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Abstract

Stochastic video generation methods predict di-
verse videos based on observed frames, where the
main challenge lies in modeling the complex fu-
ture uncertainty and generating realistic frames.
Numerous of Recurrent-VAE-based methods have
achieved state-of-the-art results. However, on the
one hand, the independence assumption of the vari-
ables of approximate posterior limits the infer-
ence performance [Zhao et al., 2017; Blei et al.,
2017]. On the other hand, although these meth-
ods adopt skip connections between encoder and
decoder to utilize multi-level features, they still
produce blurry generation due to the spatial mis-
alignment between encoder and decoder features at
different time steps. In this paper, we propose a
hierarchical recurrent VAE with a feature aligner,
which can not only relax the independence assump-
tion in typical VAE but also use a feature aligner
to enable the decoder to obtain the aligned spatial
information from the last observed frames. The
proposed model is named Hierarchical Stochastic
Video Generation network with Aligned Features,
referred to as HAF-SVG. Experiments on Moving-
MNIST, BAIR, and KTH datasets demonstrate that
hierarchical structure is helpful for modeling more
accurate future uncertainty, and the feature aligner
is beneficial to generate realistic frames. Besides,
the HAF-SVG exceeds SVG on both prediction ac-
curacy and the quality of generated frames.

1 Introduction
Video generation is a wide research area in computer vi-
sion which contains deterministic and stochastic video gen-
eration. Deterministic video generation methods learn to
generate only one possible future for observed frames[Vil-
legas et al., 2017a; Wang et al., 2017b; Wang et al., 2018a;
Wang et al., 2018b]. In contrast, stochastic video generation
methods focus on modeling future uncertainty and generating
different possible future frames. Recently, a large amount of
work has accomplished stochastic video generation within the
framework of variational autoencoders (VAEs) [Kingma and

Welling, 2014], which predicts diverse future by sampling la-
tent variables and decoding them into multiple frames [Shu
et al., 2016; Babaeizadeh et al., 2018]. Afterwards, [Den-
ton and Fergus, 2018] proposed an effective stochastic video
generation method SVG, which learns a prior model of uncer-
tainty in a given environment. During training, SVG adopts
an inference model to approximate the true posterior distribu-
tions and a generative model to produce frames by observing
the past frames x1:t−1 and sampling latent variables zt from
the approximated posterior at time step t. At test time, by
drawing samples from the prior and combining them with
a deterministic predictor, SVG can generate varied frames
into future. Nevertheless, the existing approaches struggle
to generate realistic and high-quality video sequences. For
example, when the SVG method is adopted to perform video
prediction on the Moving-MNIST dataset [Srivastava et al.,
2015], the numbers are always blurry.

We argue that there may be two reasons. Firstly, they fol-
low the assumption in deep VAEs, which advocates all di-
mensions in variables of approximated posterior are indepen-
dent of each other. That is, they samples all dimensions of
a variable at one time, which hinders the inference process
from modeling a more accurate future uncertainty [Zhao et
al., 2017; Blei et al., 2017; Hoffman et al., 2013]. Secondly,
they use skip connections from the encoder of the last ground-
truth frame to the decoder at the current time step t. Although
it enables the decoder to copy from the last observed frame di-
rectly, it would bring feature misalignment and blurry gener-
ation. Here comes to a question that how to build a stochastic
generation model which can model future uncertainty more
accurately and generate realistic future frames.

In this paper, we investigate how to overcome the above de-
ficiency in existing stochastic video generation methods with
a modified recurrent VAE. On the one hand, we relax the in-
dependence assumption of approximated posterior in SVG by
splitting all dimensions of variable zt into G groups. The G
sub-variables can be represented as zjt , where j = 1, 2, ...G.
In this way, when we sample j-th sub-variable from its cor-
responding dimensions, we can use the previous j − 1 sub-
variables as the known information. This hierarchical struc-
ture leads to more accurate modeling for future uncertainty.
On the other hand, we replace the direct skip connections
between encoder and decoder at different time steps with a
novel feature aligner to deal with the feature misalignment.
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First, similarity scores are computed by the point-wise inner
product between encoder and decoder features. Then, we nor-
malize these similarity scores via a softmax layer to obtain at-
tention weights. Finally, the representation of each position is
computed by a weighted sum of the features at all positions.
Thus, the output feature of the feature aligner not only con-
tain aligned spatial context from the observed frames which
are encoded by the encoder, but also the decoder feature at the
current time step t. These two improvements on SVG moti-
vates the name of our method: Hierarchical Stochastic Video
Generation network with Aligned Features: HAF-SVG.

