
k-SDPP: Fixed-Size Video Summarization via Sequential
Determinantal Point Processes

Jiping Zheng1,2 and Ganfeng Lu1

1College of Computer Science & Technology, Nanjing University of Aeronautics & Astronautics
2Collaborative Innovation Center of Novel Software Technology and Industrialization

{jzh, luganf}@nuaa.edu.cn

Abstract
With the explosive growth of video data, video
summarization which converts long-time videos to
key frame sequences has become an important task
in information retrieval and machine learning. De-
terminantal point processes (DPPs) which are el-
egant probabilistic models have been successfully
applied to video summarization. However, exist-
ing DPP-based video summarization methods suf-
fer from poor efficiency of outputting a specified
size summary or neglecting inherent sequential na-
ture of videos. In this paper, we propose a new
model in the DPP lineage named k-SDPP in vein of
sequential determinantal point processes but with
fixed user specified size k. Our k-SDPP partitions
sampled frames of a video into segments where
each segment is with constant number of video
frames. Moreover, an efficient branch and bound
method (BB) considering sequential nature of the
frames is provided to optimally select k frames del-
egating the summary from the divided segments.
Experimental results show that our proposed BB
method outperforms not only k-DPP and sequential
DPP (seqDPP) but also the partition and Markovian
assumption based methods.

1 Introduction
With the popularity of camera devices, a large number of
videos are captured every day. Especially after entering the
5G era, each of us equipped with a mobile phone is a poten-
tial photographer who can produce video data anytime and
anywhere. In 2019, it was estimated that there are 38 EB
video data produced by mobile applications per month and
will increase to 160 EB per month in 2025 [Eri, 2019]. It
is a huge problem to store and manage these video data and
no individual or company can afford to store all the video
data. Meanwhile, browsing these huge video data is time-
consuming. Fortunately, an efficient way to handle the explo-
sive data is automatical summarization of the videos which
converts long videos to key frame sequences.

In the literature of video summarization [Vivekraj et al.,
2019], models of the DPP lineage have shown great success
to select informative subsets for users [Kulesza and Taskar,

2012]. Originating from quantum physics and random ma-
trix theories, DPP is a powerful tool to balance two impor-
tant properties of video summarization, importance and diver-
sity. Compared to traditional independent sampling methods,
DPP has more advantages in terms of diversity [Hough et al.,
2006] and has been applied to many data summarization ap-
plications, such as image search [Kulesza and Taskar, 2011a],
document summarization [Kulesza and Taskar, 2011b], rec-
ommendation systems [Zhou et al., 2010], sensor placement
[Krause et al., 2008], etc. Even DPP-based models work
well in various scenarios for video summarization, they have
some inherent drawbacks. For vanilla DPP-based [Kulesza
and Taskar, 2012] and some other video summarization al-
gorithms [Kulesza and Taskar, 2011a; Zhang et al., 2016;
Celis et al., 2018], they usually ignore the sequences between
the video frames. For example, if there is a video about a
football match, there may be two frames about players who
have scored in the same position at two different moments.
Then the algorithms according to these DPPs will not keep
these two frames simultaneously in the summary for violat-
ing the DPP’s standard of diversity. But these two frames
are very valuable frames both needed to be included in the
summary. To address this issue, [Gong et al., 2014] proposes
seqDPP which fully considers the sequence correlation be-
tween video frames. However, seqDPPs [Gong et al., 2014;
Sharghi et al., 2016] cannot control the outputting size for
each summarizing task. But on many occasions when sum-
marizing a video, we need to predetermine the size of the
result (or no more than a certain value).

