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Abstract
Few-shot learning aims to learn a model that can be
readily adapted to new unseen classes (concepts)
by accessing one or few examples. Despite the
successful progress, most of the few-shot learn-
ing approaches, concentrating on either global or
local characteristics of examples, still suffer from
weak generalization abilities. Inspired by the in-
verted pyramid theory, to address this problem,
we propose an inverted pyramid network (IPN)
that intimates the human’s coarse-to-fine cogni-
tion paradigm. The proposed IPN consists of two
consecutive stages, namely global stage and local
stage. At the global stage, a class-sensitive con-
textual memory network (CCMNet) is introduced
to learn discriminative support-query relation em-
beddings and predict the query-to-class similarity
based on the contextual memory. Then at the local
stage, a fine-grained calibration is further appended
to complement the coarse relation embeddings, tar-
geting more precise query-to-class similarity evalu-
ation. To the best of our knowledge, IPN is the first
work that simultaneously integrates both global and
local characteristics in few-shot learning, approxi-
mately imitating the human cognition mechanism.
Our extensive experiments on multiple benchmark
datasets demonstrate the superiority of IPN, com-
pared to a number of state-of-the-art approaches.

1 Introduction
Deep learning methods have shown the powerful learning
capability in the past decade. The standard deep learning
models [Ji et al., 2013; Zagoruyko and Komodakis, 2016]
mainly contain millions of parameters and heavily rely on
the huge amount of training data. Largely different from the
deep learning model, the human cognition system exhibits
remarkable abilities to infer the novel concepts effortlessly
from only one or a few examples and reliably recognize them
later on. To acquire the similar strong generalization abil-
ity, few-shot learning has been introduced to learn a model
that can be readily adapted to new unseen classes (concepts)
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by accessing only one or few examples. A variety of few-
shot learning methods have been proposed recently, which
can be roughly divided into optimization-based, generation-
based, and metric-based methods.

Optimization-based methods train a desired meta learner
over a variety of learning tasks and optimize it for the best
performance on a distribution of tasks, including potentially
unseen tasks. To accomplish this task, usually there needs
an across-task meta-learner that identifies how to update the
parameters of the learner’s model. [Rusu et al., 2018] intro-
duced a data-dependent meta-learning approach which learns
a low-dimensional latent generative representation of model
parameters, and performs gradient-based adaptation in this
space. In [Sun et al., 2019], a novel meta-transfer learn-
ing method is proposed which combines the advantages of
meta learning and transfer learning to transfer large scale pre-
trained DNN weights for solving few-shot learning tasks.

Generation-based methods attempt to augment few-shot
data with a generative meta-learner or learn to predict classifi-
cation weights for novel classes. [Qiao et al., 2018] proposed
a novel approach that can adapt a pre-trained neural network
to novel categories by directly predicting the parameters from
the activations without training. In [Gidaris and Komodakis,
2019], a Denoising Autoencoder network is used to refine a
set of initial classification weights to make them more dis-
criminative with respect to the classification task at hand.

Metric-based methods have achieved considerable success
by learning to compare the support and query samples in
a shared feature space. The early study of [Vinyals et al.,
2016] introduced the episodic training mechanism into few-
shot learning and utilized a bidirectional LSTM to encode
each support sample in the context of the whole support set,
and matched the query sample to the support sample through
an attention mechanism. The following typical methods such
as [Sung et al., 2018] attempted to embed the samples by sim-
ply summing each support class in an element-wise manner.

Most of the previous few-shot learning approaches con-
centrated on the abstract global information for each sample.
This is consistent with the human cognition system, which
usually first makes a coarse recognition from the global per-
spective, e.g., shape, size, structure, etc. However, in practice
when the object is too difficult to be distinguished from the
global perspective, humans will further resort to the detailed
local features. This recognition scheme follows the coarse-
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Figure 1: The IPN framework.

to-fine theory of visual perception, inspired by the Gestalt
dictum that the whole is prior to the parts (the whole arises
before the parts). To compensate for the weakness of the
previous methods, recently a few studies [Li et al., 2019b;
Li et al., 2019c] have been proposed to extract the subtle dif-
ference from the local perspective, and achieved satisfying
performance on fine-grained dataset. Unfortunately, only fo-
cusing on either global or local characteristics, these methods
are still far from strong generalization abilities over datasets
with various classes.

