input sample X and the latent feature Z. The mutual infor-
mation could be formulated as:

I(X,Z) =

∫∫
p(z|x)p(x) log p(z|x)

p(z)
dxdz, (7)

where p(x), p(z|x) and p(z) are the distribution of original
input data, latent feature and latent space respectively, and
then p(z) =

∫
p(z|x)p(x)dx. The aim of encoder is to ex-

tract the most unique feature from the original input sample.
To achieve it, the mutual information between input sample
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and feature should be as large as possible, which could be
formulated as:

p(z|x) = max
p(z|x)

I(X,Z). (8)

In addition, To make latent space more regular, the hid-
den feature vector obeys the prior distribution of the standard
normal distribution with KL divergence, which is combined
with equation (7) and equation (8) with different weights. We
can get the minimum objective function.

p(z|x) = min
θe

{−βI(X,Z)

+γEx∼p(x)[KL(p(z|x)∥q(z))]
}
.

(9)

We hope to maximize mutual information between input
X and feature. However, the KL divergence is unbounded.
In order to optimize more effectively and enlarge the distance
between p(z|x)p(x) and p(z)p(x), we do not use KL diver-
gence and change a metric with an upper bound: JS diver-
gence.

p(z|x) = min
θe

{−βJS(p(z|x)p(x), p(z)p(x))

+γEx∼p(x)[KL(p(z|x)∥q(z))]
}
.

(10)

According to the definition of variational estimation of JS
divergence [Nowozin et al., 2016], we substitute p(z|x)p(x)
and p(z)p(x) into formula:

Leg = min
θe

{
−β

(
E(x,z)∼p(z|x)p(x)[log σ(T (x, z))]

+E(x,z)∼p(z)p(x)[log(1− σ(T (x, z)))]
)

+γEx∼p(x)[KL(p(z|x)∥q(z))]
}
.

(11)

This approach follows Mutual Information Neural
Estimation[Belghazi et al., 2018], which estimates mutual
information by training a discriminator σ(T (x, z)) to distin-
guish positive sample pair, consisting the input image and
corresponding latent feature z, from the negative sample pair,
including the same input image and noise feature vector zt
randomly selected from the disturbed batch. equation (11)
shows the global mutual information between X and Z.

We also consider local mutual information Lel in Figure
3, which measures the relevance between the feature map of
input image and its latent feature. The discriminator distin-
guishs the positive pair (feature map of input samples and its
latent feature) from the negative pair (feature map of random
image and the same latent feature as above). Therefore, the
mutual information loss includes global mutial information
loss and local mutial information loss, which can be formu-
lated as follows: Le = Leg + Lel .

3.3 Optimization
In the process of training, the generator and the auxiliary
autoencoder are trained by optimizing image reconstruction
loss, latent representation loss, dual autoencoder loss and mu-
tual information loss. All of components are randomly initial-
ized. We use adaptive moment estimation(Adam) as the op-
timizer and set the initialized learning rate as 0.002. For all

M×M features drawn from 
another image

  M×M features of input image
+ replicated feature vector of 
input image

Real
/Fake

Discrim
inator

Feature 
vector 

Figure 3: Local mutual information estimation. The feature map is
obtained from the middle layer of convolutional network. The latent
feature is extracted from the encoder.

experiments, we train on the standard training set and test on
the validation set. Besides, data augmentation (random crop-
ping and horizontal flipping) and normalization (subtracted
and divided sequentially by mean and standard deviation of
the training images) is applied to all the training images.

4 Experiments
4.1 Experimental Setting
Datasets. We evaluate proposed method on the well-
known COIL100, MNIST, CIFAR10 and fMNIST datasets in
out-of-distribution samples detection experiments. In addi-
tion, DCASE dataset is considered in the experiment, which
is a public available acoustic novelty detection dataset.

To evaluate adversarial attacks detection task, we use the
GTSRB dataset [Stallkamp et al., 2011] including adversarial
boundary attack on stop signs boards. Moreover, for physical
adversarial examples detection, Replay-Attack [Chingovska
et al., 2012] dataset and CASIA-MFSD dataset consider dif-
ferent attacks in face anti-spoofing detection task.

Evaluation Methodology. Two protocols in the literature
are proposed for abnormal detection [Perera et al., 2019].
Protocol 1 : 80% of in-class samples are regarded as nor-

mal class, the rest of 20% of in-class samples are adopt in
testing process. Out-of-class samples are serviced as abnor-
mal class, which are randomly selected from testing dataset,
constituting half of the test set.

