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Abstract
This paper proposes a novel Semi-Dynamic Hy-
pergraph Neural Network (SD-HNN) to estimate
3D human pose from a single image. SD-HNN
adopts hypergraph to represent the human body to
effectively exploit the kinematic constrains among
adjacent and non-adjacent joints. Specifically, a
pose hypergraph in SD-HNN has two components.
One is a static hypergraph constructed according to
the conventional tree body structure. The other is
the semi-dynamic hypergraph representing the dy-
namic kinematic constrains among different joints.
These two hypergraphs are combined together to be
trained in an end-to-end fashion. Unlike traditional
Graph Convolutional Networks (GCNs) that are
based on a fixed tree structure, the SD-HNN can
deal with ambiguity in human pose estimation.
Experimental results demonstrate that the proposed
method achieves state-of-the-art performance both
on the Human3.6M and MPI-INF-3DHP datasets.

1 Introduction
Pose estimation aims to estimate 2D or 3D positions of hu-
man body joints from an image or video. It is an active re-
search area in computer vision due to its wide range of poten-
tial applications. Like many other areas in computer vision,
Convolutional Neural Networks (CNN) [Alex et al., 2012]
have also been used for pose estimation. There are general-
ly two kinds of CNN-based approaches. One is to directly
estimate 3D human pose through a CNN [Sun et al., 2018]
from an image. The other is to estimate a 2D pose through
a CNN first, and then recover the 3D pose from the estimat-
ed 2D pose [Martinez et al., 2017; Moreno-Noguer, 2017;
Pavlakos et al., 2017; Rayat Imtiaz Hossain and Little, 2018].
The former approach usually requires sufficient amount of an-
notated data and much computing resource for training where
the latter may not utilize visual information in the second
stage for 3D recovery. However, the human body is a typical
chain-like structure constrained by human kinematics. Most
of CNN-based pose estimation do not leverage this prior in-
formation.
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Figure 1: Graph based human body represention, a simple graph
v.s. a hypergraph. (a) shows the RGB image of a human, (b) shows
the corresponding simple graph (tree structure), and (c) shows the
constructed hypergraph. For the edges in (b), the degree of them is
mandatory 2, and the number is fixed. In contrast, the edges (also
called hyperedges) of the hypergraph are degree-free in (c). More-
over, the number of these hyperedges are dynamic according to dif-
ferent poses with kinematic constrains.

Graph Convolutional Network (GCNs) [Kipf and Welling,
2016] as a generalization of CNNs to deal with non-Euclidean
data can learn feature representation of a graph through grad-
ually aggregating features of multiple nodes to compute fea-
tures for a node of interest. Some attempts of using GC-
N for 3D pose estimation are reported in [Yan et al., 2018;
Zhao et al., 2019; Cai et al., 2019; Ci et al., 2019]. Although
these methods have achieved promising results, they are lim-
ited by the fact that they all treat the human body as a tree
structure and represent it as a simplified graph. According
to human kinematics, the human body has a typical chain-
like structure. The movement of body joints is not only con-
strained by directly neighboring joints, but also is subject to
multiple non-neighboring joints. Such a complex relationship
can hardly be captured by a simple graph with a set of fixed
connections between joints.

To address this problem, we propose to represent the hu-
man body as a hypergraph [Feng et al., 2019] aiming to learn
local and global kinematic constrains among joints (shown in
Figure 1). Unlike a simple graph, a hypergraph represents the
human body and its kinematic constrains with flexible hyper-
edges. These hyperedges have no fixed degrees and are able
to connect different body joints freely according to the dy-
namic interaction relationships among them. This character-
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istic conforms to the concept of the kinematic chain [Michel
et al., 2015] and is able to model the kinematic constrains
through adding or deleting hyperedge dynamically.

Upon the hypergraph representation of the human body,
this paper develops a novel semi-dynamic hypergraph neural
network (SD-HNN) for 3D human pose estimation. Specifi-
cally, based on the knowledge of human kinematic chain, we
treat a series of closely related joints as a whole to construct a
static hypergraph, and each kinematic chain will be regarded
as a hyperedge in the hypergraph. In addition, we also con-
struct a dynamic hypergraph of a human body, whose struc-
ture will be changed in the course of convolution operation
along with the convolution kernel. The motivation is inspired
that the kinematic constrains or the effects among different
body joints may be different under different poses. A dy-
namic hypergraph is able to deal with the above situation in-
tuitively. The static and dynamic hypergraphs are combined
together and trained in an end-to-end fashion. We refer to
such a scheme as being semi-dynamic.

