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Abstract
Reliably detecting attacks in a given set of inputs
is of high practical relevance because of the vul-
nerability of neural networks to adversarial exam-
ples. These altered inputs create a security risk
in applications with real-world consequences, such
as self-driving cars, robotics and financial services.
We propose an unsupervised method for detecting
adversarial attacks in inner layers of autoencoder
(AE) networks by maximizing a non-parametric
measure of anomalous node activations. Previous
work in this space has shown AE networks can de-
tect anomalous images by thresholding the recon-
struction error produced by the final layer. Fur-
thermore, other detection methods rely on data aug-
mentation or specialized training techniques which
must be asserted before training time. In contrast,
we use subset scanning methods from the anoma-
lous pattern detection domain to enhance detection
power without labeled examples of the noise, re-
training or data augmentation methods. In addition
to an anomalous “score” our proposed method also
returns the subset of nodes within the AE network
that contributed to that score. This will allow fu-
ture work to pivot from detection to visualisation
and explainability. Our scanning approach shows
consistently higher detection power than existing
detection methods across several adversarial noise
models and a wide range of perturbation strengths.

1 Introduction
Deep neural networks are susceptible to adversarial pertur-
bations of their input data that can cause a sample to be in-
correctly classified [Szegedy et al., 2013; Goodfellow et al.,
2015; Kurakin et al., 2016]. These perturbations contain
small variations in the pixel space that cannot be detected by
a human but can change the output of a classifier.

The vulnerability of networks to adversarial examples im-
plies a security risk in applications with real-world conse-
quences, such as self-driving cars, robotics and financial ser-
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vices [Chen et al., 2019]. Detection of adversarial attacks is
a key component to creating effective defense mechanisms.

Autoencoders (AE) are trained to re-create the input image
by minimizing the reconstruction error (RE) of their output.
Attack detection can be performed by looking at the distri-
bution of the mean reconstruction error for clean and noised
samples [Frosst et al., 2018]. Images with higher mean re-
construction error may be due to an adversarial perturbation
of the input image which results in poorer reconstruction of
the output. Since attacks are becoming increasingly sophis-
ticated and coming from unknown diverse sources, it is not
feasible to obtain labeled datasets of all possible attacks or
build specific detection mechanisms for each type of attack.
There are a variety of methods to make neural networks more
robust to adversarial noise. Some require retraining of the
model with adversarial examples [Goodfellow et al., 2015]
or altering loss functions during the training step [Papernot
and McDaniel, 2016].

In this paper, we build on subset scanning methods from
the anomalous pattern detection literature [Neill, 2012;
McFowland III et al., 2013]. We show these methods en-
hance the adversarial attack detection power of AEs in an
unsupervised manner and without a priori knowledge of the
attack or labeled examples. Anomalous pattern detection ex-
tends standard anomaly detection by searching for anomalous
groups of records. Critically, these records may not appear
anomalous when viewed individually. Subset scanning meth-
ods have been shown to succeed where other anomalous pat-
tern detection heuristics may fail. “Top-down” methods look
for globally anomalous signals (i.e., a high mean reconstruc-
tion error) and then sub-divide to find smaller, more anoma-
lous groups of data points. These may fail if the true anomaly
is not evident from global aggregates. “Bottom-up” methods
look for individually anomalous signals (i.e., high reconstruc-
tion error at a single pixel) and then aggregate them into clus-
ters. These may fail if the true anomaly is only evident by
looking at groups of data points collectively. In contrast, sub-
set scanning methods are designed to efficiently identify the
most anomalous subset of data points —i.e., a group of pix-
els all with higher than expected reconstruction error. More
details are provided in Section 3.