To output a summary with fixed size, efforts include k-
DPPs [Kulesza and Taskar, 2011a], Partition-DPPs [Zhang
et al., 2016] and Generalized DPPs (GDPPs) [Sharghi et al.,
2018]. Different from k-DPPs which directly model sets of
fixed size and further normalize and sample from these sets
for the summary, Partition-DPPs divide the frames of a video
into partitions and extract frames with certain size from each
partition, then total length of the extracted frames equals to
the user specified size. A GDPP can be considered as a mix-
ture of k-DPPs, thus k-DPP including DPP is a special case of
GDPP. However, large size of each partition (Partition-DPPs)
or component (GDPPs) makes probabilistic inference expen-
sive and leads to low efficiency to get the final summary.
Moreover, these DPP-based models are based on the charac-
teristic of diversity which do not take the users’ supervisions
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into account and neglect the sequential nature of videos.
In this paper, we propose k-SDPP, a new probabilistic

model in the DPP lineage. k-SDPP outputs a fixed-size, e.g.,
k video frames via sequential determinantal point processes.
Unlike k-DPPs, Partition-DPPs and GDPPs, our k-SDPP di-
vides a long video sequence into disjointed consecutive short
segments. Since final k frames are selected from these seg-
ments, we propose branch and bound method (BB) to opti-
mally allocate the k frames to the disjointed consecutive seg-
ments. We show that seqDPP is a special case of our BB
method which greedily outputs a summary. Besides seqDPP,
we also compare our BB method with other typical methods
including k-DPP, partition and Markovian assumption based
solutions.

The rest of this paper is organized as follows. Section 2
surveys most related work. Section 3 introduces related DPP
models. Our proposed DPP model, k-SDPP along with the
branch and bound method is detailed in Section 4. Section
5 experimentally evaluates our method, and Section 6 con-
cludes this paper.

2 Related Work
There are plenty of methods for video summarization and ap-
plying blooming DPP-based approaches to summarize videos
is an important aspect for video summarization [Vivekraj
et al., 2019]. Two categories of video summarization ap-
proaches are emphasized in the literature, namely, property-
based and DPP-based. For property-based approaches, a vari-
ety of properties, such as representativeness, diversity, impor-
tance, interestingness, storyness etc. are exploited to summa-
rize a video. For DPP-based approaches, various DPP models
are utilized to learn the criteria from humman-annotated sum-
maries automatically in a supervised manner. We only survey
most related DPP-based approaches due to space limitation.

To deal with the inherent sequences of videos, Markov
DPP [Affandi et al., 2012] defines conditional probabilities
depending on the immediate past segment and helps to ex-
plore the frames of interest to users by providing sequential
and diverse results. To avoid the disturbance of the frames
far from each other of Markov DPP, [Gong et al., 2014] pro-
poses seqDPP which can fully consider the order correlation
between video frames and faithfully represent the relation-
ship between the video data. In addition, they also propose
ways to teach the system to learn from human-created sum-
maries, so that the final summary is closer to human-created
results. SeqDPP calculates conditional probabilities depend-
ing only on the immediate past segment which is the same as
Markov DPP [Affandi et al., 2012]. The main difference is
that seqDPP selects diverse sets from the present time instead
of the whole video sequence of Markov DPP. Thus Markov
DPP fails to select video frames following inherent temporal
order and cannot model the sequential nature faithfully. Fur-
ther, [Sharghi et al., 2016] extends seqDPP to SH-DPP (Se-
quential and Hierarchical DPP) which aims to advance the
user-oriented video summarization by modeling user queries
in the summarization process. SH-DPP has two layers of ran-
dom variables. The first layer is used to select the frames
relevant to the user queries while the second layer models the

importance of the frames in the context of the videos. SH-
DPP is efficient in modeling extremely lengthy videos and
capable of producing summaries on the fly. [Celis et al.,
2018] presents a framework to integrate fairness constraints
into determinantal distributions and provides efficient algo-
rithms to sample from these distributions for video summa-
rization. Moreover, [Mirzasoleiman et al., 2018] finds that
the DPP probability is a log-submodular function and they
use submodular techniques to seek a near-optimal function.
They develop single pass streaming algorithm streaming lo-
cal search by above three orders of magnitudes to the state-
of-art algorithms with approximation theoretical guarantees
for streaming video data.