Protocol 2 : All of in-class samples from the training part
of dataset is only used to train in the proposed method. Test-
ing data of all classes are used for testing.

Evaluation Measures. The performance metrics we em-
ployed are Area Under Curve (AUC) and Half Total Error
Rate (HTER) [Bengio and Mariéthoz, 2004].

Implementation Details. For a given test point x , we
can naturally define an anomaly score s for proposed method
by calculating the distance between input sample and corre-
sponding generated image G′

d(G
′
e(G(x))), as follows s =

∥x − G′
d(G

′
e(G(x)))∥1. We implement our approach in Py-

Torch by optimizing the weighted loss (defined in equation
(1)) with the weight values wi = 1, wa = 5, wz = 1,

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

763



MNIST STOP SIGN
Single autoencoder 0.510 0.194
Single autoencoder
+ Discriminator 0.531 0.403

Dual autoencoder
+ Discriminator 0.972 0.894

Dual autoencoder
+ Discriminator
+ Mutual information

0.985 0.921

Table 1: Ablation study for proposed method performed on MNIST
and STOP SIGN (AUC).
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Figure 4: Training loss comparison between single autoencoder and
dual autoencoder.

we = 0.05 and wd = 1, which are empirically chosen to
yield optimum results. For dual autoencoder loss, the param-
eter k is set to 0.4. The experiments are carried out on a stan-
dard PC with a NVIDIA-1080 GPU and a multi-core 2.1 GHz
CPU. The detailed structures of the autoencoder, the auxiliary
autoencoder, mutual information estimator and discriminator
are described in Figure 2.

4.2 Ablation Study
Setup. To investigate the effectiveness of each additional
component, as illustrated in Table 1, we conduct experiments
based on the these four scenarios by using Protocol 2 in
out of distribution samples (MNIST) and adversarial samples
(STOP SIGN) dataset.
Results. Mean AUC for each class of MNIST dataset and
STOP SIGN dataset is presented in Table 1. The potential of
GAN style network is fully tapped by dual autoencoder and
makes a great improvement for the performance. Besides,
Full proposed model generates discriminative and robust la-
tent representations by using the mutual information estima-
tor to regularize the learned latent space. The performance
improves further by 1.3% and 2.7% respectively in MNIST
and STOP SIGN.

To further prove the stabilization effect of dual autoencoder
component, we show the plot of training loss for discrimina-
tor and generator, as illustrated in Figure 4. To sum up, thanks
to the dual autoencoder, we can easily observe that the dual
autoencoder structure could make a balance between the ca-
pability of generator and discriminator and further tap the po-
tential of GAN style network with lower training loss, leading
to a more robust and accurate detector.

4.3 Out-of-distribution Samples Detection
Setup. In this subsection, we present that the proposed
method has the clear superiority over cutting-edge semi-
supervised abnormal detectors(i.e., ALOCC [Sabokrou et al.,

Methods MNIST COIL fMNIST
ALOCC DR (’18) 0.88 0.809 0.753
ALOCC D (’18) 0.82 0.686 0.601
DCAE (’14) 0.899 0.949 0.908
GPND (’18) 0.932 0.968 0.901
OCGAN (’19) 0.977 0.995 0.924

Proposed method 0.985 1.0 0.995

Table 2: Mean One-class abnormal detection using Protocol 1.

Figure 5: Class designated as normal class

2018],OCGAN [Perera et al., 2019]). We consider to use both
of protocols in the experiments. MNIST, COIL and fMNIST
datasets are applied in the protocol 1. MNIST and CIFAR10
dataset are evaluated by the protocol 2. We also evaluate the
DCASE dataset in acoustic novelty detection task by proto-
col 2. DCASE dataset includes three different abnormal event
(i.e., gunshot, babycry and glassbreak). All of these abnormal
event audios are artificially mixed with background audios re-
spectively which includes 15 different kinds of environmental
settings (i.e., home, bus, and train).

Results. When protocol 1 is used in MNIST, COIL and fM-
NIST, proposed model yields an improvement in Table 2. For
CIFAR10 dataset in protocol 2, as it is shown in Figure 5. Our
method achieves the best performance compared with other
compatitors. In term of AUC value, it is illustrated by us-
ing red curves in Figure 5. For MNIST dataset in protocol 2,
proposed method is on par with other state-of-art approaches,
which is presented in Figure 6.

In acoustic anomaly detection task, proposed method aims
at distinguishing abnormal acoustic signals from the normal
ones. The performance of three models across the 15 datasets
is shown in Table 3. We find that the proposed model consis-
tently outperforms WaveNet [Rushe and Mac Namee, 2019]
in almost all datasets, with a tie in a residential area scenario.