Although there are quite a few approaches have been in-
troduced to perform stochastic video generation [Shu et al.,
2016; Babaeizadeh et al., 2018; Denton and Fergus, 2018], it
is still a challenge to model a more accurate future uncertainty
and produce realistic video clips. The aim of this paper is to
disclose this feasibility. To demonstrate effectiveness of the
proposed HAF-SVG on stochastic video generation, we pro-
vide abundant experimental results on Moving-MNSIT [Sri-
vastava et al., 2015], KTH [Schuldt et al., 2004] and BAIR
[Ebert et al., 2017] datasets. HAF-SVG outperforms SVG on
all datasets. The contribution of this paper is:

• We relax the independence assumption of approximate
posterior in SVG and construct hierarchical inference
modules by separating latent variable zt into G inter-
dependent groups, which is beneficial to model a more
accurate future uncertainty.

• We introduce a novel feature aligner into our modified
recurrent VAE to overcome the misalignment between
encoder and decoder features at different time steps,
which is helpful for generating realistic frames.

• We carry out extensive experiments, and it turns out
that HAF-SVG far exceeds the current state-of-the-art
method SVG in terms of prediction accuracy and the
quality of generated frames with a large margin.

2 Related Work
Due to the latest progress in deep learning, a number of ap-
proaches have been proposed to perform video prediction
with deterministic models [Denton and others, 2017; Srivas-
tava et al., 2015; Finn et al., 2016; Villegas et al., 2017a;
Villegas et al., 2017b; Wang et al., 2017b; Wang et al., 2018a;
Wang et al., 2018b]. However, these deterministic models
struggle to deal with future uncertainty and always lead to
averaging of future states.

Stochastic video Generation. Stochastic models built
upon recurrent-VAE are proposed to deal with the inherent
uncertainty of future states in videos. SV2P [Babaeizadeh
et al., 2018] predicts different possible future for each sam-
ple of its latent variables. SVG [Denton and Fergus, 2018]
learns a prior distribution at each time step rather than us-
ing a standard Gaussian directly. From this learned prior, we
can sample the diverse and plausible future sequence at test
time. However, we argue that the existing stochastic video
generation methods cannot generate realistic and high-quality
frames because of their limited inference performance caused
by the independence assumption of approximated posterior

and the feature misalignment brought by skip connections be-
tween the encoder and decoder at different time steps. In con-
trast, the proposed HAF-SVG is the first attempt to deal with
these two problems on the stochastic video prediction task.
Hierarchical Variational Auto-encoders. The original
VAEs [Kingma and Welling, 2014] use an approximated pos-
terior qφ(z|x) to approach the true posterior, where z is the
only latent variable, and its dimension is independent of each
other. In contrast, hierarchical VAE (HVAEs) is a series of
VAEs stacked on top of each other [Zhao et al., 2017]. It has
the following hierarchy latent variables z = {z1, z2, , , zG},
besides to the observed variables x. By splitting latent vari-
able z as G groups, HVAEs is able to deal with the inactivate
stochastic latent variable problem [Tomczak and Welling,
2018] and improve the inference performance.

3 Framework and Formulation
3.1 Preliminaries
Let x1:T represents a video clip with T consecutive frames.
Stochastic video generation methods observe first k frames
and predict the diverse future sequences with T−k frames re-
currently by sampling a latent variable and decoding it at each
time step. Here, we briefly review the SVG model [Denton
and Fergus, 2018], which achieves the best stochastic video
generation quality so far. Analogous to using VAEs to gener-
ate images, SVG produce video sequences by optimizing the
following Evidence Lower Bound (ELBO):

LSV G(xk+1:T |x1:k) =
T∑

t=k+1

[Eqφ(zt|x1:t) log pθ(xt|zt, x1:t−1)