To tackle the problem that outputting fixed-size sum-
mary for DPP-based models, [Kulesza and Taskar, 2011a;
Li et al., 2016] directly model sets of fixed size and further
normalize and sample from these sets for summary. [Kathuria
and Deshpande, 2016] proposes Partition-DPPs which di-
vides a long video sequence into p partitions where each par-
tition can be represented as a ki-DPP (i = 1, 2, ..., p and∑p

i=1 ki = k). The partition process makes probabilistic in-
ference easy. However, Partition-DPPs do not consider the
sequences of the videos. GDPP [Sharghi et al., 2018] which
is also in vein of seqDPP allows users to control the lengths of
system-generated video summaries where an arbitrary prior
distribution can be imposed over the sizes of the subsets of
video frames. They show that vanillia DPPs and k-DPP are
special instances of GDPP and DPPs in seqDPP can be substi-
tuted by GDPPs. But GDPPs also suffer from low efficiency
of probabilistic inference which is performed in each compo-
nent i.e., a DPP or k-DPP of GDPP.

3 Preparation
In this section, we introduce DPP, k-DPP and seqDPP for
video summarization and further detail our k-SDPP along
with the BB method in the next section.

3.1 Determinantal Point Process
Determinantal point process (DPP) is a model which was first
used to characterize Pauli exclusion where two identical par-
ticles cannot occupy the same quantum state simultaneously
[Macchi and Odile, 1975]. The identity of exclusion makes
DPP a tool for modeling diversity so that DPP is appropriate
for video summarization. In this section, we first give basic
concepts about DPP.

Let G = {1, 2, ..., N} be a ground set of N frames of
a video. Note that a video frame is usually represented by
its feature vector, e.g., Fisher vector [Perronnin and Dance,
2007] which can well cover the content of a frame. A deter-
minantal point process (DPP) defines a discrete probability
distribution over all 2N subsets of G. Let X be the random
variable of selecting a subset from the collection of these 2N

subsets and X is distributed according to

P (X = x) =
det(Lx)

det(L + I)
(1)

And we also have
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det(L + I) =
∑
X⊆G

det(LX) (2)

where the kernel matrix L ∈ (RN×N
+ ) is the DPP’s param-

eter constrained to be positive semidefinite. The rows and
columns of L are indexed by the frames in G while Lx is
the sub-matrix of the L whose rows and columns are selected
according to the frames in subset x. I is the N ×N identity
matrix. The det(·) is a determinant function which makes the
model have the identity of pairwise repulsion. For example,
if a subset X with only two elements i and j is selected, we
have

P (X = {i, j}) = LiiLjj − L2
ij (3)

From Equation 3, we find that the more i and j are similar
to each other, the less probability they will be in the same
subset. In extreme case i = j, we have P = 0 (because
Lii = Ljj = Lij). Each value in matrix L is to measure the
probability that the corresponding two elements could be in
the same subset. Also, the most diverse subset of G will have
the largest value of det(·), and it has the highest probability
as shown in Equation 4.

x∗ = arg max
x⊆G

P (X = x) = arg max
x⊆G

det(Lx) (4)

To find the best subset from all G’s 2N subsets is obvi-
ously an NP-hard problem, an efficient way is the sampling
method. Eigen-decomposition on matrix L can be performed
first, then the size of the summary is randomly determined
by sampling based on its eigenvalue. Finally, according to
the size of the summary, the frames are selected from the
ground set according to the principle of diversity [Kulesza
and Taskar, 2012].

For video summarization, we need to select a subset of
all frames in a video over a DPP. And now we have some
training frames in the form of videos and the ground-truth
summaries. The most important thing for us is to find the
underlying parameter matrix L which is exploited to gener-
ate summaries for this video. Because the video we need to
summarize may have frames that have not been seen in the
training samples, L needs to be reparameterized. [Kulesza
and Taskar, 2011b] proposes quality/diversity decomposition
to reparameterize L.

Lij = qiφ
T
i φjqj , qi = exp(

1

2
θT fi) (5)

where φi is the normalized image feature vector of frame i.
The image feature vector i.e., Fisher vector, can fully repre-
sent the importance of a frame. fi is the quality feature vector
(e.g., contextual feature, saliency map) which encodes other
information of frame i. θ is the parameter which is optimized
with maximum likelihood estimation, so the target subsets
will have the highest probabilities.