To address this problem, in this paper we propose an
inverted pyramid network (IPN) to intimate the human’s
coarse-to-fine cognition paradigm, inspired by the reverse-
hierarchy theory [Ahissar and Hochstein, 2004]. Reverse-
hierarchy theory, also known as inverse pyramid theory, sug-
gests that the magnocellular stream provides the fast “coarse”
initial sweep, while slow parvocellular signals representing
“fine” analysis are processed in a later time window. Fol-
lowing this paradigm, the proposed IPN consists of two con-
secutive stages, namely global stage and local stage. At the
global stage, we propose a class-specific contextual model
with a memory mechanism (CCMNet) to learn the discrim-
inative global support-query relation embeddings. Specifi-
cally, CCMNet sequentially processes the query sample and
one support sample of a specific class at each time step,
and learns the discriminative relation embedding between the
support and query sample based on the contextual informa-
tion. Besides, the information flow of the classical GRU is
further modified to preserve the long-term dependencies us-
ing fewer parameters, enabling the strong sensitivity to the
contextual information. At the local stage, to compensate for
the weakness of the globally predicted query-to-class simi-
larity, the fine-grained calibration can be further appended by
simply comparing the query with its nearest patches, and thus
targets more precise query-to-class similarity evaluation.

To the best of our knowledge, IPN is the first work that
simultaneously integrates both global and local characteris-
tics in few-shot learning, approximately imitating the hu-

man cognition mechanism. Extensive experiments conducted
on two commonly-used few-shot datasets miniImageNet and
tieredImageNet further verify the superiority of our IPN
model. Especially, even using our CCMNet alone can
achieve 66% 1-shot accuracy and nearly 83% 5-shot accu-
racy on miniImageNet, outperforming most state-of-the-art
approaches under the same setting. Moreover, by further ap-
plying the fine-grained calibration, our two-stage framework
can consistently obtain accuracy gains (up to 5.6%), on dif-
ferent datasets and under different few-shot settings.

2 The Inverted Pyramid Network
We develop a novel two-stage few-shot learning architec-
ture named Inverse Pyramid Network (IPN), inspired by the
coarse-to-fine theory of human visual perception, meaning
that the whole arises before the parts. Therefore, the proposed
IPN consists of two consecutive stages, namely global stage
and local stage. At the global stage, a class-sensitive con-
textual memory network is proposed to progressively capture
the global relations such as the similarities of shape, struc-
ture etc., between support samples from a class and query in
an online setting. After that, fine-grained calibration will be
conducted to further compare the local discriminative parts
for indistinguishable classes.

Next, we first introduce the preliminary of the few-shot
setting, then present the Class-sensitive Contextual Memory
Network at the global stage and the fine-grained calibration at
the local stage, and finally demonstrate the inference process
of the proposed model on novel classes.

2.1 Preliminary
Let S denote a support set, which contains N different image
classes (C1, . . . , CN ) and K (K is small, e.g., K = 5) la-
beled samples per class. Given a query setQ, few-shot learn-
ing aims to classify each unlabeled sample in Q according to
the set S . This setting is also called N -way K-shot classifi-
cation. We adopt episodic training which is commonly em-
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Figure 2: Class-sensitive Contextual Memory Network. The red
arrow represents the skip link.

ployed in the literature as an effective approach to learn the
transferable knowledge from a relatively large labeled train-
ing dataset with a set of classes Ctrain which has a disjoint
class label space with the test dataset with novel classes Ctest,
namely Ctrain ∩ Ctest = ∅.

