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Abstract
Semi-supervised domain adaptation (SSDA) is a
novel branch of machine learning that scarce la-
beled target examples are available, compared with
unsupervised domain adaptation. To make effec-
tive use of these additional data so as to bridge the
domain gap, one possible way is to generate ad-
versarial examples, which are images with addi-
tional perturbations, between the two domains and
fill the domain gap. Adversarial training has been
proven to be a powerful method for this purpose.
However, the traditional adversarial training adds
noises in arbitrary directions, which is inefficient to
migrate between domains, or generate directional
noises from the source to target domain and re-
verse. In this work, we devise a general bidirec-
tional adversarial training method and employ gra-
dient to guide adversarial examples across the do-
main gap, i.e., the Adaptive Adversarial Training
(AAT) for source to target domain and Entropy-
penalized Virtual Adversarial Training (E-VAT) for
target to source domain. Particularly, we devise a
Bidirectional Adversarial Training (BiAT) network
to perform diverse adversarial trainings jointly. We
evaluate the effectiveness of BiAT on three bench-
mark datasets and experimental results demonstrate
the proposed method achieves the state-of-the-art.

1 Introduction
When Semi-Supervised Learning (SSL) [Rasmus et al., 2015;
Laine and Aila, 2016; Tarvainen and Valpola, 2017] meets
Domain Adaptation (DA) [Ganin and Lempitsky, 2014; Long
et al., 2015; Long et al., 2017], there recently highlights
an appealing task of Semi-Supervised Domain Adaptation
(SSDA) [Saito et al., 2019]. SSDA refers to the problem that
we not only have plentiful labeled source domain data and
unlabeled target domain data, but a small amount of labeled
target domain data, typically one or three per class. SSDA
methods usually use labeled examples (from both source and
target domain) to jointly train a network and use unlabeled
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Figure 1: Our BiAT method generates bidirectional adversarial ex-
amples between two domains and fill the domain gap, i.e., source
to target and target to source. The arrows indicate the directions in
which adversarial examples are generated.

examples to regularize it. However, the importance of the la-
beled target data is downplayed. Although the labeled target
data are still scarce, they may provide effective clues to ex-
plore the connection between the source and target domain
and bridge the gap between them, such as generating per-
turbed auxiliary examples between two domains. As the tri-
angle class in Fig. 1, the BiAT examples are generated
from both the source domain → and the target domain

, → , and fill the domain gap.
Corrupting training data with noises have been well-known

to be helpful in stabilizing prediction [Park et al., 2018]. Re-
cently, gradient-based perturbation generation methods, i.e.,
Adversarial Training (AT) [Goodfellow et al., 2014] as well
as Virtual Adversarial Training (VAT) [Miyato et al., 2018],
are proposed to generate adversarial examples, which are
images with additional perturbations. Adversarial examples
have been proven to be effective on supervised and semi-
supervised tasks [Miyato et al., 2016; Miyato et al., 2018].
The effectiveness owns to their ability of local smoothness
around data points, and pushing decision boundary away
from data points, which leads to an improvement of the model
robustness for raw examples. However, it is not straightfor-
ward to use AT or VAT in SSDA. The noise direction of AT
and VAT is arbitrary, which cannot make the adversarial ex-
amples cross the domain gap.

To solve the SSDA problem, an intuitive idea is to force AT
and VAT to generate adversarial examples between the two
domains and fill the domain gap. [Liu et al., 2019] introduced
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adversarial training at the feature layer to enhance the unsu-
pervised domain adaptation. However, they use traditional
AT on the source and target examples. The generated exam-
ples surround the original examples, which has only limited
ability to fill the domain gap.

In order to guide the direction of generating adversarial
examples from one domain towards another, we devise two
opposing adversarial training methods which form a bidi-
rectional strategy. We firstly propose Adaptive Adversarial
Training (AAT), a novel adversarial training notion for spe-
cific SSDA scenarios that generates adaptive adversarial ex-
amples from the source to target domain. AAT treats a source
example xs as a optimizable object, which is fed into a well-
trained target domain classifier, then the target domain clas-
sifier will optimize xs along the direction of gradient descent
and force xs to cross into the target domain. Moreover, we
introduce Entropy-penalized Virtual Adversarial Training (E-
VAT) which improves VAT and generates adversarial exam-
ples from the target to source domain. Finally, we propose
a uniform Bidirectional Adversarial Training (BiAT) network
to perform AT, AAT, and E-VAT jointly. We evaluate BiAT
on three benchmark datasets and conduct extensive ablation
study. Experiments show the BiAT network advances all the
state-of-the-arts.