Figure 6: Digit designated as normal class
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Loss composition CAE (’16) WaveNet (’19) Proposed method
Beach 0.69 0.72 0.82
Bus 0.79 0.83 0.96

Cafe/restaurant 0.69 0.76 0.80
Car 0.79 0.82 0.99

City center 0.75 0.82 0.89
Forest path 0.65 0.72 0.78

Grocery store 0.71 0.77 0.90
Home 0.69 0.69 0.90
Library 0.59 0.67 0.89

Metro station 0.74 0.79 0.89
Office 0.78 0.78 0.87
Park 0.70 0.80 0.95

Residential area 0.73 0.78 0.78
Train 0.82 0.84 0.92
Tram 0.80 0.87 0.97

Table 3: AUC scores for all methods on each dataset for acoustic
anomaly detection.

Methods Boundary FGSM BIM Deepfool
OC-SVM/SVDD (’01) 67.5±1.2 19.9±0.1 19.9±0.9 18.6±0.1

KDE (’06) 60.5±1.7 69.3±0.4 53.3±0.4 51.8±0.5
IF (’11) 73.8±0.9 44.4±0.8 53.9±0.6 51.1±0.9

DCAE (’15) 79.1±3.0 36.7±0.5 45.1±0.0 36.8±0.5
MAHALANOBIS (’17) 56.0±0.5 58.1±0.3 56.1±0.5 56.7±0.9
SOFT-BOUND (’18) 77.8±4.9 82.7±0.5 74.9±0.8 78.4±0.4
ONE-CLASS (’18) 80.3±2.8 82.8±0.1 81.8±0.5 65.8±0.7

RCAE (’17) 87.4±2.7 57.6±0.7 64.5±0.8 46.3±0.3
Ours 90.5±1.6 84.4±0.2 85.9±0.9 84.6±0.5

Table 4: Average AUCs in % with StdDevs (over 10 seeds) per
method on GTSRB stop signs with adversarial attacks.

4.4 Adversarial Attack Detection
Setup. To evaluate the robustness and anti-noise ability of
the proposed method, we present the proposed method in two
attack scenarios. Stop sign adversarial samples are generated
from randomly drawn stop sign images of the test set by using
Boundary Attack. Besides, to further evaluate the proposed
method on more complex adversarial attack scenario, three
adversarial attack datasets based on the stop sign images are
generated by using FGSM, BIM and DeepFool respectively in
our proposed dataset. The main competitors include RCAE
[Chalapathy et al., 2017], ONE-CLASS [Chalapathy et al.,
2018] and SOFT-BOUND[Ruff et al., 2018].

Another scenario belongs to physical adversarial attack,
which is face anti-spoofing detection task. Spoof face data
poses a great threat to face recognition systems [Patel et al.,
2016]. Presentation attacks (abbreviated as PA), including
printed paper face, replaying a video, and wearing a mask,
are one of the most prevalent face spoofs. To present robust-
ness and generalization of approaches, we consider training
on the training set of the CASIA-MFSD dataset and test-
ing on the testing set of the Replay-Attack dataset. We then

Figure 7: Most anomalous stop signs detected by proposed method.
Adversarial examples are highlighted in green.

Methods Train Test Train Test AverageCASIA
MFSD

Replay
Attack

Replay
Attack

CASIA
MFSD

LBP (’13) 47.0% 39.6% 43.3%
LBP-TOP (’13) 49.7% 60.6% 55.2%
Motion (’13) 50.2% 47.9% 49.1%
CNN (’14) 48.5% 45.5% 47.0%

Color LBP (’15) 37.9% 35.4% 36.7%
Color Tex (’16) 30.3% 37.7% 34.0%
Color SURF (’18) 26.9% 23.2% 25.1%
Auxiliary (’18) 27.6% 28.4% 28.0%
De-Spoof (’18) 28.5% 41.1% 34.8%
GFA-CNN (’19) 21.4% 34.3% 28.0%
Proposed method 22.3% 24.6% 23.4%

Table 5: Classification performance of the proposed approach in
terms of HTER (%). The algorithm are trained using the CASIA-
MFSD dataset and tested on the Replay-Attack dataset, and vice
versa.