We claim three novel contributions of this work. First, we
show how subset scanning methods can be applied to acti-
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Figure 1. Example of subset scanning score distributions across layers of an autoencoder for adversarial BIM noise ε = 0.01. At the top of
the graph, we can see subset score distributions per node in a layer. The distributions of subset scanning scores are shown in blue for clean
images (C) (expected distribution), and in orange for noised samples (A). Higher AUCs are expected when distributions are separated from
each other and lower AUCs when they overlap. The computed AUC for the subset score distributions can be found in Table 1. In the latent
space, the autoencoder abstracts basic representations of the images, losing subset scanning power due to the autoencoder mapping the new
sample to the expected distribution. This can be seen as an almost perfect overlap of distribution in conv 2d 7.

vations from internal layers of AE networks (see Figure 1).
Second, we show this method can also be applied to the re-
construction error (pixel space) of the images which enables
visualisations of how the adversarial perturbations of the in-
put affects the output (see Figure 3). Third, we provide detec-
tion power results (AUC) for these proposed methods, base-
line methods, and DefenseGan [Samangouei et al., 2018] for
three commonly used image datasets and four different ad-
versarial attacks (see Tables 2 and 3). Our scanning meth-
ods have higher detection power than DefenseGan for a wide
range of perturbation strengths, ε. DefenseGan has compara-
ble results on MNIST and F-MNIST when the perturbations
are very large (ε = 0.15) but struggles to detect smaller per-
turbations.

2 Related Work
2.1 Adversarial Attack Detectors with

Autoencoders and Generative Models
Several approaches have been used for adversarial attack de-
tection with autoencoders and generative models, such as
GANs [Samangouei et al., 2018] and variations of autoen-
coders [Beggel et al., 2019; Zhou and Paffenroth, 2017].
Since these methods can model training data distribution,
these neural networks are an interesting option for adversar-
ial attack detection. The majority of the methods discussed
in literature require the training data to consist of normal
examples only, such as denoising autoencoders [Meng and
Chen, 2017]. The use of adversarial autoencoders by com-
bining criterion of reconstruction error and likelihood in the
latent space is discussed in [Beggel et al., 2019]. The authors

also explored a retraining method to increase the separation
in both latent and image space. [Zhou and Paffenroth, 2017]
present an extension of denoising autoencoders that can work
with corrupted data, where the network uses an anomaly reg-
ularizing penalty based on Lp-norms during training.The au-
thors in [Zhai et al., 2016] used deep structured energy-based
models to show that a criterion based on an energy score can
lead to better results than the reconstruction error criterion.
Defense-GAN [Samangouei et al., 2018] uses a generative
adversarial trained model to encode the distribution of unper-
turbed images. The attack detection is performed using the
mean square error of an image with its reconstruction formed
from the generator as a metric to decide whether the image
was perturbed.

Our proposed approach provides a way to quantify, detect,
and characterize the data that are generated by various ad-
versarial attacks. It does not rely on labeled examples, data
augmentation or specialized training techniques which must
be asserted before training time.

2.2 Adversarial Attack Models
There are several adversarial attack models discussed in the
literature such as [Szegedy et al., 2013; Goodfellow et al.,
2015; Moosavi-Dezfooli et al., 2016; Madry et al., 2017;
Chen et al., 2019]. One way to classify these adversarial at-
tacks is by their threat models, of which there are two main
types: white-box and black-box. In the white-box approach,
an attacker has complete access to the model, including its
structure and trained weights. Several examples of white-
box attacks are used in this work such as Basic Iterative
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Method (BIM) [Kurakin et al., 2016], Fast Gradient Signal
Method (FGSM) [Goodfellow et al., 2015], DeepFool (DF)
[Moosavi-Dezfooli et al., 2016]. In the black-box approach,
an attacker can only access the outputs of the target model.
As an example of this modality, we use HopSkipJumpAt-
tack [Chen et al., 2019]. For both threat models, the attacks
can be targeted and untargeted. An untargeted attack perturbs
the input to cause any type of misclassification, whereas the
objective of a targeted attack is to modify the decision of the
model to a specific target class. In this work, we focus only
on untargeted adversarial attacks and show attack algorithms
for both white and black box approaches.

