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Abstract
Human-object interaction (HOI) detection is im-
portant to understand human-centric scenes and is
challenging due to subtle difference between fine-
grained actions, and multiple co-occurring inter-
actions. Most approaches tackle the problems by
considering the multi-stream information and even
introducing extra knowledge, which suffer from
a huge combination space and the non-interactive
pair domination problem. In this paper, we pro-
pose an Action-Guided attention mining and Rela-
tion Reasoning (AGRR) network to solve the prob-
lems. Relation reasoning on human-object pairs
is performed by exploiting contextual compatibil-
ity consistency among pairs to filter out the non-
interactive combinations. To better discriminate
the subtle difference between fine-grained actions,
an action-aware attention based on class activation
map is proposed to mine the most relevant features
for recognizing HOIs. Extensive experiments on
V-COCO and HICO-DET datasets demonstrate the
effectiveness of the proposed model compared with
the state-of-the-art approaches.

1 Introduction
Human-Object Interaction (HOI) detection task, as a sub-task
of visual relationship detection, aims to localize all humans
and objects, and infer the interactions between them, i.e., 〈
human, verb, object 〉 triplets, from an input image. HOI de-
tection is critical for many vision tasks, such as activity anal-
ysis [Heilbron et al., 2015], visual question answering (VQA)
[Mallya and Lazebnik, 2016], and weakly-supervised object
detection [Kim et al., 2019].

However, detecting human object interaction is challeng-
ing, due to subtle differences between human-centric fine-
grained actions, and multiple co-occurring interactions. Most
existing works on HOI detection typically tackle the problem
by combining human feature, object feature and the spatial
relationship to detect HOIs. Recent approaches have attempt-
ed to improve HOI detection by integrating extra knowledge,
e.g., pose cues, and word embedding. In this paper, we point
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Figure 1: Illustration of our proposed model for HOI detection. (a)
The model with human object pairs relation reasoning can filter out
the negative combination, e.g., human and object with green box.
(b) Compared with iCAN human-centric attention map, our action-
aware attention map can focus on the most discriminative regions.

out two factors which are important but neglected in different
degrees.

First, the contextual compatibility consistency of human-
object pairs is essential for accurate HOI detection. In
many works [Gao et al., 2018; Wang et al., 2019], detect-
ed human and objects are often paired exhaustively, which is
time-consuming on some non-interactive pairs as shown in
Figure 1 (a). Although [Li et al., 2019c] do some efforts to
eliminate some non-interactive pairs, they subject to human
pose and treat human-object pairs separately with each other,
without any reasoning between them. Our key insight is that
human-object pairs corresponding to the accurate labels tend
to have similar features, e.g., spatial structure and visual fea-
tures, and hence propagating features on the relation-based
graph helps learn more robust pattern of specific human-
object interaction. Based on the above observation, we pro-
pose a relation reasoning model to generate enhanced visual
representations of human-object pairs by leveraging the com-
patibility consistency of human-object pairs for filtering out
the non-interactive pairs.

Second, the human-object interaction-sensitive features
should be mined and assigned more attention. Many ap-
proaches apply the general feature extractor, e.g., ResNet-
50 or ResNet-152, to obtain the small and sparse features.
Specially, some methods explore the instance-centric atten-
tion [Gao et al., 2018] and channel-wise and spatial atten-
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tion [Wang et al., 2019] to capture the most discrimina-
tive features. However, the obtained features are not high-
ly action-relevant as shown in Figure 1 (b) and the action-
aware features are of great importance to identify the subtle
difference between actions. Studies in [Zhou et al., 2016a;
Selvaraju et al., 2017a] suggest that class activation map
(CAM) can focus on the class-aware regions and mining the
attention can promote the generation ability of the model.
Therefore, we are motivated to explicitly utilize the class ac-
tivation map as useful information to mine the action-related
attention for fine-grained interaction detection.