− βDKL(qφ(zt|x1:t)||pψ(zt|x1:t−1)],
(1)

where the first term in the right-hand side (RHS) is the neg-
ative prediction loss and the second term is the Kullback-
Leibler (KL) divergence between the approximated poste-
rior qφ and the learned prior pψ . β is a hyper-parameter
that controls the trade off between these two terms. Specif-
ically, pθ(xt|zt, x1:t−1) represents a frame predictor (gener-
ator) that constructs frame xt conditioned on the estimated
features of x1:t−1 and the sampled latent variable zt at time
step t, as well as the information of x1:t−2 stemming from
the recurrent nature of the model. qφ(zt|x1:t) indicates an
inference model (encoder) that is forced to be close to a
learned prior distribution pψ via the KL term during train-
ing, while this encoder is ignored at test time. Instead of
adopting N (0, I) as a prior, SVG learns a prior distribution
pψ(zt|x1:t−1) that is specified by a conditional Gaussian dis-
tribution N (µψ(x1:t−1), σψ(x1:t−1)). At test time, we can
draws samples from this learned prior to generate video clips.

Following the original VAEs, SVG treats all dimensions in
variable zt of the approximated posterior qφ(zt|x1:t) as in-
dependent. Nevertheless, this would hinder inference perfor-
mance during training. Besides, to obtain dense background
information, the decoder in SVG receives multi-level features
from the last observed frames xk with skip connections at the
current time step t, which would lead to feature misalignment
and blurry generation.
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(a) Inference (b) Generation

Figure 1: A graphical model of the encoder and the generator in the
H-SVG, which are denoted by dashed and solid lines respectively.
Left: The inference model. Right: The generative model.

3.2 Hierarchical Stochastic Video Generation
Considering that the dimensions in zt of the approximated
posterior qφ are not necessarily independent one from each
other, we relax the independence assumption by splitting all
dimensions of variable zt into G sub-groups as:

qφ(zt|x1:t) = qφ1(z
1
t |x1:t)

G∏
j=2

qφj(z
j
t |z

1:j−1
t , x1:t). (2)

Similarly, the learned prior can be factorized as follows:

pψ(zt|x1:t−1) = pψ1(z
1
t |x1:t−1)

G∏
j=2

pψj(z
j
t |z

1:j−1
t , x1:t−1),

(3)
where both qφj(z

j
t |z

1:j−1
t , x1:t) and pψj(z

j
t |z

1:j−1
t , x1:t−1)

are specified by conditional Gaussian distributions. Each sub-
variables zjt are treated as independent within groups, but op-
posite between groups. Besed on this analogy, we propose
Hierarchical Stochastic Video Generation (H-SVG) which
merely relax the independence assumption of approximated
posterior and the corresponding learned prior in SVG. As
seen in Figure 1, the inference and the generative model of
the proposed H-SVG is visualized. It is naturally organized
as a hierarchical structure. Each sub-variable zjt in H-SVG di-
rectly depends on all previous sub-variables z1:j−1t and x1:t.
From this perspective, SVG can be regarded as the 1-group
H-SVG or H-SVG-1 in short.

Inference model. We design an inference model to ap-
proximate the true posterior distribution on G latent sub-
variables z1:Gt at time step t. Each approximated sub-
posterior distribution qφj(z

j
t |z

1:j
t , x1:t) on the sub-variable

zjt is specified by a conditional Gaussian distribution
N (µφj(z

1:j−1
t , x1:t), σφj(z

1:j−1
t , x1:t)). During training, we

force qφj(z
j
t |z

1:j−1
t , x1:t) to approach the learned sub-prior

pψj(z
j
t |z

1:j−1
t , x1:t−1) for j = 1, 2, ..., G, separately.

Generative model. At time step t, the generative process
pθ(xt|z1:Gt , x1:t−1) involves x1:t−1 and variables z1:Gt where
the latter is sampled from the learned prior pψ(zt|x1:t−1) via
the re-parameterization trick [Kingma and Welling, 2014] at

testing time. Note that pψj(z
j
t |z

1:j−1
t , x1:t−1) only relays on

x1:t−1 and sampled sub-variables z1:j−1t . The frame predic-
tor pθ receives z1:Gt and xt−1 as input. The dependencies on
all previous x1:t−2 and z1:Gt−1 derive from the recurrent nature
of our model.