Overall, the key contributions of this paper are:

• We propose to represent a human body as a hypergraph
and, hence, to capture human kinematics using a combi-
nation of a static hypergraph and a dynamic hypergraph.

• Upon the representation, we develop a semi-dynamic
hypergraph neural network (SD-HNN) for recovering
3D poses from 2D poses, which can be trained in an
end-to-end way.

• The proposed representation and SD-HNN are exten-
sively validated on Human 3.6m and MPI-INF-3DHP
datasets. Their effectiveness has been demonstrated by
the state-of-the-art performance.

2 Related Work
In the past few years, hand-crafted features, such as HOG,
SIFT, DPM, are commonly used for 3D human pose re-
gression. Recently, many state-of-the-art methods are based
on deep convolution neural networks to estimate 3D human
pose. As 2D human pose estimation [Cao et al., 2017;
Chu et al., 2017; Insafutdinov et al., 2016] advances, a two-
stage framework becomes popular for 3D human pose esti-
mation. In this framework, the 2D human pose is estimated
or predicted in the first stage by a CNN, and then the 2D pose
together with the intermediate layer features from the CN-
N are used to regress 3D pose [Chen and Ramanan, 2017;
Martinez et al., 2017; Pavlakos et al., 2017; Fang et al.,
2018]. The proposed SD-HNN follows the two-stage frame-
work.

Graph Neural Networks (GNNs) have also been used in
pose estimation. Construction of GCNs on a graph gener-
ally follows either spatial perspective or spectral perspec-
tive. Convolution operations directly on the graph are im-
plemented in [Atwood and Towsley, 2016; Ci et al., 2019;
Cai et al., 2019], while in [Kipf and Welling, 2016] con-
volution operations are in the spectral domain. Specifical-
ly, ST-GCN [Yan et al., 2018] and SEM-GCN [Zhao et al.,
2019] both follow the spatial perspective. ST-GCN is prob-
ably the first representative work to adopt graph-based neu-

ral networks to model dynamic skeletons for action recogni-
tion. SEM-GCN employed GCNs to regress 3D pose from
2D by capturing both local and global relationships among
joints. This paper extends GCN to a hypergraph neural net-
work (HNN) in order to better capture human kinematics.

3 Semi-Dynamic Hypergraph Neural
Network

In this section, we first briefly introduce GCN and the concept
of HNN. With these preliminary knowledge, details of the
proposed Semi-Dynamic Hypergraph following together with
the network structure based on it will be demonstrated.

3.1 GCN and HNN
Assume that an input graph is G= {A,X}. The adjacency
matrix is A ∈ Rn×n. Specifically, A = [aij ] ∈ Rn×n gives
the connectivity information between different nodes, while
aij > 0 means there exists an edge between node i and node
j. The node set is X ∈ Rn×d, which is treated as input signal
on the graph. n represents the number of vertex on graph, d
is the dimension of feature. Based on above terminologies, a
standard convolution of GCN [Kipf and Welling, 2016] can
be represented as follows:

H(l+1) = σ
(∼
AH

(l)W (l+1)
)

(1)

where H(l) denotes the representation of graph nodes in the
l-th layer, W (l) stands for the model parameters in the l-th
layer, σ (·) represents a non-linear activation function. Addi-

tionally,
∼
A represents a normalized graph adjacency matrix.

Here,
∼
A = A+ I , where I is the degree matrix of the image.

The concept of GCN is extended to hypergraph in [Feng
et al., 2019] and a new hypergraph neural network (HNN)
framework is proposed. The convolution of HNN is reformu-
lated as follows:

X(l+1) = σ
(
D

− 1
2

v HWD−1
e HTD

− 1
2

v X(l)Γ(l)
)

(2)

where Dv , De denote the diagonal matrices of the vertex de-
grees and the edge degrees respectively. The filter Γ is applied
over the nodes in hypergraph to extract features.

3.2 Semi-Dynamic Hypergraph
In previous work, the human body is often represented as
a tree structure. There are 5 common pieces of pre-defined
kinematic chains, where 4 pieces represent the limbs respec-
tively and 1 represents the body trunk. In such fixed structural
representation, the connections among different joints only
represent physical relationships, which cannot cover those
potential non-physical connections among other joints while
the human is moving. Therefore, we involve the novel hy-
pergraph to describe the kinematic characteristics of human
body and construct a semi-dynamic HNN model to address
above shortcoming.