Our contributions can be summarized into threefold. (1)
We devise a novel Adaptive Adversarial Training for spe-
cific SSDA setting that generates adversarial examples from
the source to target domain. (2) We introduce the Entropy-
penalized Virtual Adversarial Training to generate more ac-
curate adversarial examples from the target to source domain.
(3) We propose a uniform Bidirectional Adversarial Training
network to integrate three adversarial training methods and
demonstrate the effectiveness of them in SSDA scenarios.

2 Related Work
Semi-Supervised Domain Adaptation. SSDA was high-
lighted by [Saito et al., 2019] recently, which is a combina-
tion of semi-supervised learning (SSL) and domain adapta-
tion (DA). The MME method they proposed maximize the
entropy of unlabeled target data to optimize classifier, and
minimize the entropy with respect to the feature extractor to
cluster features. Recently, some effective arts of SSL have
emerged. [Grandvalet and Bengio, 2005] considered entropy
minimization as a regularizer to incorporate unlabeled data.
[Laine and Aila, 2016] introduced

∏
-model and temporal-

ensembling, a consensus prediction of the unknown labels us-
ing an exponential moving average of outputs. [Berthelot et
al., 2019] proposed MixMatch data-augment to generate low-
entropy pseudo-labels. On the other hand, previous works
have addressed the unsupervised DA problem which general-
izes a learner across different domains, by either matching the
marginal distributions or the conditional distributions [Long
et al., 2018].

Adversarial Training. AT was proposed by [Szegedy et
al., 2013] originally. They discovered that deep networks are
particularly vulnerable to minor adversarial perturbations ap-
plied to the input. [Goodfellow et al., 2014] proposed the
definition of adversarial examples and pointed out that adver-

sarial training can restraint the impact of adversarial pertur-
bations to some extent. Not just defense against adversarial
attacks, adversarial training can also promise a variety of ma-
chine learning tasks. [Miyato et al., 2018] introduced virtual
adversarial training in supervised and semi-supervised sce-
narios to promote local smoothness around data points.

3 Preliminaries
3.1 Adversarial Training
Adversarial Training is recognized as an effective method
to improve the robustness of models [Szegedy et al., 2013;
Goodfellow et al., 2014], which promotes the local smooth-
ness and mitigates over-fitting by regularizing the network.

For labeled input pair (xl, yl) and unlabeled input xu,
we denote the output distribution parameterized by Θ as
p(y|x,Θ). The loss function of adversarial training in [Good-
fellow et al., 2014] can be written as

Ladv(xl,Θ) = D [q(yl), p(y|xl + radv,Θ)] , (1)
where radv := arg max

r;‖r‖≤ε
D [q(yl), p(y|xl + r,Θ)] . (2)

D[·, ·] is a function that measures the divergence between two
distributions. The q(yl) is the true distribution of label which
is generally approximated by one-hot vector of yl.

When the norm is `2, [Miyato et al., 2016] proposed to
approximate the adversarial perturbation radv by

radv ≈ ε
g

‖g‖2
, where g = ∇xl

D [q(yl), p(y|xl,Θ)] . (3)

g is the gradient that can be efficiently computed by back-
propagation, ε is the perturbation amplitude.

3.2 Virtual Adversarial Training
When facing unsupervised or semi-supervised learning tasks,
[Miyato et al., 2018] proposed Virtual Adversarial Training
which replaces the true label q(yl) in Eq.(1) with its current
approximation p(y|xl, Θ̂). Let x? represents either xl or xu.
The objective function is given by

Lvadv(x∗,Θ) = D
[
p(y|x∗, Θ̂), p(y|x∗ + rvadv,Θ)

]
, (4)

where rvadv := arg max
r;‖r‖≤ε

D
[
p(y|x∗, Θ̂), p(y|x∗ + r)

]
, (5)

Then Lvadv(x∗,Θ) can be considered as a regularization term
over all input examples.

