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Abstract

Few-shot learning, aiming to learn novel concepts
from few labeled examples, is an interesting and
very challenging problem with many practical ad-
vantages. To accomplish this task, one should con-
centrate on revealing the accurate relations of the
support-query pairs. We propose a transductive
relation-propagation graph neural network (TRPN)
to explicitly model and propagate such relations
across support-query pairs. Our TRPN treats the
relation of each support-query pair as a graph node,
named relational node, and resorts to the known
relations between support samples, including both
intra-class commonality and inter-class uniqueness,
to guide the relation propagation in the graph, gen-
erating the discriminative relation embeddings for
support-query pairs. A pseudo relational node is
further introduced to propagate the query character-
istics, and a fast, yet effective transductive learning
strategy is devised to fully exploit the relation infor-
mation among different queries. To the best of our
knowledge, this is the first work that explicitly takes
the relations of support-query pairs into considera-
tion in few-shot learning, which might offer a new
way to solve the few-shot learning problem. Exten-
sive experiments conducted on several benchmark
datasets demonstrate that our method can signifi-
cantly outperform a variety of state-of-the-art few-
shot learning methods.

1

Learning novel concepts from only one or a few examples
is an interesting and very challenging problem with many
practical advantages, e.g., developing real-time interactive vi-
sion applications for portable devices, transferring knowledge
from existing models to novel categories without re-training,
etc. In contrast to the standard deep learning models contain-
ing millions of parameters, few-shot learning has been de-
fined for this purpose. In the past years, a variety of few-shot
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learning methods have been proposed, which made great at-
tempts to utilize the information contained in the limited la-
beled data.

Optimization-based solution, as one of the most popular
few-shot learning paradigms, tries to capture the relation in-
formation among the tasks, leveraging the previous learning
experience as a prior over tasks. For instance, in [Mishra et
al., 2017], the authors combined temporal convolutions with
soft attention, which enables the meta-learner to aggregate
contextual information from past experience and pinpoint
specific pieces of information within that context. [Nichol
et al., 2018] introduced a first-order gradient-based meta-
learning algorithm named Reptile, whose training process is
similar to joint training. However, as pointed by [Rusu et al.,
2018], while these approaches iterate over samples from all
classes in their updates, they lack the capability of learning
effective embeddings.

Generation-based methods adopt a meta-learner for few-
shot data augmentation or learn to predict classification
weights for novel classes. [Gidaris and Komodakis, 2018]
proposed a few-shot object recognition system capable of dy-
namically learning novel categories from only a few train-
ing data while does not forget the base categories, leading to
feature representations that generalize better on unseen cate-
gories. [Gidaris and Komodakis, 2019] employed a Denois-
ing Autoencoder network which takes a set of classification
weights corrupted with Gaussian noise as input and learns to
reconstruct the target-discriminative classification weights.

Metric-based solution serves as another promising few-
shot learning paradigm, which exploits the feature similar-
ity information by embedding both support and query sam-
ples into a shared feature space. For instance, Matching Net
[Vinyals et al., 2016] introduced the episodic training mecha-
nism into few-shot learning and proposed the model by com-
bining attention and memory together. In [Snell et al., 20171,
a Prototypical Network was proposed by taking the mean
of each class as its corresponding prototype representation,
which helps reduce the intra-class variations and thus learns
a discriminative metric space. In [Li ef al., 2019c], a Covari-
ance Metric Network was proposed to exploit both the co-
variance representation and covariance metric-based on the
distribution consistency for the few-shot classification tasks.
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Figure 1: The Relation-Propagation Graph Network.

In fact, in order to efficiently determine the class of the
queries based on few labeled samples, one should concen-
trate on revealing the accurate relations between the support
and the query examples, especially in metric-based meth-
ods. Recently, a few approaches [Garcia and Bruna, 2017;
Liu et al., 2018; Kim et al., 2019] adopted graph networks to
implicitly model the sample relations, by treating each sam-
ple as the graph node and predicting the support-query re-
lations based on the updated node features. Although they
have shown great potential to solve the few-shot learning
task, without directly modelling the relations of the support-
query pairs, the underlying information shared across differ-
ent support-query pairs suffers from the severe underutiliza-
tion, inevitably leading to the inferior performance.

