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Abstract
To extract crucial local features and enhance
the complementary relation between local and
global features, this paper proposes a Weakly
Supervised Local-Global Relation Network (WS-
LGRN), which uses the attention mechanism to
deal with part location and feature fusion prob-
lems. Firstly, the Attention Map Generator quickly
finds the local regions-of-interest under the super-
vision of image-level labels. Secondly, bilinear at-
tention pooling is employed to generate and refine
local features. Thirdly, Relational Reasoning Unit
is designed to model the relation among all fea-
tures before making classification. The weighted
fusion mechanism in the Relational Reasoning Unit
makes the model benefit from the complemen-
tary advantages between different features. In ad-
dition, contrastive losses are introduced for lo-
cal and global features to increase the inter-class
dispersion and intra-class compactness at differ-
ent granularities. Experiments on lab-controlled
and real-world facial expression dataset show that
WS-LGRN achieves state-of-the-art performance,
which demonstrates its superiority in FER.

1 Introduction
Driven by recent advances in human-centered computing,
recognizing expressions from facial images has been a popu-
lar problem in the field of computer vision, and many studies
have been conducted. It can be divided into two categories.
One category focuses on learning global representation, while
another pays more attention to extract partial discriminative
features.

For the first category, a popular approach is to enhance
the discriminative power of the deeply learned features by
proposing novel loss layers to replace or assist the supervision
of the softmax loss [Cai et al., 2018b; Li and Deng, 2018].
Besides, some works attempt to make the network disentan-
gle the identity and the expression by either performing multi-
signal supervision or using Generative Adversarial Network
[Meng et al., 2017; Liu et al., 2017; Ali and Hughes, 2019;
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Figure 1: Attention maps that indicates crucial facial regions.

Yang et al., 2018]. It aims to alleviate variations intro-
duced by identity and achieve identity-invariant FER. How-
ever, these methods mentioned above usually extract fea-
tures from the holistic facial image and ignore fine-grained
information in local facial regions. For the second cate-
gory, the basic premise of learning discriminative part fea-
tures is that the parts should be located. Some part-based
methods crop facial expression images into patches and try
to learn local representations from them [Xie and Hu, 2018;
Happy and Routray, 2014; Liu et al., 2014]. Although the
obtained results are encouraging, there are still some re-
strictions. Firstly, dividing image into patches can be time-
consuming and computationally expensive. Secondly, manu-
ally defined patches may not be optimal. Some patches may
have no or even negative impact on FER. In addition, if we
only focus on local features, we may lose some supplemen-
tary information. Attributes provided by the holistic facial
image can also affect expressions significantly.

In fact, the human visual attention mechanism shows that
humans will first obtain a global description when perform-
ing object recognition, and then attention will quickly shift
to regions with obvious features [Itti and Koch, 2001]. Be-
sides, results in [Cohn and Zlochower, 1995] indicate that
much of expressional clues come from the salient facial re-
gions such as neighbourhood of mouth and eyes. Motivated
by these, we propose a Weakly Supervised Local-Global Re-
lation Network (WS-LGRN). Unlike previous methods, we
mimic the way humans recognize facial expressions. Specifi-
cally, the attention mechanism is introduced to guide our net-
work to locate crucial local regions autonomously and extract
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Figure 2: Overview of the proposed framework.

local features through these regions. Since facial expression
datasets do not have labeled part locations, we formulate part
localization in a weakly supervised manner by introducing
a facial attributes dataset. Moreover, we model the relation
between local and global features to jointly utilize their com-
plementary advantages to deal with the loss of local details
and emphasize global context cues.

During training, our pipeline is decomposed into two
stages, as shown in Figure 2. In the first stage, the Atten-
tion Map Generator (AMG) is trained on the facial attribute
dataset to generate attention maps that designate the regions
around eyes and mouth. Figure 1 shows some samples gen-
erated by AMG. For a given input image (left), eye-related
attention map (center) shows the location of eyes and mouth-
related attention map (right) shows the location of mouth. In
the second stage, the well-trained AMG is transferred to fa-
cial expression datasets with weights fixed. Therefore, the
lack of part annotations in facial expression dataset is well
solved. The second stage consists of two identical CNN
streams whose weights are shared. It takes a pair of fa-
cial expression images as input. In addition to AMG, each
CNN stream contains four sub-parts: Local Feature Extractor
(LFE), Global Feature Extractor (GFE), Relational Reason-
ing Unit (RRU) and Classifier. LFE extracts features from
holistic facial image. Based on the outputs of AMG and
LFE, the local features are extracted and refined by bilin-
ear attention pooling. GFE extracts global features directly
from holistic image. RRU aims to fuse all features and model
the complementary relation among them. A softmax classi-
fier is used for the final expression classification. We opti-
mize the parameters by simultaneously minimizing the soft-
max loss, local-sensitive contrastive loss and global-sensitive
contrastive loss. During testing, an image is fed into one CNN
stream, and predictions are generated based on the hybrid fea-
tures.