More concretely, in episodic training, a small subset of N
classes are sampled from Ctrain to construct an N -way K-
shot problem as follows: a task Γ contains a support set S and
a query set Q, where S = {x(1)

k }Kk=1 ∪ ... ∪ {x
(N)
k }Kk=1 and

Q = {(x̂q, ŷq)}Tq=1. Here, x(n)
k denotes the k-th sample of

class Cn in the support set. T is the number of query samples,
and x̂q , ŷq ∈ {C1, ..., CN} are the q-th query data and its
ground truth label, respectively. In each episode, the model
is trained to minimize the loss of its predictions ofQ through
learning the labeled support set S .

2.2 Global Stage: Contextual Memory
Given a sample x of a task Γ, the embedding network E
is first utilized to extract the global feature representations
g = E(x) ∈ R1×D. Based on the feature representations,
we propose the class-sensitive contextual memory network
(CCMNet) to capture the query-to-class relations, by fully
exploring the context of a class. Initializing the hidden state
with query features, CCMNet takes a support sample from
a specific class as input and captures the support-query re-
lation at each time step. Through learning relation embed-
dings sample by sample in a class-sensitive contextual envi-
ronment, CCMNet enjoys a better understanding about the
query-to-class similarity and thus achieves comparatively ac-
curate classification performance.

Class-sensitive Contextual Memory Network
For the proposed CCMNet, we adopt the classical GRU [Cho
et al., 2014] and modify its information flow to selectively
absorb the information from past experience. GRU is a re-
current gating mechanism, where the reset gate mainly deter-
mines how much of the past information needs to be removed,
and the update gate determines how much of the past infor-
mation (from previous time steps) needs to be memorized and
passed to the future.

We further modify the information flow of classical GRU
to fit the task of relation learning from the contextual infor-
mation. For one thing, we initialize the hidden state with the
query representations, and feed the global feature representa-
tion from the same class into the memory network at every

time step. Thus, we capture the relation between the query
sample and support sample at each step and make the pre-
diction given the class-sensitive contextual environment. For
another, we add a skip link in each time step to further con-
sider experience from the previous two time steps, in avoid
of catastrophic forgetting and to better learn the contextual
information across the class.

Figure 2 shows the whole structure of CCMNet with the
modified GRU module. Specifically, when learning the rela-
tions between the query sample x̂q and the n-th class, we ini-
tialize the hidden state h(n)

0 = ĝq . And in the time step k, we
feed the k-th sample denoted as g

(n)
k from class Cn into the

CCMNet, and the hidden state updating in our class-sensitive
GRU is conducted as follows:

z
(n)
k = σ(Wzg

(n)
k + Uz(h

(n)
k−1 + h

(n)
k−2)) (1)

r
(n)
k = σ(Wrg

(n)
k + Ur(h

(n)
k−1 + h

(n)
k−2)) (2)

h̃
(n)
k = φ(Whg

(n)
k + Uh(r

(n)
k � (h

(n)
k−1 + h

(n)
k−2))) (3)

h
(n)
k = z

(n)
k � (h

(n)
k−1 + h

(n)
k−2) + (1− z

(n)
k )� h̃

(n)
k (4)

where h(n)
k is the updated hidden state, with h

(n)
k−2 a skip link

to h
(n)
k−1, considering previous two time steps to involve more

class-sensitive contextual information. When k = 1, we de-
note h

(n)
k−2 = ĝq . Wz , Uz , Wr, Ur, Wh, and Uh are all

learnable parameters, σ and φ are the sigmoid activation func-
tion and the tanh activation function, respectively. z

(n)
k and

r
(n)
k represent the update gate and the reset gate.

The entire iterations explore the relations between ĝq and
the category Cn by traversing all samples of Cn in the support
set. Due to the special gating update mechanism, the hidden
state h

(n)
k after iterative update retains the common features

of the query sample and category Cn, while irrelevant interfer-
ence information is forgotten. Therefore, h(n)

k can be used as
a relation embedding to measure the query-to-class similarity.
Besides, through the skip link, not only the gradient vanish-
ing problem in the back-propagation procedure is alleviated,
but also effectively mitigates the occurrence of catastrophic
forgetting of earlier data and transmits more information to
the current step.