In this work, we propose an Action-Guided attention min-
ing and Relation Reasoning network (AGRR) for human ob-
ject interaction detection. The proposed framework contain-
s human object interaction detection stream, including hu-
man/object localization and fine-grained interaction recogni-
tion, and attention mining stream. For human/object local-
ization, we construct a directed graph whose node represents
the human-object pair and edge denotes the compatibility of
two neighbour nodes. Reasoning on these human-object pairs
using graph attention network can enhance the pairwise fea-
tures and further help filter out the irrelevant candidate pairs.
Furthermore, inspired by [Li et al., 2018], we introduce an
action-guided attention mining loss based on the class activa-
tion map to enforce the model to learn more discriminative
features for identifying the fine-grained interaction. Special-
ly, the class activation map computed by Grad-CAM [Sel-
varaju et al., 2017a] is human-centric for exploring the subtle
difference between human actions.

To summarize, our contributions are as follows:
(1) We propose a relation reasoning model to enhance the

human object pairwise features by exploiting the contextu-
al compatibility consistency among pairs for eliminating the
irrelevant candidate pairs from the exhaustive combinations.

(2) We introduce a novel action-guided attention mining
loss based on the class activation map to force the model to
learn more discriminative features for fine-grained interaction
recognition.

(3) We perform extensive experiments on the V-COCO and
HICO-DET datasets to validate the effectiveness of our pro-
posed model, and show that it can achieve state-of-the-art re-
sults on these benchmarks.

2 Related Works
2.1 Human-Object Interaction Detection
Human-Object interaction detection is essential for under-
standing human activity in a complex scene. Early studies
mainly focus on tackling HOIs recognition by utilizing multi-
stream information, which can be divided into two categories:
without and with extra knowledge.
Without extra knowledge. Gkioxari et al. [Gkioxari et
al., 2018] introduce an action specific density map estima-
tion method to locate objects interacted with human. Qi et al.
[Qi et al., 2018] propose graph parsing neural network (GPN-
N) to model the structured scene into a graph and propagate
messages between each human and object node for HOIs.
Differently, we perform relation reasoning on human objec-
t pairs instead of separate human and object nodes to keep

the meaningful pairs, which is more reasonable because the
human object interaction is pairwise. Gao et al. [Gao et al.,
2018] and Wang et al. [Wang et al., 2019] respectively intro-
duce an instance-centric and contextual attention to highlight
the interest region for detecting HOIs. Different from [Gao
et al., 2018] and [Wang et al., 2019], whose attention map
is human object interaction-agnostic, our proposed attention
map obtained from Grad-CAM is action-aware.
With extra knowledge. There have been several attempt-
s that use extra knowledge, such as word embedding [Xu et
al., 2019] or human pose [Fang et al., 2018; Li et al., 2019c;
Wan et al., 2019; Zhou and Chi, 2019], for detecting HOIs.
Compared with [Li et al., 2019c], our proposed relation rea-
soning model is superior in three aspects. Firstly, we only use
visual features without any extra knowledge like pose to com-
pute the similarity. Secondly, we construct a graph made up
of human-object pairs rather than single human and object.
Thirdly, considering the compatibility consistency, we per-
form relation reasoning on the relation-aware graph to obtain
the enhanced features. Although the approaches using extra
knowledge achieve good performance in HOI detection, they
excessively rely on a well-trained model for estimating pose
or extracting word embedding.

2.2 Relation Reasoning Methods
Relation reasoning on graph-structure data is popular and
widely applied into various fields, including VQA [Li et al.,
2019b] and image-text matching [Li et al., 2019a]. Graph
Convolution Networks (GCNs) [Kipf and Welling, 2017] are
proposed for semi-supervised classification. Graph Attention
Networks (GATs) [Velickovic et al., 2018] are then intro-
duced to address the shortcomings of GCN that cannot deal
with the structure-unknown or dynamic graph. Li et al. [Li
et al., 2019b] propose a Relation-aware Graph Attention Net-
work (ReGAT), which learns both explicit and implicit rela-
tions between visual objects via graph attention networks, to
learn question-adaptive relation representations for VQA. Li
et al. [Li et al., 2019a] propose a simple and interpretable rea-
soning model to generate visual representation that captures
key objects and semantic concepts of a scene for image-text
matching. In contrast, our method performs relation reason-
ing on human-object pairs rather than separate humans and
objects. It is never considered before that compatibility con-
sistency among pairs can effectively filter out irrelevant pairs.

