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Abstract

Video inpainting aims to synthesize visually pleas-
ant and temporally consistent content in missing re-
gions of video. Due to a variety of motions across
different frames, it is highly challenging to utilize
effective temporal information to recover videos.
Existing deep learning based methods usually esti-
mate optical flow to align frames and thereby ex-
ploit useful information between frames. How-
ever, these methods tend to generate artifacts once
the estimated optical flow is inaccurate. To allevi-
ate above problem, we propose a novel end-to-end
Temporal Adaptive Alignment Network(TAAN)
for video inpainting. The TAAN aligns reference
frames with target frame via implicit motion esti-
mation at a feature level and then reconstruct tar-
get frame by taking the aggregated aligned refer-
ence frame features as input. In the proposed net-
work, a Temporal Adaptive Alignment (TAA) mod-
ule based on deformable convolutions is designed
to perform temporal alignment in a local, dense
and adaptive manner. Both quantitative and qual-
itative evaluation results show that our method sig-
nificantly outperforms existing deep learning based
methods.

1 Introduction
Video inpainting is a task of synthesizing visually realis-
tic and semantically plausible contents in missing regions
of the given video sequence in temporal coherence. It can
be used in many applications such as unwanted object re-
moval, damaged parts recovery, visual privacy filtering, etc.
Significant progress has been made recently in single-image
inpainting[Pathak et al., 2016; Yu et al., 2018] thanks to the
deep generative networks. However, because of the additional
time dimension, video inpainting method not only needs to
repair the missing region for each frame but also has to en-
sure the temporal consistency across frames. While tempo-
ral relationship brings challenges for video inpainting, the
temporal redundancy information can be exploited by it to
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Figure 1: (a) Input video with masks in red. (b) Video inpainting
results from image inpainting method [Nazeri et al., 2019]. (c) Our
video inpainting method.

obtain better results at the same time. As illustrated in Fig-
ure 1, compared with image inpainting based method, video
inpainting method performs better results and preserves the
video coherence. However, it is difficult to directly utilize
information from reference frames due to the misalignment
between frames which is caused by complex motion of cam-
era or objects. Therefore, how to efficiently utilized temporal
information is the essential issue for video inpainting prob-
lem.

Traditional patch-based methods[Newson et al., 2014;
Huang et al., 2016] find the similar spatio-temporal patches
from the known regions of videos to fill the holes, which for-
mulate the problem as a patch-based optimization task. Al-
though some good results have been shown, they usually suf-
fer from the high computational complexity, which results in
very slow processing speed.

Motivated by the success of the deep neural networks in
single image inpainting task, several deep learning based
methods for video inpainting have been proposed recently
and achieve significant results in terms of quality and speed.
[Lee et al., 2019] align frames firstly by performing global
affine transformation, and copy valuable pixels from aligned
frames to complete the missing regions. It shows that tem-
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poral alignment is important for exploiting information from
reference frames. However, such transformation could not
well align the frames with more complex motions, which are
common in realistic scenes.

Optical flow contributes to obtaining temporal information
between frames in complex motion scenes. [Xu et al., 2019;
Kim et al., 2019] utilize the optical flow to align frames, vis-
ible information from reference frames is collected via flow
warping operation. These methods highly depend on the ac-
curacy of the estimated optical flow. However, completing
optical flow between frames with missing region is quite chal-
lenging and any errors in optical flow computation will influ-
ence the final quality of results.

In this paper, a novel end-to-end Temporal Adaptive Align-
ment Network(TAAN) without using optical flow is sug-
gested by us to solve the video inpainting problem. Given
a sequence of video frames with holes, the network processes
video frame-by-frame. The TAAN aligns target frame with
reference frames firstly at a feature level without explicit mo-
tion estimation through a TAA module. Specifically, inspired
by the deformable convolution [Dai et al., 2017], the pro-
posed TAA module utilizes the features from target frame
and corresponding reference frame to predict the offsets of
sampling convolution kernels, and applies the kernels on the
reference frame features to perform temporal adaptive align-
ment. In this way, the final reconstructed target frame will
have less artifacts and the capability of handling various mo-
tion conditions in temporal scenes will be improved. In ad-
dition, benefited by deformable convolution, more informa-
tion with the same structure as the sampled position will be
explored by TAA module, which strengthens the alignment
accuracy between frames. Finally, a reconstruction network
which takes the aggregated aligned reference frame features
and target features is developed to recover target frame. The
end-to-end network design helps our network pay more at-
tention to the missing region and further improve the perfor-
mance of the model.