To sum up, our main contributions are as follows. (1) Un-
like local-based methods that rely on facial patches [Xie and

Hu, 2018; Happy and Routray, 2014; Liu et al., 2014], we
propose to deal with local features by directly locating cru-
cial regions and extracting corresponding features. Specifi-
cally, our method trains the AMG under weak supervision to
generate attention maps that strongly indicate the locations
of the eyes and mouth. Based on the attention maps, a bi-
linear attention pooling is proposed to generate and refine lo-
cal features. Besides, weak supervision allows us to over-
come the limitation of no part annotations in facial expres-
sion dataset. (2) Different from [Xie and Hu, 2018] which
fuses local and global features through concatenate fusion,
we formulate a RRU to model the complementary relation
among all features. The adaptive weight in RRU makes a
reasonable trade-off and selection of all features as well as
makes the model can benefit from local-global complemen-
tary advantages. (3) We extend metric learning to both lo-
cal and global features to increase inter-class differences as
well as reduce intra-class variations at different granulari-
ties. Previous methods only employ similarity metrics on the
global representation [Meng et al., 2017; Cai et al., 2018b;
Li and Deng, 2018; Liu et al., 2017], and fine-grained features
are not well learned. In our method, explicit local features
make it possible to employ local similarity metric. (4) To
demonstrate the superiority of our proposed method, we em-
ploy experiments on lab-controlled facial expression datasets
(CK+) and real-world facial expression dataset (RAF-DB).
Our facial expression recognition solution achieves state-
of-the-art results on CK+ and RAF-DB with accuracies of
98.37% and 85.20%, respectively.

2 Proposed Method
2.1 Attention Map Generator
A direct method for locating crucial facial regions is to use
image and its pixel-wise segmentation as input and target re-
spectively. However, it requires label maps with pixel-wise
annotations, which are expensive to collect. More impor-
tantly, facial expressions are generated by contracting facial
muscles around facial organs. The result of pixel segmenta-
tion is too fine to focus on the areas around these organs that
contain abundant apparent features. An alternative approach
is weakly supervised object localization. [Zhou et al., 2016]
enable the classification network to have remarkable localiza-
tion ability despite being trained on only image-level labels.
Inspired by them, we use attention map to locate crucial facial
regions. The attention map is a weight map, which highlights
the positions of the crucial regions by giving them higher val-
ues. To generate the attention maps, we designed our AGM.

Facial expression datasets usually have only expression la-
bels, while the image in the CelebA dataset [Liu et al., 2015]
is labeled with 40 facial attributes. Some attributes can guide
AMG training to locate crucial regions. Since we only focus
on regions related to facial expressions, we choose facial at-
tributes related to eyes and mouth and divide them into two
groups according to their respective facial parts. The grouped
attributes are summarized in Table 1. We randomly select
30,000 (The ratio of positive and negative samples is 1:1) im-
ages to train the eyes-related branch and select 3,000 images
for validation.
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Part Attributes

Eyes Bushy eyebrows, Arched eyebrows,
Narrow eyes, Eyeglasses

Mouth Big lips, Mouth slightly open, Smiling

Table 1: Facial attributes grouping.
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Figure 3: One branch in the Attention Map Generation.

For the training of mouth-related branches, we use the
same configuration. Note that, we only use the CelebA
dataset to train AMG.