Compared with simple graph, each edge in hypergraph
can connect more than two nodes. First of all, we transfor-
m previous common pieces of pre-defined kinematic chain-
s into 5 hyperedges, each hyperedge corresponding to the
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Figure 2: An illustration of dynamic graph construction in semi-dynamic hypergraph neural network (SD-HNN). According to the relation
matrix between graph nodes, we will construct the corresponding dynamic hypergraph based on this matrix. After that, semi-dynamic
hypergraph convolution (SDHC) will be applied.

kinematic chain connects all of the joints in that kinematic
chain. We call this representation as static hypergraph, s-
ince it will be used as the fundamental structure for all the
human poses. However, there may be some potential con-
nections among different non-adjacent joints under kinemat-
ic constrains, which are ignored directly by such hypergraph
structure.

To solve this problem, we try to connect those joints which
may have potential relation under kinematic constrains into
same hyperedges in our hypergraph dynamically. For exam-
ple, in movement category ‘sitting’, the hyperedges in our
hypergraph may contain more joints from legs, which is dif-
ferent from the movement category such as ‘greeting’. Final-
ly, We introduce a new semi-dynamic hypergraph (Figure 2),
which contains 5 common pre-defined static hyperedges and
different numbers of dynamic hyperedges, as our hypergraph
represention of human body.

Before explaining the convolution process on dynamic hy-
pergraph, we introduce how to construct this kind of hy-
pergraph. First, we define a set of hyperedges S, and then
construct the hypergraph only by the hyperedges in S. The
S contains two parameters, Emax represents the number of
edges in dynamic hypergraph, Mmax represents the maxium
number of nodes in one hyperedge. We add joint i and join-
t j into one hyperedge according to their distance. Inspired
by some previous work, the relation between two nodes in
hyperedge can be calculated according to the formula below:

R(i, j) = Dist(i, j) ∗Θ(i, j) (3)

where Dist is the distance between two joints in feature s-
pace, and the Θ is a weight factor matrix. When two joints
i and j are very close in graph, the Θ(i, j) will be a small
value, while i and j are very far from each other, the Θ(i, j)
will be larger. Since the dynamic hypergraph is designed for
capturing the relationship between non-adjacent joints and
overcome the limitations of traditional tree structure, differ-
ent joints will have more chance to be connected together.
Through setting different Emax and Mmax values, various
dynamic hypergraphs can be constructed as our input. In our
experiment, the optimal number of hyperedges and that of n-
odes in a hyperedge can be seen in the ablation study part.
The details can be referred to Algorithm 1.

Algorithm 1: Dynamic Hypergraph Construction
Input: DistanceMatrix Dis
Parameters:
MaximumNumOfHyperedgeInHypergraph Emax,
MaximumNumOfNodeInHyperedge Mmax,
WeightMatrix Θ
Output: DynamicHypergraph DH

1 RelationMatrix R;
2 for (i, j) in Dist do
3 R(i, j) = Dist(i, j) ∗ Θ(i, j);
4 end
5 SortedHumanJoints Joints;
6 for (i,e) in (Joints,range(Emax) do
7 sort(R(i, :));
8 EmptyHyperedge l;
9 for (j,k) in (Joints,range(Mmax) do

10 add (i, j) into l;
11 end
12 add l into DH ;
13 end

We follow the method in [Feng et al., 2019] for hypergraph
convolutions. Different from graph convolution, the hyper-
graph convolution is a node-edge-node transform. For the
input feature X ∈ RN×C , by left multiplying HT ∈ RE×N ,
we can estimate the edge feature of RE×C , whereH is the hy-
peredge incidence matrix. The edge-node transform is quite
same but the order of multiplication is opposite. Since we
already know the H in our hypergraph, the node-edge-node
transform can be reduced to node-node transform.

Compared with the ‘vanilla’ HNN, the main difference is
that our model involves two types of hypergraph convolution-
s, the fixed ones and dynamic ones, to enforce the kinematic
constrains of human body as illustrated in Figure 2. The con-
volution on static hypergraph is quite similar to the ‘vanilla’
HNN. Let X l be the output of l-th hypergraph layer, and σ
denotes a nonlinear activation function. W represents a learn-
able weight matrix of l-th hypergraph layer andHs represents
the kernel for node-node transform which can be calculated
from the input hypergraph structure. The static graph convo-
lution can be expressed as:
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Figure 3: An overview of our proposed method. We take 2D joints(16*2) as input, and output 3D joints(16*3). We apply hypergraph
convolution both on static hypergraph and dynamic one, meanwhile the corresponding adaptive weighting matrix are obtained on both these
two hypergraphs. Each hypergraph layer consists of the components HC-BN-Relu-Dropout and all the operations will be implemented three
times. After the hypergraph features are estimated, we involve nonlocal blocks and FC layers to estimate the final 3D pose.