2.3 Class Activation Map
Class Activation Map (CAM) [Zhou et al., 2016b] is an effec-
tive tool that can highlight task-relevant regions by generating
coarse class activation maps. Recently, Grad-CAM [Selvara-
ju et al., 2017b] extends the CAM to available architectures
for various tasks to provide visual explanations of model de-
cisions. Fukui et al. [Fukui et al., 2019] design the Attention
Branch Network (ABN) for image recognition by generating
the attention map for visual explanation based on CAM. Li
et al. [Li et al., 2018] propose a guided attention inference
model by exploring supervision from the network itself for
semantic segmentation. Inspired by the successful applica-
tions of class activation map, we propose to compute human-
centric action-aware attention map based on the Grad-CAM
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Figure 2: Overview of our framework for HOI detection comprising
human object interaction detection stream SΦ and attention mining
stream SΨ. The stream SΦ consists of a relation reasoning model
(Section 3.1) for selecting the accurate pairs from the candidates
and a recognition module for inferring detailed interactions. The
attention mining stream SΨ (Section 3.2), corresponding to orange
lines, is only used in training phase.

rather than CAM used in [Fukui et al., 2019], and guide the
model to learn more discriminative features for fine-grained
HOI recognition. The difference between ours and [Li et al.,
2018] is that we aim to find the most representative action-
aware features for fine-grained interaction recognition rather
than more complete areas of class.

3 Proposed Method
Our approach contains a human object interaction detection
stream SΦ and an attention mining stream SΨ. For SΦ, fol-
lowing the setting of [Gao et al., 2018], we first use Faster R-
CNN [Ren et al., 2015] from Detectron [Girshick et al., 2018]
with ResNet-50-FPN [Lin et al., 2017] to provide all detect-
ed human/object instances and their corresponding detection
scores. Then a multi-stream architecture including human,
object, and pair is built to predict interactions. Specially, we
propose a relation reasoning model that can filter out irrele-
vant human object pairs from the infinite combinations. For
SΨ, the action-aware attention map based on Grad-CAM is
mined to guide the network to learn more relevant features
that can discriminate the fine-grained interactions. The over-
all architecture is illustrated in Figure 2.

3.1 Human-Object Pairs Relation Reasoning
Given the detected human and object proposals, we aim to s-
elect accurate human object pairs that are actually interactive.
The human and object are the indispensable components for a
certain interaction, so integral consideration of human object
pair is essential for HOI detection. Therefore, we perform re-
lation reasoning on the human object pairs according to their
contextual compatibility consistency to enhance the pairwise
features, which can finally promote to eliminate the relatively
irrelevant candidates from the infinite combinations as shown
in Figure 3.

Graph Construction
Assuming we have detected human and object bounding box-
es H = {h1, ..., hm, ..., hM} and O = {o1, ..., on, ..., oN}

represented with red and blue boxes respectively as shown in
Figure 3. Any human hm and any object on will constitute a
candidate human object pair hoi ∈ HO(∈ RK). Each human
hm and object on is associated with a visual feature vector
hm ∈ Rdv and on ∈ Rdv respectively, where dv = 2048 in
our experiment. By treating each human object pair hoi in
the image as one node vi ∈ V (∈ RK×dv ), we can construct
a fully-connected directed graph G(V,E), where E is the set
of edges. Each node vi is initialized with visual features and
further enhanced by neighbor nodes’ information. Each edge
represents the compatibility consistency whose value is high
when the neighbor human-object pairs correspond to the ac-
curate interaction and low when one pair is interactive and the
other is non-interactive. The values of all edges are learned
implicitly without any prior knowledge.

Relation Reasoning Model
Inspired by recent advances in deep learning based relation
reasoning [Li et al., 2019b; Li et al., 2019a], we perform re-
lation reasoning on the graph G(V,E) to enhance the node
representations by considering the compatibility consistency
among human object pairs. Specifically, we measure the pair-
wise affinity between human-object pairs in an embedding s-
pace to construct their relations using Eq. (1).