4 Bidirectional Adversarial Training
In this section, we propose a novel Bidirectional Adversar-
ial Training (BiAT) method for SSDA task, illustrated in Fig.
2. We devise two opposing adversarial training which form
a bidirectional strategy of adversarial example generation.
AAT produces adversarial examples from the source to tar-
get domain in Section 4.2. E-VAT generates examples from
the target to source domain, elaborated in Section 4.3. In ad-
dition, we combine the AT, AAT, E-VAT, and the minimax
entropy method [Saito et al., 2019] to jointly construct an
end-to-end network in Section 4.4.
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Figure 2: The architecture of Bidirectional Adversarial Network (BiAT). BiAT consists of two parallel networks HNet and TNet which share
the feature extractor F . The solid lines indicate that data forward go through and backward optimize the net, the dotted lines indicate that
only forward propagation is used to obtain the gradients for generating adversarial perturbations. HNet takes both source and target data as
input and is updated by AT, AAT, and E-VAT. TNet is employed as the auxiliary net for AAT and is only trained with labeled target data
{Xl, Yl}. Moreover, there is a gradient reversal layer between F and C to conduct the minimax entropy penalty.

4.1 Semi-Supervised Domain Adaptation
Under the SSDA setting, the data comes from two different
domains, the source domain S and the target domain T . Data
from the source domain S = {Xs, Ys} are labeled, and each
data point xs ∈ Xs has an associated label ys ∈ Ys. A small
number of target domain data are labeled (one or three per
class), formalized as Tl = {Xl, Yl} that data point xl ∈ Xl

has an associated label yl ∈ Yl. The rest is unlabeled target
domain data Tu = {Xu}. Our goal is to find a model that
performs well on unlabeled target domain test data.

Similar to the previous domain adaptation models [Ganin
and Lempitsky, 2014; Saito et al., 2018], our backbone net-
work consists of two modules, the feature extractor F and the
classifier C. We can employ commonly used deep convolu-
tional neural networks as feature extractors, such as AlexNet
[Krizhevsky et al., 2012] and ResNet [He et al., 2016]. We
denote the network outputs as h = C(F (x)),∈ Rc.

Previously, [Saito et al., 2019] has shown that perform-
ing `2 normalization on the outputs of F achieves good
performance. We further conduct weight normalization on
the classifier. We write the weight matrix WC ∈ Rd×c
as [w1,w2, ...,wc], where each class corresponds to a d-
dimensional weight vector. ThenC takes normalized features
as input and calculate the cosine similarity scores to weight
vectors as h = 1

T
F (x)TWC

‖F (x)‖‖WC‖ , where T is the temperature
parameter. Consequently, the outputs is the prediction scores
of corresponding classes. Then the weight vectors of WC

can be interpreted as prototypes of classes, which may be ef-
fective due to reducing intra-class variations.

4.2 Adaptive Adversarial Training
Here, we propose Adaptive Adversarial Training (AAT), a
novel adversarial training notion for SSDA task that can gen-
erate adaptive adversarial examples to fill the domain gap
from the source to target domain (S → T ). Unlike traditional
adversarial training, which adds arbitrary perturbation to ex-
amples in a single domain, our AAT adds perturbation in a

direction and can indicate the direction of domain adaptation.
In AAT, we can access to plentiful labeled source data, and

other small amount of labeled target data. Suppose we can
find a clear direction to guide the source examples towards
the target domain, then we use these adversarial examples to
train the network may effectively improve the performance.

Main Idea. The goal of AAT is to generate directional per-
turbation on a source example, and more importantly, the di-
rection should point to the target examples of the same class.
Following the idea of adversarial training, we employ the gra-
dients to do this work. The novel idea is to treat a source ex-
ample xs as an optimizable object, which is fed into a frozen
well-trained target domain network TNet. Since the TNet can
only recognize target data, then TNet will optimize xs along
the direction of gradient descent and force xs to cross into
the target domain. Note that, this optimization process only
occurs in the example space and the optimized examples are
regarded as adaptive adversarial examples. The AAT is in-
spired by targeted adversarial attack which aims to generate
adversarial examples targeting a specific class from a given
image and regards the direction of gradient descent as the di-
rection of noises [Carlini and Wagner, 2017].

We first train a capable TNet as ΘT using all the labeled
target data Tl. Then we froze ΘT and feed the source data
S = {Xs, Ys} into the network and generate adaptive adver-
sarial examples by the direction of gradient descent. With the
`2 norm, the adversarial perturbation can be approximated by

raat ≈ ε
g

‖g‖2
, where g = −∇xsD [q(ys), p(y|xs,ΘT )] .