3.2 k-DPP
Vanilla DPPs cannot guarantee to output a summary of fixed
size [Kulesza and Taskar, 2012]. To control the size of output

summary, k-DPP [Kulesza and Taskar, 2011a; Li et al., 2016]
can be exploited. k-DPP is similar to DPP where a k-DPP
defines a discrete probability distribution over all subsetsX ∈
G with cardinality constraint k. It can be obtained simply by
taking the cardinality constraint k into a standard DPP, from
Equation 2, we have:

P k
L(X) =

det(LX)∑
|X′|=k det(LX′)

(6)

If each eigenvalue of a DPP’s marginal kernel is in {0, 1},
we call the DPP an elementary DPP. We use PV to denote an
elementary DPP where V is a set of orthonormal vectors. For
k-DPP, it needs to find the best subset in all G’s Ck

N k-size
subsets. It also takes exponential time to find the determinant
with the highest probability.

Note that [Sharghi et al., 2018] proposes generalized DPP
(GDPP) where they rewrite DPP (Equation 1) as follows.

P (Y ;L) =
n∑

k=0

πi
∑

S∈2G,|S|=k

P (Y ;S)
∏
i∈S

λi (7)

where λ is eigenvalue of matrix L. GDPP as shown in Equa-
tion 7 entails DPP when π is a uniform distribution and k-
DPP when π is a Dirac delta distribution.

3.3 Sequential DPP
It is no doubt that vanilla DPPs and k-DPPs are powerful tools
for modeling diverse subset selection, but they both ignore
the sequences among the video frames. Sequential DPP (se-
qDPP) is provided to capture the sequential nature of video
frames. SeqDPP first partitions a video into m disjointed
consecutive short segments and

⋃m
i=1Gi = G. At each seg-

ment i, let Xi be the variable of the subset selected from the
segment i. Then seqDPP imposes a DPP over two neigh-
boring segments where the current segment’s ground set is
Vi = xi−1 ∪ Gi. xi−1 is the subset selected from the seg-
ment i− 1. The conditional distribution of Xi is

P (Xi = xi|Xi−1 = xi−1) =
det(Lxi−1∪xi

)

det(Lxi−1∪Gi
+ Ii)

(8)

where Lxi−1∪Gi is the sub-matrix of L whose rows and
columns are selected according to the elements in xi−1 ∪Gi.
Ii is a diagonal matrix whose size is the same with the
Lxi−1∪Gi

. However, the elements corresponding toXi−1 are
zeros and the elements corresponding to Gi are ones. Equa-
tion 8 means xi should be as diverse as possible from the
previous subset xi−1. In other words, the subset is not con-
strained by the subsets selected in the distant past. In this way,
the sequential nature can be taken into consideration that the
two goals in the football match example will not be missed.

P (X1 = x1, X2 = x2, ..., Xm = xm)

= P (X1 = x1)
m∏
i=2

P (Xi = xi|Xi−1 = xi−1)
(9)

The sequential DPP for modeling sequential video data can
also be drawn as a Bayesian network [Gong et al., 2014] as
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Equation 9 shows. Different from Markov DPP [Affandi et
al., 2012], each segment Gi in seqDPP is quite small, thus it
is reasonable to do exhaustive searches for the most diverse
subset within a segment.

4 Branch and Bound for k-SDPPs
In this section, we will introduce our new model k-SDPP and
the branch and bound method to optimally allocate the size k
to m disjointed consecutive video segments G1, G2, ..., Gm

where the ground set G =
⋃m

i=1Gi and each segment Gi

contains c frames except the last segment which may contain
less than c frames.