R(vi, vj) = ϕ(vi)
Tφ(vj), (1)

where ϕ(vi) = Wϕvi and φ(vj) = Wφvj mean two differ-
ent embedding space. The weight parameters Wϕ and Wφ

are learned by back propagation. Here, the relations between
hoi and hoj are not interchangeable, meaning that the edges
formed by relations are not symmetric. To make coefficients
easily comparable across different nodes, we follow the rou-
tine to row-wise normalize the affinity matrix R using the
softmax function.

αij =
exp(R(vi, vj))∑
k exp(R(vi, vk))

. (2)

We apply Graph Attention Networks (GATs) [Velickovic
et al., 2018] to reason on the graph. The response of a n-
ode is computed based on its neighbors defined by the graph
relations as the following attention mechanism.

v
′

i = σ(
∑
j

αijWgvj), (3)

where Wg is a learnable parameter with dimension of K ×
K. σ(·) represents a nonlinear function such as ReLU. To
stabilize the learning process of self-attention, we extend the
above graph attention mechanism by employing multi-head
attention. Specifically, L independent attention mechanisms
execute the transformation of Eq. (3), and then their features
are concatenated as follows.

v
′

i = ‖Ll=1σ(
∑
j

αijW
l
gvj). (4)

In the end, v
′

i is added to the original visual feature vi
to serve as the final relation-aware enhanced features v∗ of
human-object pairs. In order to eliminate the inaccurate
HOIs, a fully-connected layer is designed as follows.

γ = sigmoid(fc(v∗i )), (5)
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Figure 3: The diagram of relation reasoning on human object pairs.
For detected humans (red square boxes) and objects (blue square
boxes) in an input image, any human and any object are combined
exhaustively to form the candidate HOI pairs, including the correct
HOIs (orange circle) and incorrect HOIs (black circle). The human-
object pairs that correspond to accurate HOIs are highly consistent
and connected with thick arrows. Then relation reasoning is per-
formed on the graph to obtain the enhanced human-object pairwise
features for disregarding the irrelevant pairs.

where γ ∈ R2 represents whether the hoi pair corresponding
to v∗i is correct or not. Relation reasoning on the human-
object pairs can filter out the non-interactive pairs from all
infinite candidates by considering the contextual information,
which eventually improves the HOI detection performance.

3.2 Action-aware Attention Mining
To make our model learn the discriminative features for fine-
grained interaction detection, we explore the class activation
map from the network itself to mine the action-aware features
and further introduce a novel attention mining loss to guide
the model to learn effectively.

Class Activation Map for HOIs
In Figure 2, the attention mining stream SΨ, sharing parame-
ters with human object interaction detection stream SΦ, aims
to find out the discriminative regions that are beneficial to in-
teractions detection. Based on the fundamental framework of
Grad-CAM, we generate the attention map of human-centric
interaction. In stream SΦ, for a given image I , let Fi be the
activation of features maps i in the 4-th block layer. Class
specific attention maps can be obtained by computing the gra-
dient of the score sah for interaction class a of human stream,
with respect to activation maps Fi(x, y). A global average
pooling operation is then performed on these gradients to ob-
tain the importance weights wai as follows.

wai =
1

θ ∗ β
∑
x,y

∂sah
∂Fi(x, y)

, (6)

where θ, β mean the width and height of feature map Fi.
Following the works [Selvaraju et al., 2017a; Li et al.,

2018], the class attention map AMa is a weighted combi-
nation of forward activation maps F followed by a ReLU as
follows.

AMa = ReLU(
∑
i

wai Fi), (7)

where the ReLU function is applied to the linear combination
of feature maps because we are only interested in the features
that have a positive influence on the interaction.

Attention Mining
Based on the above class attention map, we design a mask to
be applied on the original input image using Eq. (8).

I∗a = I − (T (AMa)� I), (8)

where � denotes element-wise multiplication. T (AMa) is a
masking function based on a threshold as follows.

T (AMa) =

{
0 AMa(x, y) < t

1 AMa(x, y) > t,
(9)

where t is a threshold equal to the median of maximum and
minimum values of AMa for binarizing the attention map.