(6)
The only difference from traditional AT is that the network
for gradients becomes ΘT . The loss function of AAT is

Laat(xs,Θ) = D [q(ys), p(ys|xs + raat,Θ)] , (7)

where Θ denotes the task-specific network.
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4.3 Entropy-penalized Virtual Adversarial
Training

In contrast to AAT, we introduce Entropy-penalized Virtual
Adversarial Training (E-VAT) to generate adversarial exam-
ples from the target to source domain (T → S), following
the philosophy of VAT. As mentioned in Section 3.2, VAT
uses approximation method to generate perturbations on un-
labeled examples and ensures consistency of network pre-
dictions. This makes the adversarial examples towards the
source domain to some extent. However, limited by the lack
of clear labels, traditional VAT is insufficient in SSDA task.

We make three improvements to the traditional VAT: (1)
We use multi-step iteration to obtain more accurate adver-
sarial perturbations; (2) In order to obtain clear supervision,
we use hard pseudo-labels, i.e. one-hot labels, instead of
ambiguous approximate predictions p(y|x∗, Θ̂) in VAT; (3)
We introduce two entropy-based consistency penalization to
obtain more consistent pseudo-labels and prioritize the high-
confidence examples, respectively.

We first start E-VAT from a small random noise, and then
follow the direction of gradient ascent to iteratively obtain
multiple small perturbations. Although the noise direction of
E-VAT is arbitrary, it is responsible for smoothing the local
space and filling the domain gap to some extent. Each itera-
tion of E-VAT corresponds to a classifier prediction. These
outputs form a prediction matrix H = [h1,h2, ...,hN ] ∈
RN×d, where hn denotes the prediction of n-th iteration and
N is the number of iterations.
Row-wise and column-wise entropy penalty. For unla-
beled examples, the pseudo-labels of N iterations may be
inconsistent, especially in the early stage of training, which
will confuse the pseudo-labels, e.g. the one-hot labels of h1

and hN may be different. For a vector, entropy is maximized
if the distribution is uniform. We propose to penalize H that
we want low row-wise entropy for clear predictions with high
confidence, and high column-wise entropy to encourage con-
sistent predictions in N iterations, so as to obtain an explicit
pseudo-label. We quantify the row-wise and column-wise en-
tropy penalty as weight scores.
Example-specific entropy penalty. Owing to the VAT
sometimes gives a multi-peak prediction. This phenomenon
suggests that such examples near the prototypes of two or
more classes, and the wrong pseudo-label will mislead the
model. Therefore, we introduce the example-specific en-
tropy penalty to suppress these examples corresponding to
small entropy He = −

∑d
p(h′) log p(h′) and the example-

specific weight scores denote as We = e−H
e

.

4.4 Bidirectional Adversarial Training Network
As shown in Fig. 2, we design two parallel networks, hybrid
domain network HNet and target domain network TNet. We
first use the labeled data S ∪ Tl to jointly train the HNet and
use only the labeled target data Tl to train the TNet, used to
assist AAT according to Section 4.2. We denote the param-
eters of feature extractor F as ΘF , classifier C as ΘC . To
avoid overfitting, we freeze the F of TNet and share the pa-
rameters with HNet. Then we have ΘT = {ΘF ,Θ

T
C} and

ΘH = {ΘF ,Θ
H
C }.

Algorithm 1 Bidirectional Adversarial Training (BiAT)
Input: Source data S; Target labeled data Tl; Target unla-
beled data Tu; Parameters of HNet ΘH ; Parameters of TNet
ΘT ; Batch size N .

1: while not converged do
2: Sample a mini-batch of N examples from S and Tl

separately, 2N examples from Tu
3: // optimize HNet with cross entropy, AT, AAT, and E-

VAT
4: ΘH ← Lce(Xs, Xl, Ys, Yl,ΘH)
5: ΘH ← Lat(Xs, Xl, Ys, Yl,ΘH)
6: ΘH ← Laat(Xs, Ys,ΘT ,ΘH)
7: ΘH ← Le-vat(Xl, Xu,ΘH)
8: // optimize TNet with cross entropy
9: ΘT ← Lce(Xl, Yl,ΘT )

10: // optimize HNet with minimax entropy
11: ΘH ← Lmme(Xu,ΘH)
12: end while
13: return solution

In order to generate adversarial examples between the
source and target domain, we propose the Bidirectional Ad-
versarial Training mechanism to perform AT, AAT, and E-
VAT on the HNet jointly. In addition, we use the minimax
entropy as an regular term because of the good performance
[Saito et al., 2019]. We devise a three-stage training strategy
in a mini-batch, shown in Algorithm 1. At first, we optimize
the HNet with the cross entropy, AT, AAT, and E-VAT. Sec-
ondly, we optimize the classifier of TNet. Thirdly, we apply
the minimax entropy regularization to HNet.