We select a subset Si from each segment Gi, i ∈
{1, 2, ...,m} and there are ci = 2|Gi| choices. Each subset Si

should be as different as possible from the previous selection
Si−1 and the other segments’ selections should have no influ-
ence on it. That means each segment’s selection Si should be
much different from the selection Si−1. But those selections
which are far away from Si chronologically speaking should
have no influence on it. That is

P (Xi−1 = Si−1, Xi = Si)

= P (Xi−1 = Si−1)P (Xi = Si|Xi−1 = Si−1)
(10)

Meanwhile, to fix the size of the summary, the selections
of these segments should have the constraint as follows

|S1|+ |S2|+ ...+ |Sm| ≤ k (11)

Let Pij be the DPP probability of selecting Si from Gi,
wij be the number of frames in Si and xij be the variable to
indicate which subset of Gi is selected. As we know, there is
only one subset of Gi to be included in the final result. Thus
we define our problem in the following formula.

maximize P =

m∑
i=1

ci∑
j=1

Pijxij

s.t.
m∑
i=1

ci∑
j=1

wijxij ≤ k

ci∑
j=1

xij = 1

xij ∈ {0, 1}

(12)

By Equation 12, we find that our problem is NP-hard which
can be easily proved by reduction from the knapsack problem
where the probability which we aim to maximize is the profit
while the knapsack capacity is k. Specifically, our problem
is essentially a multiple-choice knapsack problem (MCKP)
[Kellerer et al., 2004] and MCKP is equal to an Integer Pro-
gramming problem which is NP-complete [Wolsey, 1998].

The NP-completeness of our problem lies in the integer
constraint of the program in Equation 12. To make our prob-
lem tractable, we relax the constraint of xij from xij ∈ {0, 1}
to xij ∈ [0, 1], thus the branch and bound method [Morrison
et al., 2016] can be adopted to optimally solve the program.

P

w

Sij1 Sij2

Sij3

Figure 1: LP domination in segment Gi

4.1 Branch
Initially we branch the first segment. As we know that the ith
segment has ci = 2|Gi| choices, intuitively we need to access
all ci branches for segment i. Fortunately, the vast majority of
the branches need not to be accessed due to the Pareto dom-
ination [Jin and Sendhoff, 2008] which is also popular for
skyline computation in database area [Börzsöny et al., 2001].

For two subsets Sij1 and Sij2 of Gi, if wij1 = |Sij1 | <
|Sij2 | = wij2 and Pij1 > Pij2 , we can see that subset Sij2
will not be included in the final summary because the subset
with larger probability and smaller size is preferred. By the
Pareto domination, the total number of branches for segment
Gi can be sharply decreased from 2|Gi| to |Gi|.

Moreover, for 3 subsets Sij1 , Sij2 and Sij3 of Gi, if fol-
lowing domination satisfies

Pij3 − Pij2

wij3 − wij2

≥ Pij2 − Pij1

wij2 − wij1

(13)

then we say Sij2 is linear programming (LP) dominated by
Sij1 and Sij3 , then Sij2 has no possibility to be included in
the final result set.

Figure 1 shows the LP domination of three subsets Sij1 ,
Sij2 and Sij3 . We know that these 3 subsets lie on the Pareto
front or skyline of all the subsets of Gi, however Sij2 is LP
dominated by Sij1 and Sij3 , and it needs not to be expanded.
Note that the determination of non-LP dominated points is
closely related to the problem of finding the convex hull of
a set of points in 2d space. Efficient algorithms e.g., [Chan,
1996] can find the convex hull in time O(|Gi| log hi) where
hi is the number of vertexes of the convex hull. If |Gi| is
small, we can directly compute the convex hull by Equation
13.

After these two kinds of branch pruning, there are few
branches needed to be expanded for further processing which
greatly improves the efficiency.

4.2 Bound
We propose the bounding technique to prune the branches
which do not need to be expanded to find the final optimal
solution. We keep the maximum value of the sum of the
DPP probabilities for each having traversed path as the lower
bound l.

For each branch which is on decision whether or not to be
expanded, we calculate the upper bound u of it if we follow
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pa2
... ...

... ...

Popt

ΔP

l Pepa1

layeri P1

b1 b2layeri-1

Figure 2: Safely pruning by bounding

this branch for video summarization. If l > u, the branch will
be safely pruned. Compared to the lower bound, the calcula-
tion of the upper bound for each branch is the main focus of
our BB method.