AMG consists of two branches with the same structure for
locating eyes and mouth, respectively. Figure 3 shows the
branch for eyes. If the image dose not contain any eyes-
related attributes listed in Table 1, we take it as a negative ex-
ample, otherwise it will be a positive example. We use dataset
containing these positive and negative examples to train the
eyes-related branch. As illustrated in Figure 3, global aver-
age pooling (GAP) outputs the spatial average of the feature
map of each unit at the last convolutional layer. A weighted
sum of these values is used to generate features for classifica-
tion. We back the weights of the output layer to the convolu-
tional features and calculate the weighted sum of the feature
maps to obtain our attention maps. We normalize the atten-
tion maps so that all values fall in the range [0, 1]. Figure 1
illustrates the effect of attention maps outputted using AMG.
The regions around eyes and mouth are highlighted. After we
trained the AMG module on CelebA dataset, we transfer it to
the facial expression datasets. In the second stage, AMG is
frozen.

2.2 Local Feature Refinement
Bilinear Attention Pooling. Firstly, well-trained AMG
with fixed weights is used to generate attention maps Ae ∈
11×H×W (eyes-related attention maps) and Am ∈ R1×H×W

(mouth-related attention maps) respectively. Then, we
element-wise multiplies feature maps F ∈ RC×H×W by at-
tention maps Ae and Am, as shown in Eq.1:

Fe = Ae � F, Fm = Am � F. (1)

Feature maps F are extracted by LFE from the holistic im-
age. Fe and Fm reflect the feature maps of eyes and mouth,
respectively. An example of refining eyes features is shown
in Figure 4.

Bilinear attention pooling explicitly define two streams to
locate and extract features respectively. We regard the AMG
branch as the dorsal stream that deals with the spatial location
of the object in the human visual cortex and the LFE branch
as the ventral stream that performs object recognition in the
human visual cortex. The bilinear attention pooling bridges
the appearance models and part locating models. It provides
a solution for local feature extraction.

Figure 4: The process of refining eyes features.

Local-Sensitive Contrastive Loss. In order to reduce the
intra-class variations and increase the inter-class differences
at a finer granularity. Local-sensitive contrastive loss Le

C and
Lm
C are designed for the eyes-related features and mouth-

related features respectively. As illustrated in Figure 4, we
introduce an auxiliary fully connected (FC) layer to represent
the eyes-related features. Le

C draws the eye-related features
extracted from samples of the same expression closer to each
other, while pushing the eye-related features extracted from
samples of different expressions away from each other. We
adopt the loss function based on the squared Euclidean dis-
tance, which is denoted as:

Le
C(θij , f

e(xi), f
e(xj))

=

{
1
2 (
∥∥∥fe(xi)− fe(xj)‖22 ifθij = 1

1
2 max (0, δe −

∥∥fe(xi)− fe(xj)‖2 )
2

ifθij = 0
(2)

where xi and xj are a pair of training images, and fe(xi) and
fe(xj) are their eyes-related feature vectors. θij = 1 means
that xi and xj are belong to the same facial expression. While
θij = 0, it reverses. δe is the size of the margin which deter-
mines how much dissimilar pairs contribute to the loss func-
tion. In our experiment, δe is set to 10 empirically. The con-
trastive loss Lm

C for mouth-related features is defined similar
to Le

C .

2.3 Local-Global Fusion
Global-Sensitive Contrastive Loss. Global feature maps
Fg ∈ RC×H×W are extracted by GFE from holistic facial
image directly. A global-sensitive contrastive loss Lg

C is de-
signed for global feature to reduce the intra-class variations
and enlarge the inter-class differences. The global feature
vector used to calculate the loss function is obtained by in-
putting Fg into the FC layer. Lg

C is defined as follows:

Lg
C(θij , f

g(xi), f
g(xj))

=

{
1
2 (
∥∥∥fg(xi)− fg(xj)‖22 ifθij = 1

1
2 max (0, δg −

∥∥fg(xi)− fg(xj)‖2 )
2

ifθij = 0
(3)

where fg(xi) and fg(xj) are global feature vectors for a
pair of training samples. θij = 1 means that xi and xj are
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belong to the same facial expression. While θij = 0, it re-
verses. δg is the size of the margin which determines how
much dissimilar pairs contribute to the loss function. It is set
to 10 empirically.
Relational Reasoning Unit. RRU is designed to model the
complementary relation among eyes features, mouth features
and global features. Specifically, RRU consists of two key
operators: fuse and reasoning as illustrated in Figure 5.