To address this problem, in this paper we propose a trans-
ductive relation-propagation graph neural network (TRPN) to
explicitly model and propagate the sample relations across the
support-query pairs. TRPN treats the sample relation of each
support-query pair as a graph node, named relational node.
Intuitively, similar support samples from the same class often
share similar relations with the same query. Therefore, our
TRPN resorts to the known relations between support sam-
ples, including both intra-class commonality and inter-class
uniqueness, to estimate the relational adjacency among the
different support-query pairs. With the relational graph, both
sample similarities and the support-query relations can be
propagated and aggregated to generate more discriminative
relational embeddings for support-query pairs. We further in-
troduce a pseudo relational node (i.e., the query-query pair)
to consider the query characteristics, which can bring the
coarse relations of support-query pairs into the relation prop-
agation. With the learnt relation representations of support-
query pairs, the few-shot learning task can be cast into a sim-
ple node classification task. In practice, to further exploit the
relation information among different queries, we also provide
a fast, yet effective transductive learning strategy.
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To the best of our knowledge, this is the first work that
explicitly takes the relations of support-query pairs into con-
sideration in few-shot learning, which might offer a new
way to solve the few-shot learning problem. We conduct
extensive experiments on several benchmark datasets such
as minilmageNet [Vinyals et al., 2016] and tieredlmageNet
[Ren et al., 2018], and the results demonstrate that our
method can significantly outperform a variety of the state-
of-the-art few-shot learning methods. For instance, it can im-
prove the 1-shot and 5-shot accuracy on minilmageNet from
62.05% to 68.25% and from 78.63% to 85.40%, respectively
compared to the second best method. More surprisingly, it
can even achieve better performance with a shallow backbone
network than most state-of-the-arts with a deeper one.

2 Approach

In this section, we will present our transductive relation-
propagation graph neural network (TRPN) including both the
non-transductive setting and the transductive setting in Sec-
tion 2.2 and 2.3, respectively. Before that, we will first intro-
duce the preliminary of few-shot setting.

2.1 Preliminary

Let S denote a support set, which contains N different image
classes (C1,...,Cn) and K (K is small, e.g., K = 5) labeled
samples per class. Thus the total number of support samples
isTs = N x K. Given a query set Q where the total number
of it is Tg, few-shot learning aims to determine the class of
each unlabeled sample in Q based on the set S. This setting
is also called N-way K -shot classification.

We follow the episodic training which efficiently learns the
transferable knowledge from a relatively large labeled dataset
with a set of classes Cirqin. The objective is to train classi-
fiers for an unseen set of novel classes Cyes, for which only a
few labeled examples are available. In each episode, a small
subset of N classes are sampled from Ci.q;, to construct
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an N-way K-shot problem as follows: I' = S U Q where
S = {(xi,y)}5 and Q = {(x1,5:)} 5008 Xy €
{Cy,...,Cn} are the i-th sample and its label, respectively.
Also we define [I'| = Ts + To as the total number of the
samples in the task I'. In each episode, the model is trained
to minimize the loss of its predictions of Q through learning
the labeled support set S.

2.2 Relation-Propagation Graph Network

In this section, we elaborate on the details of our relation-
propagation model. Unlike previous graph neural network
based few-shot learning models where each node represents a
data sample, ignoring the valuable information shared among
different support-query pairs, in the proposed TRPN, each
node in the graph represents the relation of a support-query
pair. As to the adjacency matrix among the nodes, since sim-
ilar support samples usually have similar relations with the
same query sample, we can naturally estimate node adjacency
according to the known relations (labels) of support set.
With the graph representations, we can update the re-
lational node features via a relation propagation, and thus
learn the discriminative relation embeddings for support-
query pairs. The relation-propagation model further utilizes
a similarity function to evaluate the possibility that the con-
sisting samples come from the same class. In this way, the
few-shot learning can be cast into a node classification prob-
lem. The support-query relations can be inferred based on the
similarity evaluation over their relation embeddings.
Specifically, for each sample x; of the task I', a convolu-
tional embedding network is first employed to extract the fea-
ture representation g;. Subsequently, a fully-connected graph
G = (W, A;T) is initially constructed to characterize the re-
lations of the task, where V' and A denote the set of relational
nodes and relational adjacency matrix of the graph, respec-
tively. Our graph contains only one layer in avoid of bringing
potential concerns of over-smoothing [Li ef al., 2018].