A simple way to calculate the upper bound is to follow the
method in [Zemel, 1980; Kellerer et al., 2004] which is de-
termined by the sum of the optimal probabilities of sequential
DPP for each segment. But the upper bound computed in this
way may be large and also expensive resulting in that there are
lots of branches are expanded which have no possibility to be
included in the final optimal solution. Instead, we only com-
pute the optimal ratio of the DPP probability value against
its size Popt/wopt of the child branches to decide whether to
prune the branch. Here, for we relax xij to be in the range
[0, 1], Popt/wopt can be obtained by linear programming thus
Simplex, Interior Point method etc. [Bertsimas and Tsitsiklis,
1997] can be adopted to solve the LP problem.

Further, we find the branch can be safely pruned if follow-
ing condition is satisfied

l > Pe +
Popt

wopt
kr (14)

where l is current maximum sum of DPP probabilities
achieved, Pe is the sum of DPP probabilities achieved from
root to current branch and kr is the remaining size of k re-
spectively. The reason lies in that the optimal solution cor-
responding to the path along with the pruned branch will not
be better than the one corresponding to the path in which the
lower bound obtained. Figure 2 illustrates the pruning idea
of bounding. Assume at layer i (segment i), there are two
branches b1, b2 and sum DPP probability values till them are
lower bound l and Pe respectively. If l > Pe +

Popt

wopt
kr (Equa-

tion 14), for kr ≥ wopt (kr is the remaining capacity of k if
we consider k as knapsack capacity which is obviously larger
than wopt), we get l > Pe + Popt. Assume the remaining
of path pa2, i.e., descendants of branch b1 achieves the op-
timal DPP probability value ∆P , the total DPP probabilities
of path pa2 is Pe + Popt + ∆P . Meanwhile, for path pa1,
from layer i, it expands the same descendant branches from
b1 as pa2. Thus P1 ≥ 0 and the sum of the DPP probabilities
for the remaining nodes of pa1 is the same with pa2 because
it follows the Bayesian properties of seqDPP (Equations 8, 9,

10). We have that the total probability of path pa1 is larger
than that of path pa2 as shown below

Ppa1
= l + P1 + ∆P ≥ Pe + Popt + ∆P = Ppa2

(15)

That means along with path pa1, there exists a feasible so-
lution which is better than the optimal solution along with
path pa2. Thus branch b2 can be safely pruned.

Note that for seqDPP greedily selects child branches to ex-
pand to get the final solution, if we restrict the output size of
seqDPP to be k, seqDPP can be regarded as a special case of
our BB method.

5 Experiments
We evaluate our approach along with related DPP methods in
the literature for video summarization.

5.1 Setup

Datasets. We validate our method on two video datasets:
the Open Video Project (OVP) dataset, and the YouTube
dataset [de Avila et al., 2011] with 50, 39 videos respec-
tively (for YouTube dataset, there are total 50 videos, and we
remove 11 cartoon movies for the quantity of these videos
is not enough for training a DPP model). They both have
5 human-created summaries per video. We uniformly sam-
ple one frame per second for each video as their ground set.
Same as [Gong et al., 2014], for YouTube dataset, we ran-
domly choose 31 videos of them for training and the rest 8
videos for testing. For OVP dataset, we randomly choose 40
videos of them for training and the rest 10 videos for testing.

Features. Each frame is encoded with an L2-normalized
8192-dimensional Fisher vector [Perronnin and Dance,
2007], using SIFT features to compute it [Lowe, 2004]. The
Fisher vector can well represent the content of a frame. In or-
der to consider the correlation between frames, we also obtain
12-dimensional contextual features by adjusting the size of
the window. We also add features computed from the frame
saliency map [de Avila et al., 2011] as [Gong et al., 2014]
does.