FGSM uses the sign of the gradient at every pixel to deter-
mine the direction in which to change the corresponding pixel
value. Given an image X , its corresponding true label ytrue
and the cost function J(X, ytrue), the FGSM attack forms
the adversarial sample (Xadv) as:

Xadv = X + ε sign (∇XJ (X, ytrue)) (1)

BIM is an extension of FGSM where adversarial noise is ap-
plied multiple times iteratively with a small step size:

Xadv
0 = X, Xadv

N+1 = ClipX,ε

{
Xadv
N + β sign

(
∇XJ

(
Xadv
N , ytrue

))}
(2)

whereN denotes the number of iterations, and β is a constant
that controls the magnitude of the perturbations.

DF [Moosavi-Dezfooli et al., 2016] computes the optimal
perturbation to perform a misclassification. The robustness
of the affine classifier f , f(x) = wTx + b, for an input X
is equal to the distance of the input to the hyper-plane that
separates both classes. So the minimal perturbation to change
the classifier decision is the orthogonal projection defined as:

argmin ‖r‖2 = −f (X)

‖w‖22
w (3)

HSJ is a decision-based attack that assumes access to pre-
dicted outputs only. HSJ works by performing a binary search
to find the decision boundary, estimating the gradient direc-
tion at the boundary point, and then updating the step size
along the gradient direction until perturbation is successful.

3 Subset Scanning for Anomalous Pattern
Detection in Autoencoder’s Activations

Subset scanning treats the pattern detection problem as a
search for the “most anomalous” subset of observations in
the data. Herein, anomalousness is quantified by a scor-
ing function, F (S), which is typically a log-likelihood ra-
tio statistic. Therefore, the goal is to efficiently identify
S∗ = argmaxS F (S) over all relevant subsets of node ac-
tivations within an autoencoder that is processing an image at
runtime. The particular scoring functions F (S) used in this
work are covered in the next sub-section.

Treating the detection problem as a subset scan has de-
sirable statistical properties [Neill, 2012]. However, the ex-
haustive search over groups quickly becomes computation-
ally infeasible due to the exponential number of subsets of
records. Fortunately, a large class of scoring functions used
in subset scanning satisfy the Linear Time Subset Scanning

(LTSS) property that enables exact and efficient maximiza-
tion over all subsets of data without requiring an exhaustive
search [Neill, 2012]. The LTSS property essentially reduces
the search space from 2N to N for a dataset with N records
while guaranteeing that the highest-scoring subset of records
is identified.

3.1 Non-parametric Scan Statistics
This work uses non-parametric scan statistics (NPSS) that
have been used in other pattern detection methods [McFow-
land III et al., 2013; McFowland et al., 2018; Chen and Neill,
2014]. Although subset scanning can use parametric scoring
functions (i.e., Gaussian, Poisson), the distribution of activa-
tions within particular layers are highly skewed and in some
cases bi-modal. Therefore, this work uses non-parametric
scan statistics that make minimal assumptions on the under-
lying distribution of node activations.

As described in Algorithm 1, let there be M background
images Xz included in DH0

. These images generate activa-
tions AH0

zj at each node Oj of the trained autoencoder. For
example, if we take a 2D convolution layer from the AE that
takes a single image of size (32, 32, 3) with 16 filters and
3 × 3 kernel size, we will have (32 ∗ 32 ∗ 16) nodes. Let
Xi (not in DH0

) be a test image under evaluation. This im-
age creates activations Aij at each node Oj . The p-value,
pij , is the proportion of background activations AH0

zj greater
than the activation induced by the test image Aij at node Oj .
[McFowland III et al., 2013] extended this notion to p-value
ranges such that pij is uniformly distributed between pminij
and pmaxij . This current work makes a simplifying assump-
tion to only consider a range by its upper bound, defined as:

pij =

∑
Xz∈DH0

I(Azj ≥ Aij) + 1

M + 1
(4)

We convert the test image Xi to a vector of p-values pij of
length J = |O|, the number of nodes in the network under
consideration. The key assumption is that under the alterna-
tive hypothesis of an anomaly present in the activation data,
then at least some subset of the activations SO ⊆ O will sys-
tematically appear extreme. We now turn to non-parametric
scan statistics to identify and quantify this set of p-values.