Fuse: To model the complementary relation among Fe,
Fm and Fg , we use gates to control the information flows
from multiple branches carrying features extracted from dif-
ferent regions into next layer. The gates integrate information
from all branches. We obtain the hybrid representation from
three branches via an element-wise summation:

F = Fe + Fm + Fg (4)
F is used as the anchor of relational reasoning for learning
content-aware attention weight.

Reasoning: The reasoning operator is a attention mech-
anism on the concatenation of individual feature and hybrid
representation for relational reasoning. The design philoso-
phy behind reasoning is to constrain the complementary rela-
tion among all features so that it captures the content-aware
attention weight of relational reasoning. The weight makes a
reasonable trade-off and selection of all features. Specifically,
we use concatenation and FC layer to adaptively compute the
attention weight for three different spatial descriptors: Fe,
Fm and Fg . In its simplest form the weight calculation is a
composite function:

we = g(fϕ([F : Fe])) (5)

wm = g(fϕ([F : Fm])) (6)

wg = g(fϕ([F : Fg])) (7)
For our purposes g and fϕ are sigmoid function and FC, re-
spectively. ϕ is the parameter of FC. We can call the learned
weight a ”relation”; therefore, the role of we, wm, wg are to
infer the ways in which two features are related, or if they
are even related at all. Finally, we aggregate all the individ-
ual feature along with the hybrid representation into a new
compact feature as,

Ft = we[F : Fe] + wm[F : Fm] + wg[F : Fg] (8)
Ft is used as the final representation of the proposed RRU for
the classification. After RRU, Ft is fed into the Classifier.

2.4 Total Loss
Softmax loss that calculates the classification errors is used
on end of each CNN stream to ensure the learned features are
meaningful for FER. Combining the two local-sensitive con-
trastive losses and one global-sensitive contrastive loss men-
tioned above, the total loss of WS-LGRN is:

Ltotal = λ1L
e
C + λ2L

m
C + λ3L

g
C + λ4L

1
S + λ5L

2
S (9)

where {λ1, λ2, λ3, λ4, λ5, λ6} are the weights of each loss.
L1
S and L2

S are the final classification errors.

3 Experiments
3.1 Dataset and Preprocessing
Most of our experiments are conducted on the CK+ [Lucey
et al., 2010] dataset. It is a lab-controlled dataset which
is annotated with seven expressions, i.e. Anger (An), Dis-
gust (Di), Fear (Fe), Happiness (Ha), Sadness (Sa), Surprise
(Su) and Contempt (Co). It consists of 327 facial expres-
sion sequences collected from 118 different subjects. Each
sequence starts with a neutral expression and ends with a
peak expression. As a general procedure [Cai et al., 2018b;
Meng et al., 2017; Ali and Hughes, 2019; Ding et al., 2017;
Chen et al., 2019], the last three frames of each sequence are
used for training and test. Thus, CK+ contains 981 images
for our experiments. Additionally, we also conduct experi-
ments on the Real-world Affective Face Database (RAF-DB)
[Li and Deng, 2018]. It is a real-world dataset that contains
29,672 highly diverse facial images downloaded from the In-
ternet. Images with seven basic expressions (surprise, fear,
disgust, happiness, sadness, anger and neutral) are used in our
experiment, including 12,271 images for training and 3,068
images for test.

Face alignment is conducted based on the facial land-
marks detected with Supervised Descent Method (SDM)
[Xiong and La Torre, 2013]. The detected face are
cropped, resized and converted to 48 × 48 grayscale im-
ages. We ignore extra alignment method in RAF-DB be-
cause face images have already been aligned. To avoid
over-fitting, two types of data augmentation are adopted.
First, each preprocessed training image is rotated at angles of
{−15◦,−10◦,−5◦, 0◦, 5◦, 10◦, 15◦}. Then, they are flipped
horizontally. We employ same preprocessing for both fa-
cial expression datasets and CelebA dataset. Because CK+
does not provide specified training and test sets, we employ
the most popular 10-fold validation strategy as in the pre-
vious methods [Ali and Hughes, 2019; Ding et al., 2017;
Cai et al., 2018b; Chen et al., 2019]. The dataset is split into
ten groups without subject overlapping between the groups.
For each run, nine groups are used for training and the re-
maining is used for test. The results are the average of 10
runs. For the experiments on the RAF-DB database, we use
their official split for training and test.