Evaluation metrics. In order to measure how much two
summaries are in agreement with each other, we compute
the pairwise distances between all frames across them. Two
frames are “matched” if their visual distance is below a cer-
tain threshold. Each frame appears in the matched pairs at
most once. We denote the summary generated by the method
as A, the human-created summary as B and the matched
frames as M . Following metrics are introduced: a) Preci-
sion, P = |M |/|A|; b) Recall, R = |M |/|B|; and c) F-score,
F = 2PR/(P +R).

Learning. To overcome the deficiency of vanilla DPPs and
k-DPP, we follow seqDPP which has more flexible and pow-
erful representations to reparameterize the L matrix with fi
where fi is the feature representation for the frame i (by
concatenating Fisher, contextual and saliency features of a
frame). We use linear embedding which is introduced in
[Gong et al., 2014] as our learning method.
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Figure 3: Running time of the 5 methods

Compared methods. Total 5 methods including our pro-
posed BB method are compared.

• k-DPP. The method restricts output set size to be k over
standard DPPs [Kulesza and Taskar, 2011a].

• seqDPP. The sequential DPP method proposed in [Gong et
al., 2014].

• Greedy. Similar to the greedy approach of Partition-DPP
[Zhang et al., 2016] but along with the partition strategy in
this paper.

• DP. With Markovian assumption for the relationship of
the segments [Affandi et al., 2012] and adopt the dy-
namic programming, specifically memoization technique
[Michie, 1968] for avoiding repeated computations within
recursions in dynamic programming, to allocate k tom seg-
ments.

• BB. Our proposed branch and bound method in this paper.

5.2 Results
Figure 3 shows the efficiency of the 5 methods on OVP video
26 and YouTube video 90 which are relatively longer than
other videos. It can be observed that our BB method and
seqDPP perform much better than other 3 methods. Further,
seqDPP is a little better than BB because seqDPP is a greedy
version of BB when they output same size summaries.

Table 1 and 2 show F-score, Recall and Precision val-
ues over OVP and YouTube datasets with different summary
sizes. We set different k to show the performance of the 4
methods. For k-DPP stubbornly requires that the summary’s
size must be k, when the number of total frames of some
datasets is less than k, we output all the frames as summary.
For seqDPP which automatically outputs no fixed-size sum-
mary, we ignore it for comparison. From Table 1 and 2, we
can see that our BB method is significantly better than other
3 methods. The results indicate the advantage of our BB

method which considers the sequential nature of the frames
and outputs fixed-size summaries. The lower efficiency of
other 3 methods is caused by their specific assumptions. For
the k-DPP and Greedy methods, they assume the frames in
the video are independent while for the DP method, it fol-
lows Markov relationship of the frames which does not erase
the influence of the frames far from each other. We also no-
tice that when k is small, k-SDPP has high precision values
but with relatively low recall values. This is because the sum-
maries only satisfy specific users’ tastes instead of all users’.
When k becomes large, our BB method has large recall val-
ues but the precision values are relatively small. The reason
is that the summaries reported by BB can satisfy most users.

Table 3 shows the performance of all the 5 methods when
the segment size equals 10. The summary size of seqDPP is
not determined until it outputs the results. We find that the
summary size of seqDPP is usually close to T (the number
of the video’s segments). Thus for other 4 methods, we set
their summary sizes in the range [T − 5, T + 5] and com-
pare their performance with seqDPP. From Table 3, we find
our BB method achieves similar performance to seqDPP on
both OVP and YouTube datasets. BB is better than the other
3 fixed-size methods, including k-DPP, Greedy and DP. Note
that BB is not obviously better than seqDPP because the sum-
mary size output by seqDPP is not equal to that of BB. The
experimental results indicate the summary sizes of seqDPP
are larger than those of BB in most cases.

Figure 4 and 5 show one user summary and the summaries
of the 5 methods on OVP video 21 and YouTube video 73
respectively. We first obtain the output size of seqDPP, then
we set k to this size. We only illustrate F-score values because
the values of F-score, Recall and Precision are the same due
to the same summary size. From Figure 4 and 5 we can see
that our BB method is much better than the k-DPP, Greedy
and DP methods. Also, with same summary size, BB is better
than seqDPP on both OVP video 21 and YouTube video 73.