We conduct extensive experiments on Youtube-VOS [Xu
et al., 2018] and DAVIS [Perazzi et al., 2016] datasets. The
experimental results show that our framework could achieve
visually pleasing results at complex motion scenes. The ma-
jor contributions of our paper are summarized as follows:

• We propose a novel end-to-end network for video in-
painting, which aligns the frames at a feature level via
implicit motion estimation and aggregates temporal fea-
tures to synthesize missing content.

• We propose a temporal adaptive alignment module
based on standard deformable convolution to adaptively
align frames which contain holes in a local and dense
manner.

• We quantitatively and qualitatively evaluate our method
and show its efficacy.

2 Related Work
2.1 Traditional Methods
Traditional patch-based approaches typically use the prior
such as patch similarity to propagate information from the

known regions. [Patwardhan et al., 2005; Patwardhan et
al., 2007] complete videos by sampling non-local spatio-
temporal patch assuming static camera and constrained cam-
era motion. They find the patch based on the greedy algo-
rithm, which inevitably propagate the early errors and lead
to globally inconsistent results. To enforce global spatio-
temporal consistency, [Wexler et al., 2007] cast the prob-
lem as global optimization task which constrain missing val-
ues form coherent structures with respect to reference exam-
ples. Further, to strengthen the temporal consistency, [New-
son et al., 2014] use a robust affine estimation to compensate
camera motion and perform an extension of PatchMatch al-
gorithm [Barnes et al., 2009] to accelerate the patch match-
ing process. [Granados et al., 2012] compensate geomet-
ric distortion by utilizing a set of homographies to perform
frame-to-frame alignments. However, they have difficulties
in handling general scenes which have more complex geo-
metric variations. [Huang et al., 2016] combine the advan-
tages of optical flow and color information, and formulate the
problem as a global optimization of color and flow. They per-
form significantly results in complex motion scenes, achiev-
ing the state-of-the-art results.

2.2 Learning-based Methods
A significant advantage of deep learning based methods is
their ability to learn semantics from large scale datasets. The
first deep learning based method for video inpainting is pro-
posed by [Wang et al., 2019], they perform 3D convolution on
low resolution input to provide the temporal guidance and use
2D convolution based on the low resolution result to recover
the spatial coherent frame. [Chang et al., 2019] propose
3D gated convolution network for video inpainting based on
the work of image inpainting, which tackle the uncertainty
of free-form masks problem. Further, they introduce a Tem-
poral PatchGAN discriminator to enhance temporal consis-
tency. However, 3D convolution is hard to train and their
temporal receptive fields are too limited or directional. [Kim
et al., 2019] collect information by flow warping from neigh-
bor frames to the target frame to recover the target frame, and
utilize a recurrent feedback and memory layer to stable tem-
poral consistency. [Xu et al., 2019] address video inpainting
problem as a pixel propagation problem by recovering accu-
rate flow field from missing region and the synthesized flow
field is used to guide the pixel propagation to generate seman-
tically plausible contents. Despite the fact that motion can be
the useful guidance for propagating information [Oh et al.,
2019] aggregate temporal information through an asymmet-
ric attention block to progressively fill the hole from the hole
boundary. [Lee et al., 2019] utilize a self-supervised net-
work to estimate affine matrices between frames for the align-
ment and aggregate information from aligned frames through
a copy-and-paste network to fill the missing regions.

3 Proposed Algorithm
3.1 Overview
Figure 2 presents the workflow of the proposed video inpaint-
ing network. Given a sequence of video frames X anno-
tated with missing region M (1 indicates invalid pixels, 0 on
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Figure 2: The schematic illustration of the our TAAN-based video inpainting model.

the contrary), the network processes video frame-by-frame in
the temporal order and generates the final outputs Ŷ . The
whole network consists of four modules: encoder module,
TAA module, feature aggregation module and reconstruction
module.