To further learn the contextual information and elimi-
nate the influence of sequence order, we adopt the bidirec-
tional mechanism. We concatenate the output hidden states
−→
h

(n)
k ,
←−
h

(n)
K−k+1 from two opposite directions together as the

final relation embedding:

h
(n)

k = [
−→
h

(n)
k ,
←−
h

(n)
K−k+1] (5)

where [·, ·] denotes the concatenation operation. As a result,
for the n-th class, we can obtain a set of relation embeddings
{h(n)

k }Kk=1.

Learning at the Global Stage
For each relation embedding, we could learn a similarity
score s

(n)
qk = Ψ(h

(n)

k ) where Ψ is a similarity measure, and

s
(n)
qk ∈ [0, 1]. Intuitively, the larger the score is, the higher the
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probability that they belong to the same category is. Thus, for
each training episode, we could compare the similarity score
with the ground truth label and compute the loss function:

` =
T∑

q=1

N∑
n=1

K∑
k=1

δqk log s
(n)
qk + (1− δqk) log(1− s

(n)
qk ) (6)

where δqk is defined as:

δqk =

{
1, if ŷq = Cn
0, otherwise

(7)

2.3 Local Stage: Fine-grained Calibration
As mentioned above, it is hard for the model to distinguish
similar categories given the compact global representations.
Therefore, we need to compare the different local details to
calibrate the uncertain global prediction. Under such consid-
eration, we reuse the backbone network E to further gain a
better understanding of the input samples and mine the dis-
tinguishable characteristics from local perspective.

Here we adopt the method presented in DN4 [Li et al.,
2019b]. Given a sample x, we view the features output by the
last convolutional layer of E, as a set of local patch features
[p1, · · · ,pM ] where pj is the j-th local patch feature. For
each local feature pj of query sample, we find its L-nearest
neighbors p′

l
j |Ll=1 in the local feature space of support sam-

ples from the same class Cn. Then we calculate the cosine
similarity between pj and each p′j , and sum the M ×L sim-
ilarities as the query-to-class similarity:

Ψ′(x̂q, Cn) =
M∑
j=1

L∑
l=1

cos(pj ,p
′l
j) (8)

cos(pj ,p
′l
j) =

p>j p
′l
j

‖pj‖ · ‖p′lj‖
(9)

Note that the fine-grained calibration process is non-
parametric and computation effective. Following the reverse-
hierarchy cognition paradigm, it is very simple and flexible
to be appended to the global stage on demand, forming an ef-
fective two-stage coarse-to-fine few-shot learning framework,
i.e., our Inverse Pyramid Network (IPN) model.

2.4 Inference on Novel Class
In the testing stage, given a query sample x̂q , we first use
the CCMNet to generate relation embeddings and compute
the similarity scores for support-query pairs. Then the global
query-to-class similarity can be expressed as:

P(ŷq = Cn|Γ) =
exp (

∑
k s

(n)
qk )∑

n′

(
exp (

∑
k s

(n′)
qk )

) (10)

In practice some classes of the task are too similar and in-
distinguishable from global perspective, and thus the global
query-to-class similarities are very close. In this case, we
should further conduct the fine-grained calibration. Specif-
ically, assuming that Ci and Cj are the two categories with

the highest query-to-class similarities, we calculate the pre-
diction reliability τ of the task as:

τ = P(ŷq = Ci|Γ)/P(ŷq = Cj |Γ) (11)

We set a reliability threshold τ0 and compare it with the pre-
diction reliability τ . If τ ≥ τ0, we consider Ci as the final
prediction of the query sample directly. Otherwise we re-
sort to the fine-grained calibration to further obtain the more
precise query-to-class similarity through which we make the
final prediction.