Relational Node

To explicitly model the sample relations between support-
query pairs, we introduce the relational nodes indicating the
relation embeddings of support-query pairs. Specifically, we
denote the relation node embedding matrix as V, where V;
is the embedding of the i-th node. Given a query sample x,,
where ¢ € {Ts + 1,---, ||}, V; is initialized by the con-
catenation of the support feature g; and query feature g,:

Vi = [giagq]a (1)

where ¢ = {1,--- ,Ts}, and [-, -] denotes the concatenation
operation.

Since the prediction of query samples mainly depends on
the labeled support samples, we name the first concatenated
support sample of a relational node as the dominant sample.

Though the support sample dominates the learning of re-
lations of support-query pairs, however, without considering
the characteristic of the query sample, the relational node em-
beddings will discard the raw, yet important relational infor-
mation contained between support and query samples, and
thus inevitably lead to the inferior performance. To avoid this
issue, we further introduce pseudo relational nodes so as to
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actively involve the query samples in the graph. A pseudo
relational node is defined as:

Vg = [gqv gq} ) )

Without loss of generality, the first concatenated sample is
also named as the dominant sample of the pseudo relational
node.

Relational Adjacency Matrix
The relational adjacency A,; is the element of adjacency ma-
trix A on the graph, representing the commonality between
dominant samples 4 and j of relational nodes V; and V ;. The
adjacency matrix should reflect the known information (la-
bel) of the support set, including both intra-class commonal-
ity and inter-class uniqueness, and thus weightedly propagate
the relations to guide the learning of discriminative relation
embeddings, with the consideration of query characteristics.
Hence, we define the adjacency between relational nodes
according to the relation of their dominant samples as:

L if i,j<Ts, lijj=1
Aij =14 —9(gigil), if ,i<Ts, lLij=0 ()
o([gi, 851) if i=qorj=gq

where [;; is the associate-label for each node, defined accord-
ing to ground truth labels of consisting samples:

z..{lv if Y=y
ij =

0, otherwise
and ¢(+) is the adjacency function. There are a number of can-
didate implementations for adjacency function, such as co-
sine similarity, negative squared Euclidean distance, or neural
network, etc.

From Formula 3, we can see that, for two relational nodes
whose dominant support samples come from the same class,
we simply use their associate-label as the adjacency to pre-
serve the intra-class commonality. In contrast, for two
nodes whose dominant support samples come from differ-
ent classes, we use the adjacency function to evaluate the
adjacency between the two samples, and invert the results.
Therefore, the more similar two different classes are, the
more commonality of the relation each class will subtract dur-
ing the feature aggregation. Through diminishing the com-
monality according to the negative adjacency score, it max-
imizes the uniqueness of the two classes and helps the net-
work to learn the discriminative representations which assem-
ble the similar samples and disperse the different ones. Thus,
the known information including both intra-class commonal-
ity and inter-class uniqueness is considered in the adjacency
matrix. Meanwhile, the coarse predicted relations between
support-query pairs are also computed by the adjacency func-
tion, with the query characteristics involved during relation
propagation.

“4)

Relation Propagation

Once we have the weighted graph, we can update the node
features to pursue the discriminative relational embeddings
for support-query pairs, using the following propagation rule:

V =0¢(D /2AD'/2VW). (5)
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Here, A = A + I is the relational adjacency matrix of the
graph added with self-connections. I is the identity matrix,
D=5 j A;; and W is a trainable weight matrix. o denotes
an activation function. After the relation propagation, the up-
dated relational embedding V becomes more discriminative
and could better reflect the relations between support-query
pair.