The general form of the NPSS score function is

F (S) = max
α

Fα(S) = max
α

φ(α,Nα(S), N(S)) (5)

where N(S) represents the number of empirical p-values
contained in subset S and Nα(S) is the number of p-values
less than (significance level) α contained in subset S. In
the above function, the α level defines a threshold, which p-
values can be compared against. Specifically, we calculate
the number of pmaxij that fall below the threshold.

Moreover, it has been shown that for a subset S consisting
of N(S) empirical p-values, E [Nα(S)] = N(S)α [McFow-
land III et al., 2013]. We assume an anomalous process will
create some S where the observed significance is higher than
the expected, Nα(S) > N(S)α, for some α.

There are well-known goodness-of-fit statistics that can be
utilized in NPSS [McFowland et al., 2018]. In this work
we use the Berk-Jones test statistic [Berk and Jones, 1979]:
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φBJ(α,Nα, N) = N ∗ KL
(
Nα
N , α

)
, where KL is the

Kullback-Liebler divergence KL(x, y) = x log x
y + (1 −

x) log 1−x
1−y between the observed and expected proportions

of significant p-values. Berk-Jones can be interpreted as the
log-likelihood ratio for testing whether the p-values are uni-
formly distributed on [0, 1] as compared to following a piece-
wise constant alternative distribution, and has greater power
than any weighted Kolmogorov statistic.

3.2 Efficient Maximization of NPSS for a Single
Image

The NPSS evaluates the anomalousness of a subset of node
activations for any given input. However, discovering the
most anomalous subset from all the 2J possible subsets is
computationally intensive even for a moderately sized J . To
enable efficient and exact maximization of the NPSS score
function over the exponentially many subsets, we exploit the
linear-time subset scanning property (LTSS) [Neill, 2012] of
the function. For any given subset of nodes SO, a score func-
tion F (S), and a priority function G(Oj), the LTSS prop-
erty guarantees that a subset consisting of the “top k” priority
nodes maximizes F (S) for some k in 1 . . . J .

For NPSS, the priority function is the proportion of p-
values that are less than α. However, because we are scor-
ing a single image there is only one p-value at each node and
hence the priority of a node is either 1 (when the p-value is
less than α) or 0 (otherwise). Therefore, for a given fixed α
threshold, the most anomalous subset consists of all and only
the nodes with p-values less than α.

To maximize the scoring function F (S) = maxα Fα(S)
over all α values, we sort all the Oj nodes by their p-values
in ascending order. We then score successively larger subsets
by including the node with the next-largest p-value at each
step, starting with the node with the smallest p-value first.
The largest score obtained from these J subsets is guaranteed
to be the highest scoring subset according to the LTSS prop-
erty. The pseudo-code for subset scanning over autoencoder
activations is described in Algorithm 1.

4 Experimental Setup
We study the performance of our proposed approach over two
experiments. First, we apply our detection method over node-
activations from individual internal layers of the AE net-
work (convolutional, batch normalization, max-pooling, and
up-sampling) and analyze the detection power in each layer.
Second, we apply the subset scanning method on the recon-
struction error of the AE network. As baselines, we use the
detection capabilities of the autoencoder’s mean reconstruc-
tion error distributions [Sakurada and Yairi, 2014] and One-
SVM [Schölkopf et al., 2001] for the autoencoder reconstruc-
tion error space analysis. We also compare our results with
the state-of-the-art detection method Defense-GAN [Saman-
gouei et al., 2018].

4.1 Autoencoders Training and Datasets
We train the same autoencoder architecture (4385 parame-
ters) for both F-MNIST [Xiao et al., 2017] and MNIST [Le-
Cun et al., 1998]; a similar structure was used (52975 pa-

Algorithm 1. Pseudo-code for subset scanning over
autoencoder activations.

input : Background set of images: Xz ∈ DH0 ,
Evaluation Image: Xi, training dataset, αmax.

output: S∗E Score for Xi

1 AE ← TrainNetwork (training dataset);
2 AEy ← Some flattened layer of AE;
3 for z ← 0 to M do
4 for j ← 0 to J do
5 AH0

zj ← ExtractActivation (AEy , Xz)

6 for j ← 0 to J do
7 Aij ← ExtractActivation (AEy , Xi)

pij =
∑
Xz∈DH0

I(Azj>=Aij)+1

M+1 ;