To complete a target frame, our network first takes the tar-
get frame XT , reference frames XR and corresponding bi-
nary masks into an encoder module to extract feature maps
F . All of them share the same encoder. [Lee et al., 2019]
have demonstrated that taking account into the missing region
when aggregating information will help improve the effec-
tiveness of inpainting results. So we down-sample the mask
M and then extend it to the same number of channels as the
extracted feature maps by duplication operation. Next, we
send the feature maps that extracted from the target frame
XT
t and the reference frame XR

i , corresponding duplicated
masks MD into TAA module to get aligned results (FRi→t
and MR

i→t, where i → t indicates reference features/masks i
is aligned to target t). After alignment, all aligned reference
frame features and aligned masks are aggregated by feature
aggregation module. Finally, we concatenate target features
FTt , aggregated features FA and aggregated masks MA to
recover the target frame.

To enforce the temporal consistency, we update the input
video sequence with completed frame over time and transfer
the previous completed frame as one of the reference frames
of the current target frame.

3.2 Network Architecture
Encoder
This module concatenates the frame and corresponding bi-
nary mask along the channel axis to form a 4-channel image
and take it as input to extract visual feature maps. The con-
volutions with stride of 2 are utilized to decrease the reso-

lution twice and get the 1/4 scale of original size, which is
important to maintain the high frequency details in the miss-
ing region [Iizuka et al., 2017]. The extracted features will be
employed for feature-wise temporal alignment.

Temporal Adaptive Alignment(TAA) Module
By learning offsets of the sampling convolution kernels and
applying the learned kernels to the feature maps, deformable
convolution [Dai et al., 2017] could obtain information away
from its regular local neighborhood, improving the complex
geometric transformation capability. Motivated by the capa-
bility of the deformable convolution, we introduce it into our
TAA module to perform temporal alignment. A detailed il-
lustration of our TAA module is presented in Figure 3.

Given the visual features FTt and FRi from target frame
and reference frame respectively, TAA module concate-
nates these features and feeds them into an offset esti-
mator network to predict offsets {∆pn | n = 1, · · · , |R|}
of the convolution kernels. For example, R =
{(−1,−1), (−1, 0), · · · , (0, 1), (1, 1)}, when a regular grid
with a 3×3 kernel, and a dilation factor of 1. The existence
of missing regions bring challenges for alignment. To solve
this problem, we adopt the U-Net architecture for the offset
estimator network which has been widely used in pixel-wise
estimation tasks. Further, a 3 × 3 convolution layer is uti-
lized to predict the final offsets of the reference features and
duplicated mask.

With the predicted offsets {∆pn} and reference frame fea-
tures FRi , each position p0 in the aligned feature maps FRi→t
are computed by the deformable convolution operation as fol-
lows:

y(po) =
∑
pn∈R

w(pn) · x(p0 + pn + ∆pn). (1)

It is worth noting that the adaptively learned offsets will
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Figure 3: The schematic illustration of how the TAA module aligns
features and masks.

implicitly capture motion information and contribute to align-
ing frames in the complex motion scenes. In addition, as il-
lustrated in Figure 3, for each sampled position p0, our TAA
module could explore more features that may share the same
image structure as p0 by deformable convolution operation,
which helps to collect more information in reference frame
features and further improve alignment capability.

The aligned masks are computed by the offsets and dupli-
cated masks in a similar fashion. For better results, we use the
DCNv2 [Zhu et al., 2019] in our implements, which has more
stronger modeling power. We will analyze the effectiveness
of TAA module in Sec.4.3.

Feature Aggregation
Different frames and locations are not equally beneficial
to the reconstruction. Inspired by strong results presented
in [Lee et al., 2019], we pick up the most relevant informa-
tion in the reference frames when aggregating the features as
follows:

We first measure the global similarities θi,t between the
target frame feature and each aligned reference frame feature,
while ignoring the invalid location in the aligned mask.

θi,t =
1∑

(x,y) Vi,t(x, y)
·
∑
(x,y)

Vi,t(x, y)·F T
t (x, y)·FR

i (x, y).

(2)
Where Vi,t = (1−MDT

t )� (1−MR
i→t) is the visibility

map.
Then, we multiply the similarity with corresponding

aligned masks and use a softmax function across temporal di-
mension to weigh the features in the aligned reference frames.
The weight is computed as follows:

Wi(x, y) =
exp(θi,t · (1−MR

i→t))∑
i exp(θi,t · (1−MR

i→t))
. (3)

The final fusing features are computed by summing the ref-
erence frames features with the weight.