3 Experiments
In this section, we evaluate our IPN with state-of-the-art few-
shot approaches on widely used datasets.

3.1 Experimental Settings
Datasets
We employ the widely used datasets in prior studies, in-
cluding miniImageNet dataset [Vinyals et al., 2016] and
tieredImageNet dataset [Ren et al., 2018]. The miniImageNet
dataset consists of 100 classes, each of which contains 600
images of size 84 × 84, while the tieredImageNet contains
608 classes with 77915 images in total. The classes of
tieredImageNet are grouped into 34 higher-level nodes based
on WordNet hierarchy [Deng et al., 2009], and is further par-
titioned into disjoint sets of training, testing, and validation
nodes, ensuring a distinct distance between training and test-
ing classes thus making the classification more challenging.
For both datasets, we adopt the common splits as previous
work.

Model Architectures
We use the recently common-used feature embedding archi-
tecture WRN-28 [Zagoruyko and Komodakis, 2016] as back-
bone. WRN-28 whose output is a 640-dimensional feature
vector is a 28-layer wide residual network with width factor
10. We pre-train the WRN-28 network by optimizing the ac-
curacy of the multi-classes classification on the whole train-
ing set of miniImageNet or tieredImageNet, and then freeze
the parameters during the training phase. The similarity mea-
sure Ψ is implemented as Multi-Layer Perceptions (MLPs)
consisting of 3 fully-connected layers.

Implementation Details
Standard data augmentations including random crop, left-
right flip, and color jitter are applied in the training stage.
The mini-batch size for all experiments is 20. The number of
training iterations on miniImageNet and tieredImageNet are
100K and 200K. We use the validation set to select the train-
ing episodes with the best accuracy. We use Adam optimizer
with an initial learning rate of 0.001, and reduce the learn-
ing rate by half every 15K and 30K iterations, respectively
on miniImageNet and tieredImageNet. The weight decay is
set to 10−6. When conducting finegrained calibration at local
stage, the prediction reliability threshold τ0 is set to 1.5, and
the number of nearest neighbors L is set to 3. As presented in
[Kim et al., 2019; Liu et al., 2018], most few-shot approaches
adopted two kinds of transductive inference methods to im-
prove the classification performance. In our CCMNet, we
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Models Backbone 1-shot 5-shot

Optimization-based
mLSTM [Ravi and Larochelle, 2017] Conv4 43.44 ± 0.77 60.60 ± 0.71
MAML [Finn et al., 2017] Conv4 48.70 ± 1.84 63.10 ± 0.92
Meta-SGD [Li et al., 2017] Conv4 50.47 ± 1.87 64.03 ± 0.94
SNAIL [Mishra et al., 2017] ResNet-12 55.71± 0.99 68.88 ± 0.92
REPTILE [Nichol et al., 2018] Conv4 49.97 ± 0.32 65.99 ± 0.58
LEO [Rusu et al., 2018] WRN-28 61.76 ± 0.08 77.59 ± 0.12
MTL [Sun et al., 2019] ResNet-12 61.20 ± 1.80 75.50 ± 0.80

Generation-based
PLATIPUS [Finn et al., 2018] Conv4 50.13 ± 1.86 -
VERSA [Gordon et al., 2018] Conv4 53.40 ± 1.82 67.37 ± 0.86
LwoF [Gidaris and Komodakis, 2018] ResNet 55.45 ± 0.89 70.13 ± 0.68
Param Predict [Qiao et al., 2018] WRN-28 59.60 ± 0.41 73.74 ± 0.19
wDAE [Gidaris and Komodakis, 2019] WRN-28 61.07 ± 0.15 76.75 ± 0.11