After relation propagation and feature aggregation, we use
a similarity function ¢ operating on the V to measure the sim-
ilarity level between support-query pair, and thus obtain the
similarity score vector for the g-th query sample s, = (V).
We conduct above operation for each query sample and con-
struct the similarity matrix S composed of their similarity
vector, where S is a Tg x |I'| matrix, with S,; indicating
the similarity score of the i-th support samples and the query
sample x,. Here the similarity score can be considered as
a probability that the two samples are from the same class.
Therefore, each query samples can be classified by simple
weighted voting.

2.3 Transductive Learning

Although the proposed model could exploit the valuable in-
formation shared between different support-query pairs and
generate discriminative relation embeddings, the fundamen-
tal difficulty of learning with scarce data remains for a novel
classification task. One way to achieve further improvements
with a limited amount of training data is to consider relations
between samples in the query set and thus predict them as a
whole, which is referred to as transduction, or transductive
inference [Kim et al., 2019; Liu et al., 2018]. A simple way
to implement transductive learning, as previous graph models
did, is to involve more relational nodes consisting of support-
query pairs and pseudo relational nodes, which could easily
propagate the relations between query samples on the graph
due to feature aggregation.

However, we think such implementation is computation
exhaustive and will cause performance degradation, since the
relations between dominate samples, whatever the concate-
nated query sample is, are the same and indistinguishable.
Therefore, for each relational node, we combine a support
sample with the whole query set, and thus the relations be-
tween query samples could be simultaneously processed both
inside the relational node and in the propagation process on
the graph. Specifically, the relational node features under the
transductive setting could be initialized as:

Vi =i, 87s+1,8Ts+2, 80|} (6)
Similarly, the pseudo node could be defined as follows:
Vq = [gqngs+17gT5+27"' »g\F\L (N

where i = {1,--- ,Ts},and ¢ = {Ts + 1,--- ,|T'|}. The re-
lational adjacency matrix A is constructed similarly to the
one under the non-transductive setting, indicating pairwise
adjacency:

13 Zf7“7]<TS7l7j:]~
E ifTs+1<i<|D
olgnegl), T Il

orTs +1<j < [T
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Hence, we can follow the same relation-propagation proce-
dure as which under the non-transductive setting.

Similarly, we utilize a similarity function ¢ operating on
the propagated relational nodes V which directly outputs a
To x |T'| similarity matrix S.

2.4 Learning and Inference

Loss Function
To guide the learning of the graph network, we first introduce
the relational node classification loss:

oy
b= 3" l14ilog Sy + (1~ lgi) log(L — Sgi).
i=1q=Ts+1

The node loss is to promise the node feature could represent
the relationship between two samples and further help the
framework to figure out whether the query sample belongs
to the same category as the other does.

Besides, if the adjacency function ¢ is implemented by
neural networks, we could further take advantage of the la-
bel information of support samples to enhance the capability
of ¢ as follows:

T) |7
b= lijlog é([gi, g;])+(1—1ij) log(1—¢([gi, &)
i=1 j=1
As a result, the final loss is as follows:
l= gn + )\ésv

where A is the hyper-parameter to balance the weights be-
tween the two loss functions.

Inference on Novel Class

In the test phase, we evaluate the performance of our TRPN
on novel categories that are not seen in episodic training. We
perform the relation propagation procedure of the proposed
graph network and compute the probability that a query sam-
ple x, belongs to the n-th category through weighted voting:

D

{il(xi,y:) €SAY;=Crn }

The category with the highest probability is regarded as the
final prediction.

Py, =C,|T") = Sgi- ©)]

3 Experiments

In this section, we evaluate our TRPN on two widely used
datasets, compared with a number of state-of-the-art few-shot
approaches.