FA(x, y) =
∑
i

FR
i→t ·Wi(x, y). (4)

The aggregation masks are computed as follows:

MA(x, y) = 1− (
∑
i

Wi(x, y)). (5)

Reconstruction
The reconstruction network is used to restore the target frame
by taking the aggregated reference features, aggregated ref-
erence masks and the target features as input. Four dilation
blocks with dilation factor of 2n are designed to enlarge the
receptive field, which is beneficial to fill the region not exist-
ing in the reference frames [Iizuka et al., 2017]. Finally, the
nearest neighbor up-sampling is used to enlarge the feature
map to the target frame.

3.3 Loss Functions
To guarantee the completion quality of the results, we adopt
reconstruction loss, perceptual loss, style loss and total varia-
tion loss function to effectively train the proposed network.

Reconstruction loss is used to constrain pixel-level restora-
tion. Where Igt represents the ground truth image, M is given
mask, Iout is the network prediction.

Lhole = ‖M · (Iout − Igt)‖1 . (6)

Lvalid = ‖(1−M) · (Iout − Igt)‖1 . (7)
We also adopt perceptual loss Lprec and style loss Lstyle

to further improve the visual quality of the whole recovered
images.

Lprec = E

[∑
i

1

Ni
‖φi(Igt)− φi(Iout)‖1

]
. (8)

Lstyle = Ej
[∥∥∥Gφj (Iout)−Gφj (Igt])

∥∥∥
1

]
. (9)

Where φi is the activation map in a pretrained VGG-19 on
ImageNet. In our paper, φi corresponds to activation maps
from layers relu1 1, relu2 1, relu3 1, relu4 1 and relu5 1. The
activation maps also will be sent to calculate gram matrix in
style loss. G represents Gram Matrix for computing covari-
ance.

Furthermore, we utilize the total variation loss to smooth
the checkerboard effect. The total loss Ltotal is as follows:
Ltotal = Lvalid+ 6Lhole+ 0.05Lprec+ 120Lstyle+ 0.1Ltv.

(10)
For our experiments, the loss term weights are adopted

from [Liu et al., 2018].

4 Experiments
4.1 Experimental Settings
Datasets. Keeping with the goal of synthesizing plausible
contents of the missing region in videos, two datasets are
employed in this work to demonstrate the effectiveness of
the proposed method. The first is YouTube-VOS [Xu et al.,
2018] Dataset, which is a large-scale video object segmenta-
tion dataset with a wide variety of scenes. It contains 4,453
YouTube video clips and 94 object categories and is split
into 5,471 for training, 474 for validation and 508 for testing.
We train our video inpainting network on the YouTube-VOS
training set. The second dataset is DAVIS [Perazzi et al.,
2016] Dataset. It includes 50 high quality video sequences
with covering dynamic scenes, large occlusions, motion blur,
complex camera movements, and each frames are annotated
with the pixel-accurate foreground object masks.
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Figure 4: Qualitative comparison results of TAAN video inpainting approach for the scenes dog-agility(left) and kite-walk(right) from DAVIS
Dataset.

Training Details. We select five reference frames(Xt−4,
Xt−2, Xt−1, Xt+2, Xt+4) and resize them into 256×256 as
inputs when training the network. To accelerate the training
process while reducing over-fitting, we initialize parameters
of our neural network by using the initialization method in
[He et al., 2015]. Adam optimizer with the initial learning
rate to 10−4 is utilized, we decayed the learning rate by 0.1
every 1 million iterations.
Baseline. We compare the proposed algorithm with the
state-of-the-art methods including a traditional patch-based
method:Huang [Huang et al., 2016] and three deep learning
based methods:DFG [Xu et al., 2019], VINet [Kim et al.,
2019], CPNet [Lee et al., 2019]. For deep learning based
methods, we directly conduct the experiment on the trained
model provided by authors. All experiments are done on the
256×256 frames.