Metric-based
Matching Net [Vinyals et al., 2016] Conv4 43.56 ± 0.84 55.31 ± 0.73
GNN [Garcia and Bruna, 2017] Conv4 50.33 ± 0.36 66.41 ± 0.63
Prototypical Net [Snell et al., 2017] Conv4 49.42 ± 0.78 68.20 ± 0.66
Relation Net [Sung et al., 2018] Conv4 50.40 ± 0.80 65.30 ± 0.70
TPN [Liu et al., 2018] Conv4 53.75 ± 0.86 69.43 ± 0.67
TADAM [Oreshkin et al., 2018] ResNet-12 58.50 ± 0.30 76.70 ± 0.30
CovaMNet [Li et al., 2019c] Conv4 51.19 ± 0.76 67.65 ± 0.63
DN4 [Li et al., 2019b] Conv4 51.24 ± 0.74 71.02 ± 0.64
EGNN [Kim et al., 2019] Conv4 - 76.37 ± 0.30
TapNet [Yoon et al., 2019] ResNet-12 61.65 ± 0.15 76.36 ± 0.10
CTM [Li et al., 2019a] ResNet-18 62.05 ± 0.55 78.63 ± 0.06

CCMNet WRN-28 66.30 ± 0.48 82.89 ± 0.39
Ours WRN-28 67.42 ± 0.45 83.98 ± 0.35

Table 1: Few-shot image classification accuracies of 5-way 1-shot and 5-shot tasks on miniImageNet.

simply concatenate the query features together as the initial-
ization of the hidden state and learn the relation embeddings
simultaneously.

Evaluation Protocols
On both datasets, we conduct 5-way 1-shot and 5-shot ex-
periments which are standard few-shot learning settings. For
evaluation, each episode was formed by randomly sampling 1
query for each of 5 classes. We report the mean accuracy (%)
of 10000 randomly generated episodes as well as the 95%
intervals on test set.

3.2 Comparison with State-of-the-Art
We first investigate the performance of our model, com-
pared to state-of-the-art few-shot approaches, respectively
on miniImageNet and tieredImageNet. These approaches
are particularly divided into optimization-based, generation-
based and metric-based. Table 1 and Table 2 list the few-
shot classification accuracies of the 5-way 1-shot and 5-shot
tasks along with the specifications of the backbone embed-
ding models for feature extraction, where “Conv-4” indicates
the 4-layer convolutional neural network. We use bold fonts
for the two best results.

From Table 1, we can observe that as the shots increase, all
the methods perform better, which is adhere to our intuition.
Moreover, a deeper embedding network will lead to a bet-
ter classification performance compared to methods equipped
with Conv4, achieving above 70% accuracy on 5-shot setting.
In most cases, our IPN model significantly outperforms oth-
ers under the same experimental setting, achieving 67.42%
and 83.98% accuracy on 5-way 1-shot and 5-shot setting, re-
spectively. Though as presented in [Chen et al., 2019], as the
backbone gets deeper, the gap among different methods dras-

Figure 3: Ablation study on miniImageNet. It shows few-shot clas-
sification results of the proposed IPN, IPN without the global stage
(denoted local only), the proposed CCMNet, CCMNet without con-
textual information, and CCMNet without skip links.

tically reduces, our IPN model can consistently gain nearly
5% improvements on 5-shot setting over the second best ap-
proach CTM, confirming the superiority of IPN mainly own-
ing to the inverted pyramid paradigm. The similar trend can
also be observed in Table 2. The proposed IPN shows compa-
rable results with the state-of-the-arts, achieving 73.18% and
86.59% accuracy on 5-way 1-shot and 5-shot setting, respec-
tively.

3.3 Ablation Study
Figure 3 demonstrates the effects of each component of the
proposed IPN framework on miniImageNet. It respectively
shows the few-shot classification results of the proposed IPN,
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Models Backbone 1-shot 5-shot

Optimization-based
MAML [Finn et al., 2017] Conv4 51.67 ± 1.81 70.30 ± 0.08
Meta-SGD [Li et al., 2017] Conv4 62.95 ± 0.03 79.34 ± 0.06
REPTILE [Nichol et al., 2018] Conv4 52.36 ± 0.23 71.03 ± 0.22
LEO [Rusu et al., 2018] WRN-28 66.33 ± 0.05 81.44 ± 0.09