3.1 Experimental Setup

Datasets

We employ the widely used datasets in prior studies, in-
cluding minilmageNet dataset [Vinyals et al, 2016] and
tieredlmageNet dataset [Ren et al., 2018]. Both of them
are subsets of the ILSVRC-12 dataset [Russakovsky et al.,
2015]. The minilmageNet dataset consists of 100 classes,
each of which contains 600 images of size 84 x 84, while
the tieredlmageNet contains 608 classes with 77915 images
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Models ‘ Backbone ‘ 1-shot 5-shot
Optimization-based

mLSTM [Ravi and Larochelle, 2017] Conv4 43.44 £ 0.77 60.60 + 0.71
MAML [Finn et al., 2017] Conv4 48.70 £ 1.84 63.10 £ 0.92
Meta-SGD [Li et al., 2017] Conv4 50.47 + 1.87  64.03 £ 0.94
SNAIL [Mishra et al., 20171 ResNet-12 | 55.71 £0.99 68.88 +0.92
REPTILE [Nichol ez al., 2018] Conv4 4997 £0.32 6599 + 0.58
MTL [Sun et al., 2019] ResNet-12 | 61.20 + 1.80  75.50 + 0.80
LEO [Rusu et al., 2018] WRN-28 | 61.76 £0.08 77.59 £0.12
Generation-based

PLATIPUS [Finn et al., 2018] Conv4 50.13 + 1.86 -
VERSA [Gordon et al., 2018] Conv4 5340 +1.82 67.37+0.86
LwoF [Gidaris and Komodakis, 2018] ResNet 55.45+0.89 70.13+0.68
Param_Predict [Qiao et al., 2018] WRN-28 | 59.60 +0.41 73.74 +£0.19
wDAE [Gidaris and Komodakis, 2019] | WRN-28 | 61.07 £0.15 76.75 +0.11
Metric-based

Matching Net [Vinyals er al., 2016] Conv4 4356 £0.84 5531+0.73
Prototypical Net [Snell et al., 20171 Conv4 49.42+0.78  68.20 + 0.66
Relation Net [Sung et al., 2018] Conv4 50.40 £0.80 65.30 +0.70
TADAM [Oreshkin et al., 2018] ResNet-12 | 58.50 £0.30 76.70 + 0.30
CTM [Li et al., 2019al ResNet-18 | 62.05 +£0.55 78.63 + 0.06
CovaMNet [Li et al., 2019c] Conv4 51.19+£0.76 67.65 +0.63
DN4 [Li et al., 2019b] Conv4 51.24+£0.74 71.02 + 0.64
TapNet [Yoon er al., 2019] ResNet-12 | 61.65 £0.15 76.36 + 0.10
Graph-based

GNN [Garcia and Bruna, 2017] Conv4 50.33 £0.36 66.41+0.63
TPN [Liu er al., 2018] ResNet 59.46 75.65
EGNN [Kim et al., 2019] Conv4 - 76.37 +0.30
TRPN Conv4 57.84 £ 0.51 78.57 + 0.44
TRPN WRN-28 | 68.25 4+ 0.50 85.40 + 0.39

Table 1: Few-shot image classification accuracies of 5-way 1-shot
and 5-way 5-shot tasks on minilmageNet .

in total. The classes of tieredImageNet are grouped into 34
higher-level nodes based on WordNet hierarchy [Deng et al.,
2009], and further partitioned into disjoint sets of training,
testing, and validation nodes, ensuring a distinct distance be-
tween training and testing classes thus making the classifica-
tion more challenging. For both datasets, we adopt the com-
mon splits as previous work.

Network Architectures

We use two widely-used feature embedding architectures as
our backbone: Conv-4 [Kim et al., 2019] and WRN-28
[Zagoruyko and Komodakis, 2016]. For Conv-4 consisting
of 4 convolutional blocks, we adopt the same embedding net-
work architecture used in [Kim ef al., 2019] and train the em-
bedding network and graph network in an end-to-end manner.
WRN-28 is a 28-layer wide residual network with width fac-
tor 10 whose output is a 640-dimensional feature vector. We
pre-train the WRN-28 network by optimizing the accuracy of
the multi-classes classification on the whole training set of
minilmageNet or tieredlmageNet, and then freeze the param-
eters during relation propagation. The adjacency function ¢
and evaluation function ¢ are implemented with Multi-Layer
Perceptions (MLPs) consisting of 3 fully-connected layers.
Specially, under non-transductive setting, ¢ shares the same
parameters with ¢.