3.2 Implement Details
The backbone of each branch in the AMG is a variant of
Densenet. It consists of 3 dense block and 2 transition layers.
The dense block contains 6, 12 and 24 dense layers, respec-
tively. Due to the limited images in facial expression datasets,
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we use the backbone as LFE and GFE after reduce the number
of dense layers to 6 for each dense block. All of the pooling
layers in the transition layer are 2 × 2 average pooling with
stride 2. The training of WS-LGRN contains two stages. In
the first stage, we train AMG on CelebA. The initial learn-
ing rate is set to 0.1, which is decreased by 0.1 after every
20 epochs. After we obtain the well-trained AMG, we freeze
it and transfer it to facial expression datasets. In the second
stage, we use the frozen AMG to generate attention maps, and
train the remaining part of WS-LGRN jointly. Following pre-
vious works, before training on the target expression datasets,
we pre-train WS-LGRN on FER2013 dataset [Goodfellow et
al., 2015] and fine-tune WS-LGRN on the target expression
datasets. The initial learning rate for pre-train and fine-tuning
are set to 0.1, 0.01 respectively. They are divided by 10 at
50% and 75% of the total training epochs. We optimize the
model using Stochastic Gradient Descent with a batch size of
100, momentum of 0.9, weight decay of 0.0005 for all stages.
In Eq.9, λ1 is set to 3 for CK+ and RAF-DB, while other
parameters are set to 1 empirically.

3.3 Ablation Studies
The performance of the model is mainly determined by the
following four components: global features, local features,
RRU and contrastive loss. To assess these four components,
we conduct some ablation experiments on the CK+ dataset to
evaluate their effect on recognition.

The effects of feature fusion. The model only utilizes
global features to make classification is denoted as GFNet.
The model that recognizes expressions only with local fea-
tures is denoted as LFNet. From Table 2, we can observe that
the recognition accuracy of WS-LGRN is much higher than
GFNet and LFNet, which means FER benefits from feature
fusion. This is reasonable as global features or local features
only focus on representing expressional information with a
specific aspect. The global feature is intended to represent
the integrity of the expression, while the local feature focuses
on the subtle traits of the local region. The improvement on
recognition accuracy by fusion indicates that these two types
of features are complementary to each other.

The effects of the RRU. In our model, RRU fuses all fea-
tures and considers their complementary relation. In addition
to the RRU, we also explore the properties of sum fusion and
concatenation fusion. Sum fusion computes the sum of all
feature maps at the same spatial location and feature chan-
nel. The model with sum fusion is denoted as WS-LGRN-
Sum. Concatenation fusion stacks the two feature maps at
the same spatial location across the feature channels. The
model with concatenation fusion is denoted as WS-LGRN-
Concat. Experimental results are summarized in Table 2. Our
WS-LGRN achieves the highest accuracy by fusing features
through the RRU. RRU can adaptively capture the importance
of each individual feature, and make a reasonable trade-off
between local and global features.

The effects of contrastive loss. In this experiment, the
model which only uses the softmax loss to optimize the pa-
rameters is denoted as WS-LGRN-WCL. We compare the
performance of WS-LGRN-WCL with the proposed model.

Model Accuracy(%)

WS-LGRN 98.37

GFNet 95.10
LFNet 94.90

WS-LGRN-Sum 96.13
WS-LGRN-Concat 96.94

WS-LGRN-WCL 97.35

Table 2: Recognition accuracy on the CK+ dataset with different
types of features.

Figure 6: Confusion matrices on the CK+ (a) and RAF-DB (b).

From Table 2, we can see that the proposed model performs
better than WS-LGRN-WCL. This is reasonable as softmax
loss forces the features of different expressions staying apart,
but it has not a strong constraint to reduce the variations of
identical expressions. The two local contrastive losses and
one global contrastive loss correspond to local representa-
tions and global representation work together to push our
model to focus on expression details in different granularities.
With the joint supervision of softmax loss, local contrastive
loss and global contrastive loss, not only the inter-class fea-
tures differences are enlarged, but also the intra-class features
variations are reduced. The improvement in recognition ac-
curacy demonstrates the effectiveness of contrastive loss.

With the simultaneous use of global features, local fea-
tures, RRU and contrastive losses, we obtained the best recog-
nition performance. Therefore, we will use the same config-
uration in the following experiments.