Generation-based
LwoF [Gidaris and Komodakis, 2018] Conv4 50.90 ± 0.46 66.69 ± 0.36
wDAE [Gidaris and Komodakis, 2019] WRN-28 68.18 ± 0.16 83.09 ± 0.12
Metric-based
Matching Net [Vinyals et al., 2016] Conv4 54.02 ± 0.00 70.11 ± 0.00
GNN [Garcia and Bruna, 2017] Conv4 43.56 ± 0.84 55.31 ± 0.73
Prototypical Net [Snell et al., 2017] Conv4 53.31 ± 0.89 72.69 ± 0.74
Relation Net [Sung et al., 2018] Conv4 54.48 ± 0.93 71.32 ± 0.70
TPN [Liu et al., 2018] Conv4 57.53 ± 0.96 72.85 ± 0.74
EGNN [Kim et al., 2019] Conv4 - 80.15 ± 0.30
TapNet [Yoon et al., 2019] ResNet-12 63.08 ± 0.15 80.26 ± 0.12
CTM [Li et al., 2019a] ResNet-18 64.78 ± 0.11 81.05 ± 0.13

CCMNet WRN-28 67.54 ± 0.50 82.40 ± 0.31
Ours WRN-28 73.18 ± 0.43 86.59 ± 0.33

Table 2: Few-shot image classification accuracies of 5-way 1-shot and 5-shot tasks on tieredImagenet.

IPN without the global stage (denoted local only), the pro-
posed CCMNet, CCMNet without contextual information,
and CCMNet without skip links. Since we directly adopt the
DN4 model proposed in [Li et al., 2019b] to compare local
fine-grained details at our local stage, we simply replace the
backbone of DN4 model with ours and re-train the model un-
der the same setting. As for removing contextual information
from CCMNet, at each time step, we assign previous hid-
den state h(n)

k−1,h
(n)
k−2 with query features and thus capture the

query-to-class relations without passing contextual messages.
As it could be seen from Figure 3, only considering global

characteristics or local ones, the performance decline by
nearly 1% and 4%, respectively. As shown in Table 1 and
Table 2, comparing the performance of CCMNet and our
full model, accuracy gains of fine-grained calibration is com-
paratively obvious on the more challenging tieredImageNet
with various classes and disjoint higher-level semantic hi-
erarchy, confirming that fine-grained calibration is effective
and significative in real-world scenarios. We further inves-
tigate the effectiveness of each part of CCMNet. Without
contextual information, the performance significantly drops
by 10%. Without the skip link, it witnesses more than 2%
decline. In contrast, with contextual information and skip
link, the proposed CCMNet achieves 66.30% 1-shot accuracy
and 82.89% 5-shot accuracy on miniImageNet, which outper-
forms most few-shot approaches. Thus, we can conclude that,
with help of the CCMNet at global stage and fine-grained
calibration at local stage, our IPN framework enjoys strong
power to achieve the best performance compared to others.

Figure 4 shows t-SNE visualizations of relation embed-
dings for the proposed IPN. The model is trained under 10-
way 5-shot. Circles indicate the relation embeddings of a
query sample and numerous support samples from 10 classes.
Different colors denote different class labels of support sam-
ples. Intuitively, if two support samples are similar, they share
the similar relation with the same query sample. As the Fig-
ure 4 depicted, there are obvious 10 clusters of relations. Each
cluster is compact and separates from other clusters, proving
that the proposed IPN model could learn the discriminative

Figure 4: t-SNE visualization of relation embeddings. Circles indi-
cate the relation embeddings of a query sample and numerous sup-
port samples from 10 classes. Different colors denote different class
labels of support samples.

relation embeddings.

4 Conclusion
In this paper, we proposed a two-stage inverted pyramid net-
work (IPN) for few-shot learning inspired by the inverted
pyramid theory, which is the first work integrating both global
and local characteristics in few-shot learning. At the global
stage, the CCMNet is introduced to predict the query-to-class
similarity from the global perspective. Then at the local stage,
a fine-grained calibration is further appended to compensate
for the weakness of the global prediction. Extensive exper-
iments conducted on several widely-used datasets demon-
strate that IPN outperforms other state-of-the-art few-shot ap-
proaches by a large margin.
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