6 Conclusion
In this paper, we propose a new DPP model named k-SDPP
with efficient branch and bound method. Our k-SDPP model
reserves sequential nature of video frames and outputs fixed-
size video summaries. Moreover, the branch and bound
method has the ability to provide optimal solution by branch
procedure with LP-domination and bound procedure with ef-
ficient branch pruning. Experimental results show that our
proposed method is prior to existing DPP-based methods for
video summarization.
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k
k-DPP Greedy DP BB

F R P F R P F R P F R P
5 57.3±0.3 47.8±0.4 72.1±0.6 53.4±0.3 42.4±0.4 72.8±0.5 53.7±0.2 44.8±0.4 71.0±0.5 58.8±0.3 49.8±0.5 75.4±0.4
10 62.0±0.4 69.1±0.6 56.5±0.5 62.5±0.4 63.2±0.6 62.2±0.4 59.3±0.4 67.9±0.6 56.1±0.5 71.1±0.3 77.4±0.4 67.7±0.4
15 58.2±0.4 81.0±0.5 45.8±0.5 65.7±0.3 74.9±0.4 58.8±0.4 60.6±0.4 83.5±0.4 47.6±0.5 72.1±0.3 83.1±0.4 65.4±0.4
20 52.3±0.3 88.3±0.3 37.3±0.3 66.3±0.3 79.4±0.5 57.1±0.4 57.7±0.4 91.3±0.4 42.4±0.4 72.4±0.3 84.7±0.4 64.9±0.4

Table 1: Performance of fixed size with segment size 10 on OVP dataset, measured by F-Score (F), Recall (R), and Precision (P)

k
k-DPP Greedy DP BB

F R P F R P F R P F R P
5 48.0±0.6 39.7±0.8 61.4±0.5 45.5±0.5 35.6±0.4 63.7±0.6 48.0±0.3 40.0±0.4 60.4±0.4 50.2±0.4 40.4±0.7 67.2±0.6
10 52.6±0.5 57.5±0.7 48.8±0.6 52.9±0.5 50.6±0.5 55.8±0.5 50.5±0.3 54.3±0.6 47.7±0.4 55.5±0.4 56.1±0.8 57.2±0.6
15 50.5±0.4 68.8±0.9 40.1±0.3 55.0±0.5 59.4±0.5 51.4±0.5 53.7±0.4 64.8±0.6 46.1±0.6 56.7±0.6 63.2±0.7 53.6±0.6
20 48.0±0.3 75.1±0.7 35.4±0.3 54.9±0.5 63.9±0.6 48.3±0.5 53.4±0.4 71.0±0.6 43.1±0.6 57.4±0.6 67.1±0.7 52.1±0.7

Table 2: Performance of fixed size with segment size 10 on YouTube dataset, measured by F-Score (F), Recall (R), and Precision (P)

k-DPP F=28.6

user summary

seqDPP F=57.1

Greedy F=28.6

DP F=42.9

BB F=71.4

Figure 4: Summaries of different methods for OVP video 21

user summary

k-DPP F=37.5

seqDPP F=50

Greedy F=37.5

DP F=37.5

BB F=62.5

Figure 5: Summaries of different methods for YouTube video 73

Method OVP YouTube

F R P F R P

k-DPP 61.3±0.4 70.3±0.4 54.2±0.5 52.8±0.4 66.9±0.5 44.6±0.5
seqDPP 75.3±0.7 80.4±0.9 77.8±1.0 57.8±0.5 69.8±0.5 54.2±0.7
Greedy 64.9±0.3 63.4±0.6 67.4±0.4 54.6±0.4 60.7±0.7 51.3±0.7

DP 66.0±0.4 75.2±0.5 60.0±0.6 55.9±0.4 68.1±0.5 49.9±0.5
BB 74.0±0.5 77.8±0.4 75.5±0.5 58.4±0.5 70.2±0.6 53.4±0.8

Table 3: Performance of various video summarization methods with segment size 10 on OVP and YouTube datasets
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