X(l+1) = σ
(
WX(l)Hs

)
(4)

To deal with different dynamic hypergraph structures, we
add an adaptive weighting matrix M in SD-HNN. Combin-
ing the static part and the dynamic part together, we get a
complete formula of our network convolution in Equation 5:

F (l+1) = σ
(
WF l((Hs +D)�M)

)
(5)

where F (l) is the output of l-th hypergraph layer, D is con-
volution kernel of dynamic hypergraph and M is an adap-
tive weighting matrix which can be learned during training.
In summary, the information propagation in our method is
a combination of static part and dynamic part, which is one
kind of semi-dynamic way. For each part, the model will
perform the convolution independently, exploring the infor-
mation between neighborhood and global joints, and then
weighting matrix will be updated iteratively.

Compared with other GCN models, we have the following
two obvious differences: (1) The hypergraph is first involved
in our model to estimate the 3D human pose, which is able to
better formulate the complex kinematic relationship among
human joints. (2) Our network can deal with different hyper-
graphs, and the corresponding learnable matrix are used to
adapt to the dynamic changes of these hypergraph structures.
These two characteristics make our network more robust for
3D pose estimation.

3.3 Framework Overview
Figure 3 shows the proposed SD-HNN, which takes a series
of 2D poses as input. The input is formally defined as (ν, e),
which includes a 2D joints set ν, and a hyperedge based skele-
ton set e. Suppose P is a set with N 2D joints, and their
corresponding 3D joints under predefined camera coordinate
system is J , our method aims to learn a regression functionA

to minimizes the following error on a dataset of human poses
that contains N samples:

A = arg min
1

N

N∑
i=1

L (Iproj (Pi) , J) (6)

where Iproj is the inverse transformation of projection and
L computes the L2 distance. This regression function can be
trained in an end-to-end fasion.

4 Experiments
4.1 Implementation Details
In our experiment, the Stacked Hourglass network [Newell et
al., 2016] is adopted as the basic 2D pose detector and is ini-
tialized with weights pre-trained on the MPII dataset and fine-
turned on Human3.6M. Our model is trained with Adam op-
timizer for 100 epochs, learning rate of 0.001 and batch size
of 256. ReLU is chosen as the nonlinear activation function.
The hidden dimension of our method is 256, which means
the input data with the shape of (16,2) is mapped into a 256
dimension vector.

4.2 Datasets And Protocols
We evaluate the proposed method on two datasets: Hu-
man3.6M and MPI-INF-3DHP. The Human3.6M is one of
the largest datasets for 3D human pose estimation. It consists
of 3.6 millions of images featuring 11 actors performing 15
daily activities, such as walking, eating, sitting and smoking
with 4 camera views. Simultaneously, the dataset also pro-
vides some important basic data such as camera parameters,
ground truth data of 2D and 3D pose. We use the subject 1,
5, 6, 7 and 8 in Human3.6m for training and subject 9 and 11
for testing. Similar to most of single-frame human pose es-
timation methods, our method down-sample the data of Hu-
man3.6m, and for the video data from original 50fps to 10fps.
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Method Direct Discuss Eating Greet Phone Photo Pose Purch Sitting SittingD Smoke Wait WalkD Walk WalkT Avg
Martinez [Martinez et al., 2017] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Pavlakos [Pavlakos et al., 2018] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Fang [Fang et al., 2018] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Yang [Yang et al., 2018] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Lee [Lee et al., 2018] 43.8 51.7 48.8 53.1 52.2 74.9 52.7 44.6 56.9 74.3 56.7 66.4 47.5 68.4 45.6 55.8
Trumble [Trumble et al., 2018] 41.7 43.2 52.9 70.0 64.9 83.0 57.3 63.5 61.0 95.0 70.0 62.3 66.2 53.7 52.4 62.5
Chen [Chen et al., 2019] 41.1 44.2 44.9 45.9 46.5 39.3 41.6 54.8 73.2 46.2 48.7 42.1 35.8 46.6 38.5 46.3
Pavllo* [Pavllo et al., 2019] 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8
Wandt [Wandt and Rosenhahn, 2019] 53.0 58.3 59.6 66.5 72.8 71.0 56.7 69.6 78.3 95.2 66.6 58.5 63.2 57.5 49.9 65.1
Habibie [Habibie et al., 2019] 54.0 65.1 58.5 62.9 67.9 54.0 75.0 60.6 82.7 98.2 63.3 61.2 66.9 50.0 56.5 65.7
Zhao [Zhao et al., 2019] 48.2 60.8 51.8 64.0 64.6 53.6 51.1 67.4 88.7 57.7 73.2 65.6 48.9 64.8 51.9 60.8
Cai* [Cai et al., 2019] 46.5 48.8 47.6 50.9 52.9 61.3 48.3 45.8 59.2 64.4 51.2 48.4 53.5 39.2 41.2 50.6
Ci [Ci et al., 2019] 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7
SD-HNN 46.5 55.0 54.7 60.2 63.3 48.9 50.2 64.2 54.0 76.0 63.2 55.5 47.6 59.3 44.0 56.2
Martinez [Martinez et al., 2017] (GT) 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Zhao [Zhao et al., 2019](GT) 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8
SD-HNN (GT) 42.1 45.6 38.2 41.4 41.5 47.4 45.8 39.9 44.7 53.0 42.6 44.0 42.1 34.0 37.6 42.7