The masked image I∗a is then used as input of the attention
mining stream SΨ to obtain the interaction class prediction s-
core. Since our goal is to guide the network to focus on the
action-aware representative features, we enforce I∗a to con-
tain as little features belonging to the target action as possible.
With respect to the loss function, the model tries to minimize
the prediction score of I∗a for interaction class a. Thus, we
introduce an attention mining loss as defined in Eq. (10).

Lam =
1

Z

∑
c

sah(I
∗a), (10)

where sah(I
∗a) represents the prediction score of I∗a for in-

teraction class a. Z is the number of ground-truth interaction
labels for image I .

3.3 Inference and Training
Inference. For each human-object pair hoi, we first decide
whether the pair is interactive or not according to γ obtained
from the relation reasoning model. Non-interactive pairs are
excluded, and the score sah,o for each accurate interaction is
predicted. Following [Gao et al., 2018; Wang et al., 2019],
the score sah,o depends on (1) the confidence for the individ-
ual object detections sh and so, (2) the interaction prediction
based on the appearance of the person sah and object sao , and
(3) the score prediction based on the spatial relationship be-
tween the person and object sasp. Specifically, our HOI score
sah,o can be formulated as.

sah,o = sh · so · (sah + sao) · sasp. (11)

Multi-task Training. Since a person can concurrently per-
form different actions to one or multiple target objects, HOI
detection is thus a multi-label classification problem. We ap-
ply binary sigmoid classifier for each action category, and
minimize the binary cross entropy losses between action s-
cores sah, sao , sasp and the ground-truth action labels for each
action category, denoted as LHOI that is generally summed
over the above losses with weight of one, except for the loss
term for sah with a weight of two. In addition, we minimize
the binary cross entropy losses between γ (obtained from E-
q. (5)) and the ground-truth interactive labels for each pair,
denoted as LP . Our overall loss is summed over all losses as
follows.

L = LHOI + LP + η ∗ Lam, (12)
where η is a hyper-parameter that controls the importance of
attention mining loss. We use η = 2 in all of our experiments
in order to coincide to the weight of loss term for sah in LHOI .
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Methods Extra knowledge Feature Backbone Default Known Object
Full Rare Non-Rare Full Rare Non-Rare

Xu et al. [Xu et al., 2019] Word embedding ResNet-50 14.70 13.26 15.13 - - -
RPNN [Zhou and Chi, 2019] Pose ResNet-50 17.35 12.78 18.71 - - -

Li et al. (RPDCD) [Li et al., 2019c] Pose ResNet-50 17.03 13.42 18.11 19.17 15.51 20.26
PMFNet [Wan et al., 2019] Pose ResNet-50-FPN 17.46 15.65 18.00 20.34 17.47 21.20

InteractNet [Gkioxari et al., 2018] None ResNet-50-FPN 9.94 7.16 10.77 - - -
GPNN [Qi et al., 2018] None ResNet-152 13.11 9.34 14.23 - - -
iCAN [Gao et al., 2018] None ResNet-50 14.84 10.45 16.15 16.26 11.33 17.73

Wang et al. [Wang et al., 2019] None ResNet-50 16.24 11.16 17.75 17.73 12.78 19.21
Ours None ResNet-50 16.63 11.30 18.22 19.22 14.56 20.61

Table 2: Performance comparison with the state-of-the-art methods on the HICO-DET dataset.

Methods Extra knowledge Feature Backbone mAProle

Xu et al. [Xu et al., 2019] Word
embedding

ResNet-50 45.9

RPNN [Zhou and Chi, 2019] Pose ResNet-50 47.5
Li et al. (RPDCD) [Li et

al., 2019c]
Pose ResNet-50 47.8

PMFNet [Wan et al., 2019] Pose ResNet-50-FPN 52
Gupta et al. [Gupta and

Malik, 2015]
None ResNet-50-FPN 31.8

InteractNet [Gkioxari et al.,
2018]

None ResNet-50-FPN 40.0

GPNN [Qi et al., 2018] None ResNet-152 44.0
iCAN [Gao et al., 2018] None ResNet-50 45.3
Wang et al. [Wang et al.,

2019]
None ResNet-50 47.3

Ours None ResNet-50 48.1

Table 1: Performance comparison with the state-of-the-art methods
on the V-COCO dataset.