4 Model Architecture
4.1 Pipeline of HAF-SVG
Figure 2 delineates the pipeline of the proposed HAF-SVG.
The encoder E is constructed with a deep convolutional net-
work which embeds the frame xt into a hidden space as ht.
The decoder D consists of an LSTM model and an asym-
metrical structured CNN model with the encoder. Here, the
decoder D receives previous embedded features h1:t−1 and
sampled latent variables z1:Gt as input. During training, z1:Gt
are sampled from approximated posterior qφ in a hierarchical
fashion. Note that HAF-SVG optimizes the variational lower
bound in the same form as SVG, however, the dimensions of
each variable are no longer independent. That is, HAF-SVG
also optimizes reconstruction loss between xt and x̂t and KL
loss between estimated posterior qφ and learned prior pψ .

4.2 Hierarchical Inference Module
We illustrate the hierarchical inference moduleφ in the mid-
dle of the Figure 2. The hierarchical inference moduleψ
works in a similar fashion. Here, we take the former
as an example. Each sub-variable zjt is sampled from
N (µφj(z

1:j−1
t , x1:t), σφj(z

1:j−1
t , x1:t)) which is estimated

by LSTMφj . Note that LSTMφj receives the hidden feature

ht and previous sampled sub-variables z1:j−1t , and output the
parameters of each conditional Gaussian distribution µφj and
σφj . The whole process can be formulated as follows:

[µφ1, σφ1] = LSTMφ1(ht), z
1
t ∼ N (µφ1, σφ1),

[µφj , σφj ] = LSTMφj(ht, z
1:j−1
t ),

zjt ∼ N (µφj , σφj), j = 2, 3, ..., G.

(4)

4.3 Feature Aligner
The top of Figure 3 illustrates the phenomenon of feature mis-
alignment. Green boxes represent the needed receptive field
to construct moving objects at the time step t. Red boxes
are the corresponding location in the frame xk which is used
to extract multi-level features. However, target objects are
missed or partially missed in red boxes, which means the de-
coder may not be able to utilize the appearance features of
target objects in frame xk to construct realistic frames.

To make full use of multi-level features from the last ob-
served frame xk without feature misalignment, we propose
a feature aligner between the encoder E and the decoder D.
As seen in Figure 3, the Fdt ∈ RC×N and the Fek ∈ RC×N
denote flattened intermediate features extracted by decoder
and encoder at different time steps separately, where C is
the number of channels, and N = H × W represents the
number of “pixels” of feature maps. First, Fdt and Fek are
embedded into the same embedding space by the linear trans-
formation as ”query” Q and ”key” K, where Q = WqFdt
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Figure 2: Pipeline of HAF-SVG. During training, the encoder E estimates a latent embedding of image xt as ht for each time step. At
each time step, the approximated sub-posterior qφj(z

j
t |z

1:j−1
t , x1:t) and the learned sub-prior pψj(z

j
t |z

1:j−1
t , x1:t−1) are obtained by the

hierarchical inference model with embedded features ht and ht−1 as the input separately, where j = 1, 2, ..., G. The information in h1:t

and h1:t−2 derive from the model recurrence. The decoder D receives ht−1 and sampled variables z1:Gt and output reconstruction x̂t at
the training time or the prediction x̃t during the testing phase recurrently. Besides, we introde a feature aligner between the encoder E and
decoder D to help decoder obtain aligned context information from the last observed frame xk.

C

C

Softmax
Transpose

Feature Aligner

: Matrix Multiplication : Channel Concat

Feature Misalignment

Figure 3: Top: the phenomenon of feature misalignment between
features from different time steps (best view in color). Bottom: the
architecture of the proposed feature aligner. Features of encoder Fe

k

are aligned to decoder features Fd
t with an attention approach.

and K = WkFek . The ”value” V can also be obtained by
V = WvFdt . Then, we compute the similarity score matrix
S = QTK ∈ RN×N by the point-wise inner product be-
tween Q and K. Next, the attention map A is calculated via
adopting a softmax layer:

ai,j =
exp(si,j)∑N
l=1 exp(si,l)

. (5)

Finally, the aligned feature Zt is calculated by the matrix
multiplication between V and A: Zt = VAT ∈ RC×N .
The feature aligner outputs the concatenation of all features
as Fat = [Fdt ;Fek ;Zt] ∈ R3C×N .