Table 1: Quantitative comparisons of Mean Per Joint Position Error (MPJPE) in millimeter between the estimated 3D pose and the ground
truth on Human3.6M under Protocol 1. SD-HNN shows the results taking as the input 2D pose estimated by the Stacked Hourglass network.
GT means the 2d poses are from the ground truth. The results of Pavllo* and Cai* are based on single frame.

Method Direct Discuss Eating Greet Phone Photo Pose Purch Sitting SittingD Smoke Wait WalkD Walk WalkT Avg
Martinez [Martinez et al., 2017] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Lee [Lee et al., 2018] 38.0 39.3 46.3 44.4 49.0 55.1 40.2 41.1 53.2 68.9 51.0 39.1 33.9 56.4 38.5 46.2
Fang [Fang et al., 2018] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Rayat [Rayat Imtiaz Hossain and Little, 2018] (GT) 35.2 40.8 37.2 37.4 43.2 44.0 38.9 35.6 42.3 44.6 39.7 39.7 40.2 32.8 35.5 39.2
Chen [Chen et al., 2019] 36.5 41.0 40.9 43.9 45.6 53.8 38.5 37.3 53.0 65.2 44.6 40.9 44.3 32.0 38.4 44.1
Wandt [Wandt and Rosenhahn, 2019] (GT) 33.6 38.8 32.6 37.5 36.0 44.1 37.8 34.9 39.2 52.0 37.5 39.8 34.1 40.3 34.9 38.2
SD-HNN 43.7 46.4 39.3 42.7 42.6 48.6 46.6 41.7 45.4 52.5 43.3 45.0 42.4 34.9 38.3 43.5
SD-HNN (GT) 29.6 34.9 31.7 31.6 32.9 37.4 33.3 30.5 37.6 43.0 34.2 34.3 33.2 27.0 29.2 33.4

Table 2: Quantitative comparisons of P-MPJPE in millimeter between the estimated pose and the ground truth on Human3.6M under Protocol
2. GT means the 2d poses are from the ground truth.

The Mean Per Joint Position Error (MPJPE) is used to mea-
sure the error between the results and ground truth, that is,
ground truth and estimated value are aligned to the root point
and then are used to calculate the error. We call this process
as Protocol 1. Besides, there are some other work calculating
P-MPJPE at the same time, that is, the ground truth and the
estimated pose are both aligned through rigid transformation.
We call the process as Protocol 2.

MPI-INF-3DHP is a 3D human pose dataset using MoCap
system. The test set contains 2929 valid frames from 6 sub-
jects, performing 7 actions. We employ average PCK (with a
threshold 150mm) and AUC as the evaluation metrics.