4 Experimental Results
4.1 Datasets and Metrics
Datasets. To verify the effectiveness of our method, we
conduct experiments on two HOI benckmark datasets, i.e.,
V-COCO [Gupta and Malik, 2015] and HICO-DET [Chao et
al., 2018] datasets. V-COCO is a subset of MS-COCO [Lin et
al., 2014], including 10,346 images (2,533 for training, 2,867
for validation and 4,946 for test) and 16,199 human instances.
Each person is annotated with binary labels for 26 action cat-
egories. Note that three action classes (i.e., cut, hit, eat) are
annotated with two types of targets (i.e., instrument and direc-
t object). HICO-DET [Chao et al., 2018] consists of 47,776
images with more than 150K human-object pairs (38,118 im-
ages in training set and 9,658 in test set). It has 600 HOI
categories over 80 object categories (as in MS-COCO [Lin et
al., 2014]) and 117 unique action verbs.

Evaluation Metrics. Following the standard evaluation set-
ting in [Gao et al., 2018], we use role mean average precision
(mAP) to measure the HOI detection performance. The goal
is to detect the agents and the objects in the various roles for
the action. The HOI detection is considered as a true positive
if it has the correct action label, and the intersection-over u-
nion (IoU) between the human and object bounding-box pre-
dictions and the respective ground-truth boxes is greater than
the threshold 0.5.

4.2 Implementation Details
We deploy Detectron [Girshick et al., 2018] with a ResNet-
50-FPN [Lin et al., 2017] backbone to obtain human and
object bounding-box predictions. To select a predicted

bounding-box as a training sample, we set the confidence
threshold to be 0.8 for humans and 0.4 for objects. For fair
comparison, we adopt the object detection results and pre-
trained weights from [Gao et al., 2018]. The low-grade in-
stance suppressive training strategy [Li et al., 2019c] is also
applied. We use SGD optimizer for training with initial learn-
ing rate 5e-6, weight decay 5e-4 and a momentum 0.9 for all
datasets. In training, the ratio of positive and negative sam-
ples is 1:3. All experiments are conducted on a single Nvidia
Titan XP GPU.

4.3 Quantitative Results
We compare our proposed model with several existing ap-
proaches trained with and without extra knowledge. For V-
COCO dataset, we evaluate mAProle of 24 actions with roles
as in work [Gupta and Malik, 2015]. As shown in Table 1,
our method achieves 48.1 mAProle, outperforming all exist-
ing approaches without extra knowledge. Compared with the
methods with extra knowledge except PMFNet [Wan et al.,
2019], ours is more superior, which demonstrates our mod-
el can learn to capture the subtle difference of fine-grained
interactions even without any extra knowledge.

For HICO-DET dataset, we report results on three differ-
ent HOI category sets: full, rare, and non-rare with two d-
ifferent settings of Default and Known Objects [Xu et al.,
2019]. As shown in Table 2, ours outperforms the state-of-
the-arts without extra knowledge in all settings. Specially,
our proposed model achieves great performance with 16.63
mAP and 19.22 mAP on Default and Know Object categories
respectively, with relative gains of 0.39 and 1.49 over the best
existing method [Wang et al., 2019]. In addition, compared
with [Xu et al., 2019] trained using word embedding, ours
achieves 1.93 mAP improvements in full category sets under
Default settings. Extra knowledge usually can bring gains be-
cause they provide the guided signal to capture fine-grained
interaction features. However, they extremely rely on the pre-
trained pose estimation model that also needs a large number
of labeled samples to train.

4.4 Ablation Study
Effectiveness of Human-Object Pairs Relation Reasoning.
As shown in Table 3, the relation reasoning model achieves
a significant mAProle improvement from 45.18 to 47.74 on
V-COCO dataset. For HICO-DET dataset, as shown in Table
4, it improves the mAP by 0.51 and 0.57 over the baseline
on full category with two different settings of Default and
Known Objects. It demonstrates that our proposed relation
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Methods w/ human-object pairs
relation reasoning

w/ attention mining mAProle

Baseline - - 45.18√
- 47.74

-
√

47.32√ √
48.10

Table 3: Ablation study on the V-COCO dataset about human-object
pairs relation reasoning and attention mining.