Implementation Details

Following [Vinyals et al., 2016], we adopt the episodic train-
ing procedure. Standard data augmentation including random
crop, left-right flip, and color jitter are applied in the training
stage. The number of training iterations on minilmageNet
and tieredIlmageNet are 100K and 200K, respectively. We
use Adam optimizer [Kingma and Ba, 2014] with an initial
learning rate of 0.001, and reduce the learning rate by half
every 15K and 30K iterations, respectively on minilmageNet
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Models ‘ Backbone ‘ 1-shot 5-shot
Optimization-based

MAML [Finn et al., 20171 Conv4 51.67 + 1.81 70.30 & 0.08
REPTILE [Nichol et al., 2018] Conv4 5236 +0.23 71.03 £0.22
Meta-SGD [Li et al., 2017] Conv4 62.95 +0.03 79.34 £ 0.06
LEO [Rusu et al., 2018] WRN-28 | 66.33 +£0.05 81.44 +0.09
Generation-based

LwoF [Gidaris and Komodakis, 2018] Conv4 50.90 £ 046 66.69 £ 0.36
wDAE [Gidaris and Komodakis, 2019] | WRN-28 | 68.18 +£0.16 83.09 4 0.12
Metric-based

Matching Net [Vinyals er al., 2016] Conv4 54.024+0.00 70.11 £0.00
Prototypical Net [Snell et al., 2017] Conv4 5331+£089 72.69 £0.74
Relation Net [Sung et al., 2018] Conv4 5448 £0.93 71.32+0.70
CTM [Li et al., 2019a] ResNet-18 | 64.78 £0.11  81.05+0.13
TapNet [ Yoon e al., 2019] ResNet-12 | 63.08 £0.15 80.26 +0.12
Graph-based

GNN [Garcia and Bruna, 2017] Conv4 43.56 £ 0.84 55.31 £0.73
TPN [Liu ef al., 2018] Conv4 57.53+£0.96 72.85+0.74
EGNN [Kim et al., 2019] Conv4 - 80.15 + 0.30
TRPN Conv4 59.26 £0.50  79.66 £ 0.45
TRPN WRN-28 | 70.25 +0.50 85.21 + 0.37

Table 2: Few-shot image classification accuracies of 5-way 1-shot
and 5-way 5-shot tasks on tieredImagenet.

and tieredImageNet. The weight decay is set to 1e~5. The
mini-batch size for all experiments is 20. We use the valida-
tion set to select the training episodes with the best accuracy.

Evaluation Protocols

On both datasets, we conduct 5-way 1-shot and 5-shot ex-
periments which are standard few-shot learning settings. For
evaluation, each episode is formed by randomly sampling 1
query for each of 5 classes. We report the mean accuracy
(%) of 10K randomly generated episodes as well as the 95%
intervals on test set.

3.2 Comparison with State-of-the-Arts

We first investigate the performance of our model, com-
pared with state-of-the-art few-shot approaches, respectively
on minilmageNet and tieredlmageNet. These approaches
are particularly divided into optimization-based, generation-
based and metric-based. Since our TRPN is a graph model,
we further split the graph models from metric models, namely
the graph-based methods. Table 1 and Table 2 list the few-
shot classification accuracies of the 5-way 1-shot and 5-shot
tasks along with the specifications of the backbone embed-
ding models for feature extraction.