The feature aligner is inspired by the self-attention
(SA) [Wang et al., 2017a], which has shown its advantages
on aggregating context by measuring similarities. Different
from the SA which aims to bring global information for each
position in a feature map, our feature aligner focus on obtain-
ing aligned spatial context from the last observed frame.

5 Experiments
We perform experiments on synthetic sequences (Moving-
MNIST [Srivastava et al., 2015]), as well as real-world videos
(KTH action [Schuldt et al., 2004] and BAIR robot [Ebert et
al., 2017]). Here, we provide the different settings of HAF-
SVG according to different values of G, indicated as HAF-
SVG-1, HAF-SVG-2, HAF-SVG-4, where all sub-variables
have the same dimensionalities. First, we provide a qualita-
tive comparison between HAF-SVG-1 and the baseline model
SVG [Denton and Fergus, 2018], which demonstrates the
proposed feature aligner can predict realistic frames with bet-
ter object content. Besides, we calculate the average Peak
Signal to Noise Ratio (PSNR) [Huynh-Thu and Ghanbari,
2008], Structural Similarity Index Measure (SSIM) [Wang et
al., 2004] according to the ground-truth sequences to further
evaluate SVG and HAF-SVG quantitatively.

5.1 Datasets
Moving-MNIST. This dataset depicts two or three poten-
tially overlapping digits moving with constant velocity and
bouncing off the image edges, denoted as Moving-MNIST-2
and Moving-MNIST-3, respectively[Srivastava et al., 2015].
Each training sequence consists of 15 consecutive frames, 5
for the input and 10 for the prediction.
BAIR robot pushing. BAIR robot pushing dataset contains
sequences of frames where Sawyer robotic arm pushes vari-
ous objects on the table [Ebert et al., 2017]. We train both
SVG and HAF-SVG on the BAIR dataset by conditioning on
2 frames and predicting the next 10 frames.
KTH action. This dataset includes six types of human ac-
tions (walking, jogging, running, boxing, hand waving, and
hand clamping ) performed by 25 people in 4 different scenes
[Schuldt et al., 2004]. During training, we generate the sub-
sequent 10 frames by observing 10 frames.

5.2 Training Details
We adopt the experiment setup in SVG [Denton and Fergus,
2018], where frames are all resized into 64 × 64. LSTMθ is
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Figure 4: Qualitative comparison of the two methods on the Moving-MNIST-2. To make a fair comparison and prove the effectiveness of the
proposed feature aligner, a 1-group HAF-SVG is used. Given 5 frames, both HAF-SVG-1 and SVG generate the next 25 frames on the test
sequences. At each time step, latent variables zt have been sampled 100 times from the prior pψ(zt|x1:t−1), separately. We provide different
samples from both methods to reflect the diversity and variability of the future states. All samples show that SVG struggles to maintain the
content of digits when overlapping occurs. In contrast, HAF-SVG can reconstruct clear digits ”5” and ”7” under the overlapping situation.

G
round

Truth

Best SSIM

Random Sample
SVG

Random Sample

Best SSIM
HAF-SVG-1

Figure 5: Qualitative comparison between SVG and HAF-SVG-1 on the KTH. Given 10 frames (4 frames are showed in the figure), both
HAF-SVG-1 and SVG generate the next 20 frames on the test sequences. We provide different samples from both methods to reflect the
diversity and variability of the future states. Compared with SVG, our HAF-SVG-1 generates more clear and crisp frames.

implemented by a two-layer LSTMs with 256 cells in each
layer while LSTMφj and LSTMψj are single-layer LSTMs
with 256 cells. The output dimensionalities of the LSTM net-
works are 128 and |ht| = 128 for all three datasets. For KTH
and BAIR, the encoder E adopts the VGG16 [Simonyan and
Zisserman, 2015] architecture, and the frame decoder D is
the mirrored version of the encoder. |µφj | = |µψj | are set
to 24 on KTH, while 64 on BAIR. For Moving-MNIST, we
adopt the DCGAN discriminator architecture [Radford et al.,
2016] as ourE, the DCGAN generator architecture asD, and
|µφj | = |µψj | = 16. Besides, we use β=1e-4 for Moving-
MNIST and BAIR and β=1e-6 for KTH.