Models Default Known Object
Full Rare Non-Rare Full Rare Non-Rare

Baseline 15.67 10.37 17.25 18.14 13.28 19.59
w/ human-object pairs

relation reasoning
16.18 10.14 17.98 18.71 13.19 20.36

w/ attention mining 16.45 10.92 18.10 19.05 14.21 20.50
w/ all 16.63 11.30 18.22 19.22 14.56 20.61

Table 4: Ablation study on the HICO-DET dataset about human-
object pairs relation reasoning and attention mining.

Methods Directed edges Multi-head mAProle

w/o relation reasoning - - 45.18√
- 47.51

-
√

47.71

Table 5: Ablation study on the V-COCO dataset about the directed
edges and multi-head attention of relation reasoning.

reasoning model can enhance the human-object pairs features
and further benefit to the elimination of non-interactive pairs.
Effectiveness of Action-aware Attention Mining. The
action-aware attention mining model aims to mine the most
representative features by exploring the action-aware atten-
tion for recognizing fine-grained interactions. It can be ob-
served from Table 3 that it exceeds the baseline 2.14 at met-
ric mAProle on V-COCO dataset. For HICO-DET dataset,
it achieves 0.78 and 0.91 mAProle improvements on Default
and Known Objects settings compared with the baseline as
shown in Table 4. This strongly indicates that the action-
aware attention mining can force the model to learn more
discriminative features for HOI detection.
Effectiveness of directed edges and multi-head attention.
We can observe from Table 5 that the model with directed
edges achieve 2.33 mAProle improvement compared with the
baseline. In addition, the model with multi-head attention
improves the mAProle performance of baseline by 2.53. It
reveals that both directed edge and multi-head attention can
significantly improve the performance of HOI detection.

4.5 Qualitative Visualization Results
Figure 4 shows interaction detection examples that the detect-
ed human has different interactions with various objects si-
multaneously. Figure 5 (a) displays the HOI detections on V-
COCO test set [Gupta and Malik, 2015], which demonstrates
that our model can detect various objects that the human in-
stances are interacting with in different situations. Figure 5
(b) represents the sample HOI detections on HICO-DET test
set [Chao et al., 2018]. It demonstrates that our approach can
detect multiple interactions with the same object.

Figure 6 (a) reveals that our proposed relation reasoning
model can effectively disregard the irrelevant pairs from the
numerous candidates, especially suitable for the case that

ride

horse

carry

handbag
eat cake sit chair sit chair work on laptop

Figure 4: Multiple interaction detections on V-COCO dataset. Our
model detects the human instance having different interactions with
different objects.

ride elephant ride horse ride bicycle ride motorcycle ride boat

feed horse kiss horse jump horse groom horse walk horse

(a)

(b)

Figure 5: (a) Sample HOI detections on the V-COCO dataset. Our
model detects various objects that the human instances are interact-
ing with in different situations. (b) Sample HOI detections on the
HICO-DET dataset. Our model detects different types of interac-
tions with objects from the same category.
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Figure 6: (a) Influence of relation reasoning on filtering out the in-
accurate combinations. (b) Comparison of attention maps obtained
using our approach and iCAN model.

multiple persons have different interactions. Figure 6 (b) in-
dicates that our proposed action-guided attention map can ex-
tract the more discriminative features than iCAN [Gao et al.,
2018] for detecting fine-grained interactions.

5 Conclusion
In this paper, we propose a novel method for HOI detection.
Our approach performs relation reasoning on human-object
pairs by exploring contextual compatibility consistency a-
mong pairs to disregard the irrelevant combinations. Further-
more, we introduce an action-guided attention mining loss
to achieve the fine-grained interaction detection. The experi-
mental results demonstrate our proposed method can achieve
a comparable performance with the state-of-the-art methods.
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