conduct the opposite experiment. The main competitors in-
clude GFA-CNN[Tu et al., 2019], De-Spoof [Jourabloo et al.,
2018], Auxiliary [Liu et al., 2018], Color Tex [Boulkenafet et
al., 2016] and Color LBP [Boulkenafet et al., 2015].
Results. For stop sign adversarial samples detection, Table
4 presents proposed method exactly detect the adversarial at-
tack and achieves the best performance. In addition, Figure 7
shows the most anomalous samples detected by the proposed
method which consists of adversarial attack samples and in-
correctly cropped samples. For face anti-spoofing detection
task, Table 5 confirms that the proposed method achieves
comparable performance (HTER = 0.223) on the Replay-
Attack testing set which includes different types of spoofing
attacks. In the opposite experiment, our method achieves
competitive performance (HTER = 0.246) for the cross
testing on the testing set of the CASIA-MFSD dataset. We
achieve the best average value in crossing datasets setting.

5 Conclusion
To detect the out of distribution samples and adversarial at-
tacks in the abnormal detection task, we proposed a novel
dual adversarial autoencoder framework. To deal with the
instability issue of GAN methods, the auxiliary autoencoder
makes a balance of capacity between generator and discrim-
inator, leading to a more stable training process. In addition,
to further identify the latent space, mutual information es-
timator is adopted to extract the unique characteristics of the
target class and regularize the latent representation. Extensive
experiments have been conducted on public available datasets
and more complex proposed datasets, showing high general-
ization capability of trained models.
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and Sébastien Marcel. On the effectiveness of local bi-
nary patterns in face anti-spoofing. In 2012 BIOSIG-
proceedings of the international conference of biometrics
special interest group (BIOSIG), pages 1–7. IEEE, 2012.

[Goodfellow et al., 2014] Ian J Goodfellow, Jonathon
Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[Jourabloo et al., 2018] Amin Jourabloo, Yaojie Liu, and Xi-
aoming Liu. Face de-spoofing: Anti-spoofing via noise
modeling. In Proceedings of the ECCV, pages 290–306,
2018.

[Kurakin et al., 2016] Alexey Kurakin, Ian Goodfellow, and
Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

[Liang et al., 2018] Bin Liang, Hongcheng Li, Miaoqiang
Su, Xirong Li, Wenchang Shi, and XiaoFeng Wang. De-
tecting adversarial image examples in deep neural net-
works with adaptive noise reduction. IEEE Transactions
on Dependable and Secure Computing, 2018.

[Liu et al., 2018] Yaojie Liu, Amin Jourabloo, and Xiaom-
ing Liu. Learning deep models for face anti-spoofing: Bi-

nary or auxiliary supervision. In Proceedings of the IEEE
Conference on CVPR, pages 389–398, 2018.

[Moosavi-Dezfooli et al., 2016] Seyed-Mohsen Moosavi-
Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: a simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE conference on
CVPR, pages 2574–2582, 2016.

[Nowozin et al., 2016] Sebastian Nowozin, Botond Cseke,
and Ryota Tomioka. f-gan: Training generative neural
samplers using variational divergence minimization. In
Advances in neural information processing systems, pages
271–279, 2016.

[Patel et al., 2016] Keyurkumar Patel, Hu Han, and Anil K
Jain. Secure face unlock: Spoof detection on smartphones.
IEEE Transactions on Information Forensics and Security,
11(10):2268–2283, 2016.

[Perera et al., 2019] Pramuditha Perera, Ramesh Nallapati,
and Bing Xiang. Ocgan: One-class novelty detection using
gans with constrained latent representations. In Proceed-
ings of the IEEE Conference on CVPR, pages 2898–2906,
2019.

[Ruff et al., 2018] Lukas Ruff, Robert Vandermeulen, Nico
Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep
one-class classification. In International conference on
machine learning, pages 4393–4402, 2018.

[Rushe and Mac Namee, 2019] Ellen Rushe and Brian
Mac Namee. Anomaly detection in raw audio using deep
autoregressive networks. In ICASSP 2019-2019 IEEE,
pages 3597–3601. IEEE, 2019.

[Sabokrou et al., 2018] Mohammad Sabokrou, Mohammad
Khalooei, Mahmood Fathy, and Ehsan Adeli. Adver-
sarially learned one-class classifier for novelty detection.
In Proceedings of the IEEE Conference on CVPR, pages
3379–3388, 2018.

[Stallkamp et al., 2011] Johannes Stallkamp, Marc Schlips-
ing, Jan Salmen, and Christian Igel. The german traffic
sign recognition benchmark: A multi-class classification
competition. In IJCNN, volume 6, page 7, 2011.

[Tramèr et al., 2017] Florian Tramèr, Alexey Kurakin, Nico-
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