4.2 Experimental Results
Qualitative Evaluations
To validate the generalization ability of our model, we com-
pare the proposed method with other methods in real world

scenes. The results as shown in Figure 4.
We can observe that the optical flow based methods [Xu

et al., 2019; Kim et al., 2019] always tend to produce ar-
tifacts due to the wrong estimation of flow. CPNet adopts
simple global motion estimation to align frames, which lim-
its performances for scenes with complex motion(e.g., scene
dog-agility: the rods produce deformation over time).

Our model adaptively aligns frames in a local and dense
manner at feature level, which can implicitly capture motion
cues and aggregate more information to perform alignment,
showing favorably inpainting results.

Quantitative Evaluations
Since there is no existing dataset to evaluate the video in-
painting task. When testing on the Youtube-VOS dataset,
we apply the video mask generation algorithm [Chang et al.,
2019] to simulate masks of the holes and synthesize videos
by applying the generated masks on the background image
sequences. Our method is supposed to recover the original
videos. DAVIS dataset provides the dense object mask an-
notations. To get closer to the reality, we directly shuffle the
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Figure 5: The effectiveness of TAA Module. The gray hole in the
first row indicates the missing area.

Method
DAVIS Youtube-VOS

PSNR SSIM PSNR SSIM
Huang 30.607 0.927 29.015 0.885
DFG 29.557 0.911 27.333 0.879
VINet 29.765 0.901 27.542 0.874
CPNet 29.121 0.886 28.879 0.865
Ours 30.829 0.913 29.987 0.887

Table 1: Results of quantitative evaluation. The best result is labeled
with boldface.

pairs of videos and masks from DAVIS to test the models
when we conduct experiments on the DAVIS dataset.

The metrics results conducted on the Youtube-VOS and
DAVIS datasets are summarized in Table 1. We can ob-
serve that our method is superior to all deep learning based
methods. Although Huang [Huang et al., 2016] achieves
comparable results with our method, it formulates the video
painting problem as a patch-based optimization task and is
much slower than deep learning based methods, which has
been indicated in our paper and other papers(e.g., [Xu et al.,
2019], [Kim et al., 2019]).

4.3 Effectiveness of TAA Module
To validate the effectiveness of the proposed TAA module
for alignment, the intermediate learned feature maps are vi-
sualized in Figure 5. As for target frame XT

t , we selected 3
representative reference frames:XR

t−12 is far from the target
frame, XR

t−1 and XR
t+1 are close to it.

The missing region of XR
t−1 and XR

t+1 overlap the target
frame, so they only capture part of the information of the
missing region in XT

t . The green and red oval circles in tar-
get feature FTt are invisible, while FR(t−1)→t and FR(t+1)→t
are able to predict the details, and our module will not cap-
ture corresponding information in the overlap region of tar-
get frame and reference frames. This shows that our module
has excellent performance on frames alignment at the feature
level. The aligned feature map FR(t−12)→t is similar to the
aggregated feature map FAt , both of them obtain the fully de-
tails of the missing region, which indicates our TAA module
has advantage on capture long temporal range of information

(a)Input frame sequence (b)Sample frame from the blue line

(c)Image inpainting based method (d)Our method

Figure 6: Temporal coherent completion.

and could effectively aggregate aligned feature map to help
our network to reconstruction the frame. As shown in the fig-
ure, TAA module pays more attention to the missing region
and further improve the performance of the model.

4.4 Temporal Consistency
To enforce temporal consistency, we update the input video
frames with completed frame at each iteration, and propose
TAA module to propagate information between consecutive
frames via implicit alignment. We also process the frames
one by one and run the network from the first frame to the
last frame, then reverse the order during the test stage.

To show the temporal consistency between frames, we
sample the slices of video frames along the blue line, and
stack them along the vertical-axis as [Huang et al., 2016].
In Figure 6, our method performs more smoother result than
image inpainting based method [Nazeri et al., 2019], which
indicates our method shows better temporal consistency.

5 Conclusion
In this paper, we present an end-to-end temporal alignment
network for video inpainting. A TAA module is proposed
based on deformable convolution to perform temporal adap-
tive alignment in a feature domain without explicit motion
estimation (e.g., optical flow). Our network significantly uti-
lizes the temporal information from reference frames based
on TAA module, which is important for video inpainting, and
produces visually pleasing and temporally coherent results.
In the future research, we will extend our framework to solve
other video restoration tasks in practical applications.
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