Task-specific objective. We define the task-specific objec-
tive function regarding the labeled data {X,Y } = {Xs ∪
Xl, Ys ∪ Yl}. As for classification task, the training objective
of HNet is typical defined as cross entropy loss

Lce(X,Y,ΘH) = −Ex,y∼X,Y log p(y|x,ΘH). (8)

AT objective. According to the Section 3.1, we use the la-
beled data S ∪ Tl to conduct traditional AT, the training ob-
jective can be written as Lat(X,Y,ΘH).

AAT objective. We use the labeled source data for AAT to
generate adaptive adversarial examples from the source to tar-
get domain. The training objective is Laat(Xs, Ys,ΘT ,ΘH).

E-VAT objective. We employ the E-VAT with unlabeled
data on HNet to generate adversarial examples from the tar-
get to source domain. The VAT objective can be written as
Le-vat(Xl, Xu,ΘH).

Minimax Entropy objective. We apply the previous mini-
max entropy objective on classifier to maximize the entropy
H of unlabeled target data, and minimize the entropy with re-
spect to the feature extractor to cluster features [Saito et al.,
2019], which form an adversarial minimax process. We use
the gradient reversal layer to simplify the training process.

LFmme = argmin
ΘF

H, and LCmme = argmin
ΘC

−H. (9)
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Net Methods R→ C R→ P P→ C C→ S S→ P R→ S P→ R Mean

1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

AlexNet

S+T 43.3 47.1 42.4 45.0 40.1 44.9 33.6 36.4 35.7 38.4 29.1 33.3 55.8 58.7 40.0 43.4
DANN 43.3 46.1 41.6 43.8 39.1 41.0 35.9 36.5 36.9 38.9 32.5 33.4 53.6 57.3 40.4 42.4
ADR 43.1 46.2 41.4 44.4 39.3 43.6 32.8 36.4 33.1 38.9 29.1 32.4 55.9 57.3 39.2 42.7
CDAN 46.3 46.8 45.7 45.0 38.3 42.3 27.5 29.5 30.2 33.7 28.8 31.3 56.7 58.7 39.1 41.0
ENT 37.0 45.5 35.6 42.6 26.8 40.4 18.9 31.1 15.1 29.6 18.0 29.6 52.2 60.0 29.1 39.8
MME 48.9 55.6 48.0 49.0 46.7 51.7 36.3 39.4 39.4 43.0 33.3 37.9 56.8 60.7 44.2 48.2
BiAT 54.2 58.6 49.2 50.6 44.0 52.0 37.7 41.9 39.6 42.1 37.2 42.0 56.9 58.8 45.5 49.4

ResNet

S+T 55.6 60.0 60.6 62.2 56.8 59.4 50.8 55.0 56.0 59.5 46.3 50.1 71.8 73.9 56.9 60.0
DANN 58.2 59.8 61.4 62.8 56.3 59.6 52.8 55.4 57.4 59.9 52.2 54.9 70.3 72.2 58.4 60.7
ADR 57.1 60.7 61.3 61.9 57.0 60.7 51.0 54.4 56.0 59.9 49.0 51.1 72.0 74.2 57.6 60.4
CDAN 65.0 69.0 64.9 67.3 63.7 68.4 53.1 57.8 63.4 65.3 54.5 59.0 73.2 78.5 62.5 66.5
ENT 65.2 71.0 65.9 69.2 65.4 71.1 54.6 60.0 59.7 62.1 52.1 61.1 75.0 78.6 62.6 67.6
MME 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
BiAT 73.0 74.9 68.0 68.8 71.6 74.6 57.9 61.5 63.9 67.5 58.5 62.1 77.0 78.6 67.1 69.7

Table 1: Accuracy on the DomainNet dataset (%).