8 p∗ij = {y < αmax ∀ y ⊆ pij};
9 psij ← SortAscending (p∗ij);

10 for k ← 1 to J do
11 S(k) = {py ⊆ psij∀y ∈ {1, . . . , k}};
12 αk = max(S(k));
13 F (S(k))← NPSS (αk, k, k);

14 k∗ ← argmaxF (S(k));
15 α∗ = αk∗ ;
16 S∗ = S(k∗);
17 return S∗, α∗, and F (S∗)

rameters) for CIFAR-10 [Krizhevsky et al., 2009], with ad-
ditional Batch Normalization layers and input size and depth
variations. The encoder comprises three convolutional lay-
ers, each with relu activations, and a maxpooling layer after
every convolutional layer. The decoder comprises four con-
volutional layers, each with relu activations except the final
layer which uses a sigmoid. Each consecutive pair of convo-
lutional layers is interspersed with an upsampling layer. We
train the autoencoder by minimizing the binary cross-entropy
of the decoder output and the original input image using an
adadelta optimizer for 100 epochs. Furthermore, we train the
autoencoder with different levels of data poisoning, 100% of
clean samples, 1% of adversarial samples, and 9% of adver-
sarial samples. For this experiment, we use BIM as the attack
and F-MNIST as the dataset.

For all experiments, M = |DH0
| = 7000 of the 10000

validation images and we used them to generate the back-
ground activation distribution (DH0

) at each of the activation
nodes per each inner layer. These images form our expecta-
tion of “normal” activation behavior for the network. They
were not used again. The remaining 3000 images were used
to form a “Clean” (|C| = 1500) sample and an “Adversarial”
(|A| = 1500) noised sample. The set A only contains images
that were successfully noised by each type of adversarial at-
tack.

4.2 Adversarial Noise Sample Generation
We generate several adversarial attacks (briefly introduced in
Section 2.2) for our experiments. To generate the attacks, a
standard Convolutional Neural Network was trained for each
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(a) (b)

Figure 2. (a) ROC curves for each of the noised cases as compared to the scores from test sets containing all natural images for layer
Conv2d 1. (b) Distribution of subset scores for test sets of images over Conv2d 1. Clean images had lower scores than noised images.

Layers Clean Training Noised (1%) Noised (9%)
F-MNIST MNIST F-MNIST F-MNIST

BIM FGSM DF HSJ BIM FGSM DF HSJ BIM BIM

conv2d 1 0.964 0.974 0.965 0.859 1.0 1.0 0.999 1.0 0.909 0.823
max pool 1 0.972 0.979 0.965 0.861 1.0 1.0 0.999 1.0 0.928 0.850
conv2d 2 0.519 0.530 0.686 0.515 0.975 0.941 0.953 0.998 0.441 0.700

max pool 2 0.500 0.513 0.634 0.451 0.855 0.809 0.837 0.906 0.424 0.693
conv2d 3 0.500 0.507 0.481 0.478 0.382 0.384 0.443 0.617 0.470 0.469

max pool 3 0.473 0.478 0.479 0.432 0.374 0.373 0.423 0.523 0.451 0.450
conv2d 4 0.403 0.406 0.483 0.247 0.270 0.271 0.261 0.349 0.472 0.410

up sampl 1 0.403 0.406 0.483 0.247 0.270 0.271 0.261 0.349 0.472 0.410
conv2d 5 0.413 0.419 0.474 0.282 0.228 0.228 0.193 0.161 0.356 0.388

up sampl 2 0.413 0.419 0.474 0.282 0.228 0.228 0.193 0.161 0.346 0.388
conv2d 6 0.342 0.350 0.483 0.331 0.259 0.261 0.285 0.255 0.306 0.323

up sampl 3 0.342 0.350 0.483 0.331 0.259 0.261 0.285 0.255 0.306 0.323
conv2d 7 0.594 0.597 0.506 0.691 0.693 0.688 0.848 0.882 0.613 0.603