3.4 Expression Recognition Results
To evaluate the overall performance, the confusion matrices
on two datasets are illustrated in Figure 6. To compare the
performance of the proposed method with other methods, Ta-
ble 3 and Table 4 list the accuracy of our proposed and the
state-of-the-art methods on the CK+ and RAF-DB databases.

Results on CK+ dataset. Our method achieves an average
recognition accuracy of 98.37% on CK+. Among the meth-
ods which utilize only static image, our result achieves state-
of-the-art. Our method performs well on disgust, fear and
happiness, but the performances on contempt and sadness are
poor. The low accuracy of contempt is mainly due to the lack

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1044



Anger NeutralDisgust Fear Happiness Sadness Surprise
RAF-DB Dataset

Anger Disgust Fear Happiness Sadness Surprise
CK+ Dataset

Contempt

Figure 7: Visualization of the attention maps generated on the CK+ and RAF-DB dataset. Best view in color.

Method Accuracy(%)

IL-CNN [Cai et al., 2018b] 94.35
IACNN [Meng et al., 2017] 95.37
PAT-ResNet-(gender,race) [Cai et al., 2018a] 95.82
2B(N+M)Softmax [Liu et al., 2017] 97.10
DE-GAN [Ali and Hughes, 2019] 97.28
DeRL [Yang et al., 2018] 97.30
FMPN [Chen et al., 2019] 98.06
WS-LGRN 98.37

Table 3: Performance comparison on the CK+ dataset.

of data. The samples of contempt are only 18/327 of the total,
which is far less than others. Besides, sadness and anger are
confused in some samples. A reasonable explanation is that
sadness and anger share some similar actions in local facial
regions.

Results on RAF-DB dataset. Our method achieves an av-
erage recognition accuracy of 85.20% on RAF-DB which is
a dataset closer to the natural scene. It is better than all meth-
ods. Notice that, some papers report performance as an aver-
age of diagonal values of confusion matrix. We convert them
to regular accuracy for fair comparison. It proves that our
method is robust to both lab-controlled and real-world facial
expression dataset. The highest accuracy is obtained when
recognizing happiness, which reaches to 93.8%. However,
the performance on anger, disgust and fear are poor. This is
mainly due to the lack of data. In RAF-DB the samples of
anger, disgust and fear are far less than others.

3.5 Visualization of Attention Maps
In Figure 7, we visualize the attention maps generated by
transfer AMG to CK+ and RAF-DB to demonstrate the effec-
tiveness of weakly supervised attention learning. Rectangular
boxes of different colors contain visualized results of differ-
ent expressions. Within each rectangular box, the first column
is the original images, the second column is the eye-related
attention maps, and the last column is the mouth-related at-
tention maps. We can see that, regardless of the person or
expression in the picture, our model can always accurately
locate the eye region and mouth region. This provides an

Method Accuracy(%)
FSN [Zhao et al., 2018] 81.10
baseDCNN [Li and Deng, 2018] 82.86
Center Loss [Li and Deng, 2018] 83.68
DLP-CNN [Li and Deng, 2018] 84.13
PAT-ResNet-(gender,race) [Cai et al., 2018a] 84.19
Lin et al. [Lin et al., 2018] 84.68
APM-VGG [Li et al., 2019] 85.17
WS-LGRN 85.79

Table 4: Performance comparison on the RAF-DB dataset.

efficient and accurate guidance for the extraction of local fea-
tures. In addition, this avoids the introduction of many unre-
lated factors compared to using all face patches.

4 Conclusions
In this paper, we proposed a weakly supervised local atten-
tion network which automatically perceives the crucial local
regions of the face, so that the network can focus on repre-
sentative local features while acquiring the global facial fea-
tures. In the proposed WS-LGRN, an Attention Map Gener-
ator trained on facial attributes dataset under weakly super-
vision is adopted to perceive the location of crucial local re-
gions. Local feature refinement is employed by bilinear at-
tention pooling. Contrastive loss is introduced for both local
and global features to increase inter-class differences and de-
crease intra-class variations under different scale. Relation
Reasoning Unit is designed to model the complementary re-
lation of local and global features. Extensive experiments on
lab-controlled and real-world datasets demonstrate the effec-
tiveness of our proposed method.

Furthermore, the approach of perceiving crucial local re-
gions proposed in this work has potential application value
for other face related tasks, such as face detection, face align-
ment and face attribute manipulation.
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