Methods Office (W→A) Office (D→A) Office-Home

1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

S+T 50.4 61.2 50.0 62.4 44.1 50.0
DANN 57.0 64.4 54.5 65.2 45.1 50.3
ADR 50.2 61.2 50.9 61.4 44.5 49.5
CDAN 50.4 60.3 48.5 61.4 41.2 46.2
ENT 50.7 64.0 50.0 66.2 38.8 50.9
MME 57.2 67.3 55.8 67.8 49.2 55.2

BiAT 57.9 68.2 54.6 68.5 49.6 56.4

Table 2: Accuracy on Office and Office-Home (%) with AlexNet.

Overall objectives. The overall training objective for train-
ing HNet can be written as

LHNet =Lce(Xs, Xl, Ys, Yl,ΘH) (10)
+ λ1Lat + λ2Laat + λ3Le-vat + λ4Lmme, (11)

where λ1, λ2, λ3, λ4 are hyper-parameters. Lmme is a simpli-
fied form of LFmme and LCmme.

In addition, the training objective of TNet is

LTNet = Lce(Xl, Yl,ΘT ). (12)

The whole training process is shown in Algorithm 1.

5 Experiments
5.1 Experimental Setup
Datasets. We address the SSDA problem and validate the
benefits of BiAT on three datasets. DomainNet is a recent
benchmark dataset for large-scale domain adaptation that has
6 domains and 345 classes [Peng et al., 2019]. Following
the setup of [Saito et al., 2019], we pick 4 domains (Real,
Clipart, Painting, Sketch) and 126 classes to construct 7 sce-
narios, shown in the first row of Table 1. Office contains 3
domains with 31 classes and we eliminate the domains with
less examples and construct 2 scenarios, Webcam to Amazon
(W→A) and DSLR to Amazon (D→A). Office-Home con-
tains 4 domains (Real, Clipart, Art, Product) with 65 classes.
For each dataset, we use the randomly selected one or three
labeled examples per class as the labeled target examples (1-
shot and 3-shot) by [Saito et al., 2019]. Other three labeled
target examples are used as validation set and the remaining
are used as unlabeled target data.

Methods R→C R→S

1-shot 3-shot 1-shot 3-shot

Baseline (S+T) 43.3 47.1 29.1 33.3
Baseline w/ AT 48.7 52.6 32.5 39.0
Baseline w/ AAT 46.6 49.6 31.6 36.6
Baseline w/ E-VAT 46.5 49.2 30.9 35.7

BiAT w/o AT 50.8 55.4 33.0 39.6
BiAT w/o AAT 49.8 54.7 31.3 37.7
BiAT w/o E-VAT 50.6 53.4 34.6 40.5
BiAT w/o MME 46.0 53.5 29.0 35.1

BiAT 54.2 58.6 37.2 42.0

Table 3: Ablation study on DomainNet (%) with AlexNet.

Implementation details. For fair comparisons with other
methods, we follow previous work and take the shallow net-
work AlexNet [Krizhevsky et al., 2012] and deep network
ResNet34 [He et al., 2016] as the backbones. We employ a
shared pre-trained network as feature extractor and randomly
initialized classifiers for both HNet and TNet. We set λ1 in
Eq. (11) as 1, λ2 as 2. To avoid misjudgments of Le-vat in
early training, we use cosine warm-up on λ3. Lmme is sen-
sitive to datasets, even sub-domains of a same dataset, and
we choose λ4 ∈ [0.1, 2.5] for different scenarios. We adopt
SGD as an optimizer with initial learning rate 0.01. In order
to make a fair comparison, other setup we choose the same as
[Saito et al., 2019].

5.2 The Analysis of Experimental Results
We compare our BiAT network against several baselines.
“S+T” is the model trained with labeled data (both source and
target) and without unlabeled data. DANN [Ganin and Lem-
pitsky, 2014], ADR [Saito et al., 2017], and CDAN [Long
et al., 2018] are advanced unsupervised domain adaptation
methods. ENT is the model jointly trained by source and tar-
get labeled data, and unlabeled target data are employed for
standard entropy minimization. MME [Saito et al., 2019] is
the SSDA method with only minimax entropy loss.