Table 1. Detection power for subset scanning over all layers (convolutional, max pooling and up-sampling) for both datasets under three
different adversarial attacks. The noised columns refer to the autoencoder being trained with 1% and 9% BIM noised samples. Under
different datasets and attacks, the same initial layers hold the highest detection power. For BIM and FGSM attacks ε = 0.01.

dataset. The test accuracies for these models are 0.992 for
MNIST, 0.921 for F-MNIST and 0.903 for CIFAR. BIM and
FGSM attacks have a hyperparameter ε parameter which con-
trols how far a pixel is allowed to change from its original
value when noise is added to the image. We use a value of
ε = 0.01 in the scaled [0, 1] pixel space over 100 steps. Deep-
Fool used the standard ε = 1e − 06 and 100 iterations. The
HopSkipJump attack was iterated over 100 steps. All untar-
geted attacks were generated with the Adversarial Robustness
Toolbox [Nicolae et al., 2018]. Experiment results are shown
in Tables 1 and 3. For comparison with Defense-GAN in
Table 2, we used the proposed ε values for FGSM attack in
[Samangouei et al., 2018]. Smaller values of ε make the pat-
tern subtler and harder to detect, but also less likely for the
attacks to succeed in changing the class label to the target.

5 Results
Detection power of the methods are reported by the Area Un-
der the Receiver Operating Characteristic Curve (AUROC),

which is a threshold independent metric [Davis and Goad-
rich, 2006] that rates the ability of the method to separate
noised and clean images. Figure 2b shows the scores of the
most anomalous subset of node-activations extracted from
layer conv 2d 1 for F-MNIST clean images and F-MNIST
images that have been (successfully) noised by various at-
tacks. Figure 2a shows how these distributions are turned into
ROC curves with their corresponding AUROC. This process
is repeated for all layers in the AE and for MNIST images
with results reported in Table 1. We observe across differ-
ent experiments (noise models, and two proportions of noised
samples during training), that the first layers (conv 2d 1 and
max pooling 2d 1) maintain a high detection power (AU-
ROC) between 0.86 to 1.0 depending on dataset and noise at-
tack. Table 1 also shows the subset scanning detection power
(above 0.82) for the cases where 1% and 9% of the samples
are noised during the training stage of the autoencoder.

We compared detection power for our methods and
Defense-GAN [Samangouei et al., 2018] for FGSM attacks
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Datasets Epsilon (ε) Detection Power (AUROC)
Defense-GAN Subset Scan RE Subset Scan AE

F-MNIST 0.01 0.353 0.672 0.974
0.10 0.775 0.984 0.998
0.15 0.884 0.995 0.999
0.20 0.940 0.998 0.999
0.25 0.969 0.999 0.999

MNIST 0.01 0.234 0.983 1.0
0.10 0.914 0.999 1.0
0.15 0.975 0.999 1.0
0.20 0.989 1.0 1.0
0.25 0.998 1.0 1.0

CIFAR 0.10 0.410 0.600 0.755
0.15 0.425 0.710 0.903
0.20 0.435 0.813 0.971
0.25 0.446 0.889 0.993
0.30 0.503 0.935 0.997

Table 2. Detection Power of FGSM attacks compared to state of the art attack detectors across several datasets. Results from Defense-GAN
[Samangouei et al., 2018] and our two approaches for subset scanning over reconstruction error and activations under FGSM attacks for
various ε and attack selected according to [Samangouei et al., 2018] for comparison.

Datasets Attacks Detection Power (AUROC)
Ours RE Mean RE One-SVM

F-MNIST BIM 0.698 0.641 0.478
FGSM 0.672 0.630 0.497
DF 0.599 0.477 0.534
HSJ 0.956 0.935 0.546

MNIST BIM 0.998 0.751 0.624
FGSM 0.983 0.725 0.624
DF 0.992 0.574 0.637
HSJ 0.999 0.619 0.537

Table 3. Detection power for subset scanning over reconstruction
error space (RE) under four different adversarial attacks (ε = 0.01),
two baselines for reconstruction error over AE [Sakurada and Yairi,
2014] and OneSVM over reconstruction error of the AE [Schölkopf
et al., 2001].