4.3 Quantitative Results
Human3.6M Dataset. We take the 2D pose detected by
the Stacked Hourglass network(SH) and the ground truth 2D
pose of Human3.6m as the input respectively. Table 1 shows
the quantitative comparisons of MPJPE between the estimat-
ed pose and the ground-truth on Human3.6M under Protocol
1. As shown in this table, our method achieves competitive
results with inaccurate 2D poses, and outperforms other state-
of-the-art methods on most individual actions and the best av-
erage accuracy with ground truth 2D data. Table 2 shows the
quantitative comparisons of MPJPE under Protocol 2. With
the ground truth 2D pose as the input, our method achieves
the best results.
MPI-INF-3DHP Dataset. Table 3 shows the comparison
results between our proposed method with other state-of-the-
art methods on the MPI-INF-3DHP dataset. We train our
model only with Human3.6M data. Our proposed method

Method Training Data PCK AUC
Zhou [Zhou et al., 2017] H3.6m+MPII 69.2 32.5
Yang [Yang et al., 2018] H3.6m+MPII 69.0 32.0
Pavlakos* [Pavlakos et al., 2018] H3.6m+MPII+LSP 71.9 35.3
Habibie [Habibie et al., 2019] H3.6m 70.4 36.0
Ci [Ci et al., 2019] H3.6m 74.0 36.7
SD-HNN H3.6m 74.9 37.5

Table 3: The results on test set of MPI-INF-3DHP by scene. For
the metrics of PCK and AUC, the higher values of them means the
proposed method has a better performance. * uses extra ordinal an-
notation.

achieves the best result, since the semi-dynamic hypergraph
and its corresponding convolution operation can enforce more
kinematic constrains to enhance the generalization capability
of our model.

4.4 Ablation Study
In this section, we will verify the effectiveness of different dy-
namic components in our method on the Human3.6M dataset
under Protocol 1. For the effect of initial hypergraph structure
on final results, different numbers of hyperedge are set in our
initial hypergraph and the results are shown in Table 4. From
this table, we can see that when the number of hyperedges
is changed from 5 to 20, the results almost keep the same,
which means that the ability of our proposed method in con-
structing dynamic hypergraphs does not depend on the input
heavily. Even only 5 pieces of hyperedges are contained in
the hypergrah, which only contains the static part, our SD-
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Number of hyperedges MPJPE(GT)
5 43.8
7 42.7
10 43.4
20 43.9

Table 4: The MPJPE between the estimated pose and the ground
truth. The 3D poses are estimated by the proposed method with
different numbers of hyperedge in the initial hypergraph.

Method MPJPE (GT)
w/o dynamic graph 43.8
with dynamic graph 42.7

Table 5: The MPJPE between the estimated pose and the ground
truth. The 3D poses are estimated by the proposed method with or
without dynamic graph in SD-HNN. The results are obtained after
100 epochs.

Figure 4: The relationship between the number of epoch and MPJPE
in SD-HNN with or without dynamic hypergraph.

HNN still can well represent the human body along with it-
s kinematic characteristics by leveraging the corresponding
semi-dynamic hypergraph.

To prove the role of semi-dynamic hypergraph in our pro-
posed method, we test SD-HNN on Human3.6M test data
with or without dynamic hypergraphs. Table 5 shows the re-
sult and demonstrates the dynamic hypergraph part really has
improved the performance of HNN by establishing more rea-
sonable connections.

Figure 4 shows the changes of MPJPE in network training
with or without dynamic hypergraph. From this table, we can
see the introduction of dynamic hypergraph into SD-HNN ac-
celerates the convergence speed during early stage of training,
and also achieves better results eventually.

4.5 Qualitative Study
Some results on the Human3.6M are visuzlided in Figure 5.
In this figure, the estimated 3D poses with ground truth are
compared. From the results, we can see even the human per-
form complex actions or have self-occlusion, the proposed
method still can generate right results.

5 Conclusion
In this paper, we propose a novel Semi-Dynamic Hypergraph
Neural Network (SD-HNN) to estimate 3D human pose. SD-
HNN adopts hypergraph to represent human body to effec-

Figure 5: Visualization results on the Human3.6M. The first column
are the original images in this dataset, the second column are the
3D ground truth, the third column are estimated 3D poses by our
method.

tively exploit the kiematic constrains among adjacent and
non-adjacent joints. A pose hypergraph in SD-HNN has a
static component constructed according to the convention-
al tree body structure, and a dynamic component represent-
ing the dynamic kinematic constrains among different joints.
These two hypergraphs are combined together to be trained
in an end-to-end way. Unlike traditional Graph Convolution-
al Networks (GCNs) that are based on a fixed tree structure,
the SD-HNN is able to deal with ambiguity in human pose es-
timation. The proposed method achieves state-of-the-art per-
formance on both Human3.6M and MPI-INF-3DHP datasets.
In the future, we will further explore other efficient methods
to make better use of edge features in hypergraph for more
challenge works, such as multiple person pose estimation.
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