DomainNet. In Table 1, we show the detailed comparison
on DomainNet dataset. Our BiAT method outperforms the
most recent MME method on average by 1.3% (1-shot) and
1.2% (3-shot) with AlexNet, 0.7% (1-shot) and 0.8% (3-shot)

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

938



Source AT AAT E-VAT Target

Panda

Coffee
Cup

Alarm
Clock

Figure 3: Examples of BiAT. The columns represent the source ex-
amples, the examples generated by three adversarial training meth-
ods, and the target examples.

with ResNet. The result demonstrates that our BiAT method
is effective in both shallow and deep networks. In some high-
quality scenarios with Real images as source, taking AlexNet
as an example, we achieve outstanding performance boost at
5.3% and 3.0% on R→C, 3.9% and 4.1% on R→S with 1-
shot and 3-shot, separately.

Office and Office-Home. In Table 2, we show the experi-
mental results on Office and Office-Home dataset. In the two
scenarios of Office, BiAT demonstrates comparable perfor-
mance, which is only behind the MME on D→A (1-shot).
That may be due to the DSLR set is small with only hundreds
of images and less data are inefficient to fill the domain gap.
For the Office-Home dataset, BiAT achieves a best overall ac-
curacy at 49.6% (1-shot) and 56.4% (3-shot), outperforming
0.4% and 1.2% than the prior state-of-the-art.

In Fig. 3, we visualize the adversarial examples from BiAT
on the DomainNet dataset. The middle three columns show
the generated examples with additional perturbations from
AT, AAT, and E-VAT, respectively.

5.3 Ablation Study
In order to exploit different model variants and analyze the
effectiveness, we conduct ablation study in two scenarios on
DomainNet, R→C and R→S, shown in Table 3.

We regard the “S+T” model as the baseline of BiAT with-
out adversarial training methods. As can be seen in the first
part of Table 3, AT apparently boosts the accuracy by around
4% from baseline on all the scenarios. AAT can promote the
baseline by around 3% accuracy. Similarly, E-VAT achieves
around 3% accuracy improvements. These two results not
only show the validity of the BiAT methods, but also indicate
the two generation directions are almost equally important.

As shown in the second part of Table 3, it causes a de-
cline in performance without any adversarial training meth-
ods. This proves that all the adversarial training components
are necessary. Note that the MME is also used as a term for
stable training, and it is sensitive to hyper-parameters. Sim-
ply removing the MME may lead to poor performance, such
as the R→S (1-shot) case. When all methods are combined,
the scores of the BiAT demonstrate the effectiveness of BiAT.

Varying number of bidirectional adversarial examples.
We take the number of bidirectional adversarial examples as
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Figure 4: Accuracy vs the number of BiAT examples. The horizontal
axis represents the ratio of used adversarial examples.

a variable and analyse the effort of example size. As shown
in Fig. 4, the horizontal axis represents the ratio of adver-
sarial examples. The ratio increases from left to right, and
“1.0” indicates all the adversarial examples are used, i.e. 2N
AT examples, N AAT examples, and 2N E-VAT examples in
a mini-batch, where N is the batch size. Obviously, the in-
crease of example size significantly improves the accuracy of
the model. This result is quite reasonable, because more ad-
versarial examples can better smooth the data points, and fill
the gaps between domains, thus learning a capable classifier.

5.4 Discussion of BiAT
In general, our BiAT method is validated to be valid on all
the three datasets and has around 1% accuracy improvement
on average. Because BiAT is essentially a data enhancement
method and does not innovate the image recognition back-
bone, it is reasonable that BiAT cannot greatly improve the
classification performance. Even so, BiAT still performs well
in many cases (around 5% accuracy improvements). In ad-
dition, as a general adversarial training paradigm, BiAT can
universally boost models, which can be regarded as a plug-
in method for SSDA or other domain adaptation tasks. As
long as there is an input example and a network that can
give a clear gradient direction, AAT can guide the perturba-
tion along the desired direction and obtain the corresponding
adversarial examples. For unsupervised data, E-VAT is also
universal. We argue that the BiAT method can act as a general
technique for SSDA or other domain adaptation problem.

6 Conclusion
In this paper, we devise a general bidirectional adversarial
training method and employ gradient to guide adversarial ex-
amples across domain gap and fill the gap. We propose two
effective components, AAT and E-VAT. AAT generates adap-
tive adversarial examples from the source to target domain,
while E-VAT does the opposite. We evaluate our method
on three benchmark datasets and conduct extensive ablation
study to the effectiveness of the BiAT. Experiments show the
network achieves the state-of-the-art.
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