over a range of ε values and data sets reported in Table 2.
Our methods show substantial detection power advantages
over Defense-GAN for subtle attacks. Furthermore, Defense-
GAN struggled over all ε values in the more complex CIFAR-
10 data set. Table 3 shows the detection power of various
methods over the reconstruction error space for different ad-
versarial attacks. Our method performs better on MNIST than
F-MNIST. One hypothesis for this is due to the autoencoder
performance (loss for F-MNIST 0.284 and MNIST 0.095). If
an autoencoder’s loss is high, it is more difficult to separate
between clean and noised samples in the reconstruction space
because the most anomalous subset of reconstructed pixels of
a clean image may be higher due to chance.

Finally, subset scanning under the reconstruction error
space is an interesting technique to inspect which pixels of
the reconstructed image belong to the most anomalous subset.
This highlights subset scanning methods returning both the
anomalous score and which records in the data contributed to
that score. An example of this is depicted in Figure 3 and

Figure 3. Anomalous nodes visualization for noised samples with
BIM. Overlap of anomalous nodes (white) and reconstruction error
(darker blue) per sample. We can observe that nodes outside the
contour will cause the sample to be classified as noised.

leads to interesting future work.

6 Conclusions and Future Work
In this work, we proposed a novel unsupervised method
for adversarial attack detection with autoencoders and sub-
set scanning. Current detection methods rely on data aug-
mentation or specialized training techniques which must be
asserted before training time. In contrast, we use subset
scanning methods from the anomalous pattern detection do-
main to enhance detection power without labeled examples
of the noise, re-training or data augmentation methods. Our
scanning approach demonstrated consistently higher detec-
tion power than existing detection methods across several
adversarial noise models and a wide range of perturbation
strengths.

Moreover, applying our method over the reconstruction er-
ror space provides the pixels that belong to the most anoma-
lous subset. Consequently, our approach is able to not only
point out which image looks anomalous but also effectively
detect and characterize the nodes that make the input a noised
sample. Future work in this space will contribute to inter-
pretability in addition to adversarial robustness.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

881



References
[Beggel et al., 2019] Laura Beggel, Michael Pfeiffer, and

Bernd Bischl. Robust anomaly detection in im-
ages using adversarial autoencoders. arXiv preprint
arXiv:1901.06355, 2019.

[Berk and Jones, 1979] Robert H. Berk and Douglas. H.
Jones. Goodness-of-fit test statistics that dominate the Kol-
mogorov statistics. Zeitschrift fär Wahrscheinlichkeitsthe-
orie und Verwandte Gebiete, 47:47–59, 1979.

[Chen and Neill, 2014] Feng Chen and Daniel B. Neill. Non-
parametric scan statistics for event detection and forecast-
ing in heterogeneous social media graphs. In KDD ’14,
pages 1166–1175, 2014.

[Chen et al., 2019] Jianbo Chen, Michael I Jordan, and Mar-
tin J Wainwright. Hopskipjumpattack: A query-efficient
decision-based attack. arXiv preprint arXiv:1904.02144,
3, 2019.

[Davis and Goadrich, 2006] Jesse Davis and Mark Goadrich.
The relationship between precision-recall and roc curves.
In Proceedings of the 23rd international conference on
Machine learning, pages 233–240. ACM, 2006.

[Frosst et al., 2018] Nicholas Frosst, Sara Sabour, and Ge-
offrey Hinton. Darccc: Detecting adversaries by recon-
struction from class conditional capsules. arXiv preprint
arXiv:1811.06969, 2018.

[Goodfellow et al., 2015] Ian J. Goodfellow, Jonathon
Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. CoRR, abs/1412.6572, 2015.

[Krizhevsky et al., 2009] Alex Krizhevsky, Geoffrey Hinton,
et al. Learning multiple layers of features from tiny im-
ages. Technical report, Citeseer, 2009.

[Kurakin et al., 2016] Alexey Kurakin, Ian J. Goodfellow,
and Samy Bengio. Adversarial examples in the physical
world. CoRR, abs/1607.02533, 2016.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua
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