5.3 Qualitative Comparison
For every test sequence, we use HAF-SVG-1 and SVG to pre-
dict 100 different videos separately by drawing 100 samples
zt from the prior at each time step and decoding them into
pixel space. Then, we pick the sequences with the best SSIM
and the best PSNR with respect to the ground-truth sequence.
Figure 4 shows the qualitative results of two models on the
Moving-MNIST, from where we can find that SVG model
tends to produce chaos content when the two numbers over-
lap to some extent in all samples. In contrast, HAF-SVG-1
can produce correct numbers even if there is a certain degree

of overlap between the two numbers. Besides, we shows the
qualitative comparison on the KTH test set in the Figure 5.
SVG tends to produce pseudo shadows without the proposed
feature aligner, which is marked by red rectangles in the Fig-
ure 5. In contrast, HAF-SVG-1 always generate clear and
crisp frames and objects during the prediction.

5.4 Quantitative Comparison
We also provide the average SSIM and PSNR as quantitative
metrics to evaluate the proposed HAF-SVG. For each test se-
quence, we draw 100 samples from their corresponding prior
at each time step t. Then, we pick those sequences with the
best SSIM and the best PSNR with respect to the ground-
truth sequence [Denton and Fergus, 2018]. Figure 6 depicts
the average SSIM and PSNR scores over the test sequences
of Moving-MNSIT-2, Moving-MNSIT-3, KTH, and BAIR
using SVG, HAF-SVG-1, HAF-SVG-2, and HAF-SVG-4.
Compared with SVG, our HAF-SVG can achieve a higher
average PSNR and SSIM on all datasets. The HAF-SVG-4
achieves the best results mostly. However, the performance
margins among different models is limited since the number
of samples at each time step is big enough to weaken the in-
fluence of our hierarchical sampling ways. Next, we would
provide an ablation study on the number of samples.
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Figure 6: Quantitative comparison between HAF-SVG and SVG on the Moving-MNIST-2, Moving-MNIST-3, KTH, and BAIR datasets with
average SSIM and PSNR. Both models are trained to generate consecutive 25 frames based 5 past frames on the Moving-MNIST, 20 frames
based on 10 known frames on the KTH, 28 frames with 2 known frames on the BAIR. For each sequence, 100 predictions are sampled and
one with the best score with respect to the ground-truth. The plots indicate the average SSIM and PSNR over the unseen test sequences and
shadow is the 95% confidence interval. For both average SSIM and PSNR, the higher, the better.

Figure 7: Ablation study on MovingMNIST-3. We use SVG and
HAF-SVG-4 to draw 5, 50, and 100 samples separately.

Input t=3 6 9 12 15 18 21 24 27

Figure 8: Ablation study on the BAIR with HAF-SVG-2. z1t and z2t
are fixed to zero-vectors separately. The visualization clearly shows
that z1t and z2t controls the vertical and horizontal movement of the
robotic arm separately, which is helpful for uncertainty modeling.

5.5 Ablation Study
The influence of the number of samples. We provide ex-
periments on MovingMNIST-3 using HAF-SVG-4 and SVG

with 5, 50, and 100 sampled variables zt at each step to inves-
tigate the influence of the number of samples on the average
SSIM and PSNR of models. Figure 7 shows the quantitative
results of different models with different sampling numbers.
The fewer the sampling number is taken, the more obvious
the advantages of our HAF-SVG are.
Is the hierarchy helpful for uncertainty modeling? we
further make an ablation study on the BAIR with HAF-SVG-
2 to explore whether our methods can learn effective repre-
sentations via the hierarchical structure. During sampling, we
fix the z1t and z2t as zero-vectors separately. The generation
results in Figure 8 demonstrates that z1t controls the vertical
movement of the robotic arm and z2t controls the movement
on the horizontal direction. The hierarchy learns disentangled
representations and is beneficial to uncertainty modeling.

6 Conclusion
In this paper, we presented the HAF-SVG model, which
adopted a modified recurrent VAE architecture to predict di-
verse and plausible future frames by sampling variables from
a learned prior at each time step. The HAF-SVG relaxed the
independence assumption of approximated posterior to im-
prove the inference performance in SVG. Besides, it proposed
a novel feature aligner to deal with feature misalignment be-
tween encoder and decoder at different time steps. Moreover,
we provide extensive experiments on both the synthetic data
and the real-world sequences to demonstrate the superiority
of the proposed HAF-SVG.
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