From Table 1, we can observe that as the shots increase, all
the methods perform better, which is adhere to our intuition.
Moreover, a deeper embedding network will lead to a bet-
ter classification performance compared to methods equipped
with Conv4, achieving above 70% accuracy on 5-shot set-
ting. In most cases, our TRPN model significantly outper-
forms others under the same experimental setting, achieving
68.25% and 85.40% accuracy on 5-way 1-shot and 5-shot
setting, respectively. Though as presented in [Chen er al.,
2019], as the backbone gets deeper, the gap among differ-
ent methods drastically reduces, our TRPN model can con-
sistently gain nearly 7% improvements on 5-shot setting over
the second best approach CTM, confirming the superiority
of TRPN mainly owning to the relation propagation. Mean-
while, TRPN with “Conv-4" backbone achieves 57.84% and
78.57% respectively on 1-shot and 5-shot setting, even out-
performing most of the state-of-the-art models equipped with
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Figure 2: Ablation study on minilmageNet. It respectively shows the
few-shot classification results without relational nodes, under non-
transductive setting, without pseudo relational nodes, without inter-
class uniqueness in adjacency matrix and that obtained by the full
TRPN framework from right to left.

(a) initial adjacency

(b) similarity score  (c) ground-truth

Figure 3: Visualization of the relation propagation.

deeper embedding networks. Similar trend can also be ob-
served in Table 2. The proposed TRPN shows comparable re-
sults with the state-of-the-arts, achieving 70.25% and 85.21%
accuracy on 5-way 1-shot and 5-shot setting, respectively.

3.3 Ablation Study

As aforementioned, our method mainly gains from the whole
relational graph framework. Here, we study the effects of
different parts in our TRPN model. Figure 2 respectively
shows the few-shot classification results without relational
nodes, under non-transductive setting, without pseudo rela-
tional nodes, without inter-class uniqueness in adjacency ma-
trix and that obtained by the full TRPN framework. From the
results, we can see that both the proposed framework without
relational nodes and that under non-transductive setting can-
not utilize sufficient information existing in the task, and thus
suffer from a significant performance drop. Without pseudo
relational nodes, the proposed model with “Conv-4" back-
bone witnesses a large drop from 78.57% to 67.34%, while
performance on TRPN model with “WRN-28" only declines
by nearly 0.4%. We consider the difference lies in the rep-
resentative ability of different backbones. Without consider-
ing inter-class uniqueness, the results decrease by 1% around,
due to neglecting the commonality of different categories.
Figure 3 further shows how our relation-propagation graph
network propagates the relations of the support-query pairs.
Since we mainly focus on support-query relations, we simply
use the given label in visualization matrices, and respectively
visualize the relations including the initial coarse adjacency
based on the raw node features, the predicted similarities
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Figure 4: Semi-supervised few-shot classification accuracies of the
5-way 5-shot tasks on minilmageNet.

based on the learnt relational embeddings and ground-truth. It
is easy to conclude that starting from the coarse prediction be-
tween support-query pairs where relations are uncertain with
some randomness, our model can precisely predict the true
relations using the relation propagation.

3.4 Semi-supervised Few-shot Classification

For more efficient relation propagation on the graph, we ex-
tend our graph based architecture to learn from a mixture of
labeled and unlabeled examples. We followed the same semi-
supervised settings proposed in [Garcia and Bruna, 2017;
Kim et al., 2019] for fair comparison. Two settings are
considered in this experiment, namely ‘“LabeledOnly” and
“Semi”. “LabeledOnly” denotes learning with only labeled
support samples, and “Semi” means a 5-way S-shot setting
with partially labeled samples in the support set where la-
beled samples are balanced among classes. We compare
our performance with GNN and EGNN equipped with the
“Conv-4” backbone. As shown in Figure 4, our TRPN sig-
nificantly surpasses other graph models under both semi-
supervised settings. Generally speaking, semi-supervised
learning achieves superior performance compared to labeled-
only training. Apart from the higher accuracy with every la-
bel ratio, TRPN also shows a faster learning speed as labeled
ratio increases especially on “LabeledOnly” setting, verify-
ing that it could learn the discriminative relation embeddings
from the given labels.

4 Conclusion

In this paper, we presented a novel transductive relation-
propagation graph neural network (TRPN), the first work
which explicitly models and propagates the relations across
support-query pairs. We also introduced a pseudo relational
node and devised an effective transductive learning strategy to
further exploit the relation information among different sam-
ple pairs. Extensive experiments conducted on several bench-
mark datasets demonstrate the superiority of TRPN compared
with state-of-the-art few-shot learning methods.
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