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Abstract

When modeling an application of practical rele-
vance as an instance of a combinatorial problem X,
we are often interested not merely in finding one
optimal solution for that instance, but in finding
a sufficiently diverse collection of good solutions.
In this work we initiate a systematic study of di-
versity from the point of view of fixed-parameter
tractability theory. We consider an intuitive no-
tion of diversity of a collection of solutions which
suits a large variety of combinatorial problems of
practical interest. Our main contribution is an algo-
rithmic framework which —automatically— converts
a tree-decomposition-based dynamic programming
algorithm for a given combinatorial problem X into
a dynamic programming algorithm for the diverse
version of X. Surprisingly, our algorithm has a
polynomial dependence on the diversity parameter.

1 Introduction

In a typical combinatorial optimization problem we are given
a large space of potential solutions and an objective function.
The task is to find a solution which maximizes or minimizes
the objective function. In many situations of practical rele-
vance, however, it does not really help to get just one optimal
solution; it would be much better to have a small, but suffi-
ciently diverse collection of sufficiently good solutions. Given
such a small list of good solutions we can select one which
is best for our purpose, perhaps by taking into account exter-
nal factors—such as aesthetical, political, or environmental—
which are difficult or even impossible to formalize. An early,
illustrative example is the problem of generating floor plans
for evaluation by an architect [Galle, 1989].

Solution diversity is already a fundamental concept in
many computational tasks. Take for instance a web search.
Here, we do not want to find the one website that ‘optimally
fits’ the search term, neither a ranking of a small number of
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‘best fits’, but what is desirable is a diverse set of websites
that fit the search term reasonably well.

This notion has also been applied to solution sets of var-
ious types of combinatorial problems. For instance, the
works [Glover et al., 2000] and [Hebrard et al., 2005;
Hebrard et al., 2007] seek to find solution sets to mixed inte-
ger programming problems and constraint satisfaction prob-
lems, respectively, that are diverse. In other words, the so-
lutions are far apart from each other in some mathematical
notion of distance. We refer to [Petit and Trapp, 2019] for a
timely overview of the subject.

From a complexity-theoretic perspective, there are two im-
mediate barriers to this approach. The first is that most com-
binatorial problems are already NP-hard when asking only
for a single solution. The second is that the very basic MAXI-
MUM DIVERSITY problem which given a set of n elements in
a metric space and an integer k < n, asks for a size-k subset
of the elements such that the sum of the pairwise distances is
maximized, is NP-hard as well [Kuo et al., 1993]. The theory
of fixed-parameter tractability [Downey and Fellows, 2013]
provides a powerful framework to overcome these barriers.
The key goal is to identify a secondary numerical measure
of the inputs to an (NP-hard) computational problem, called
the parameter, and to provide algorithms in whose runtime
the combinatorial explosion is restricted to the parameter k.
More formally, a problem is fixed-parameter tractable (FPT),
if it can be solved in time f(k) - n¢, where f is a computable
function, n the input size and c a fixed constant. On instances
where the parameter value is relatively small, FPT-algorithms
are efficient. In an application context, we are naturally con-
cerned with finding small diverse sets of solutions, since the
aim is to provide the user with a few alternatives that can then
be compared manually. Therefore, the number of requested
solutions is an ideal candidate for parameterization.

In this work, we propose to study the notion of solution
diversity from the perspective of fixed-parameter tractabil-
ity theory. We demonstrate the theoretical feasibility of this
paradigm by showing that diverse variants of a large class
of parameterized problems admit FPT-algorithms. Specifi-
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cally, we consider vertex-problems on graphs, which are sets
of pairs (G, S) of a graph G and a subset S of its vertices that
satisfies some property. For instance, in the VERTEX COVER
problem, we require the set S to be a vertex cover of G (i.e. S
has to contain at least one endpoint of each edge of G). One
consequence of our main result which we discuss below in
more detail is that the diverse variant of VERTEX COVER,
asking for r solutions, is FPT when parameterized by solu-
tion size plus r.

Before we proceed, we would like to point out promising
future applications of the Diverse FPT paradigm in Al. The
VERTEX COVER problem itself naturally models conflict-
resolution: the entities are the vertices of the graph, and a
conflict is represented by an edge. Now, a vertex cover of
the resulting graph is a set of entities whose removal makes
the model conflict-free. An example of a potential use of
DIVERSE VERTEX COVER in a planning scenario is given
in [Baste et al., 2019b]. In general, in planning and schedul-
ing problems, a large amount of side information is lost or
intentionally omitted in the modelling process. Some side in-
formation could make the model too complex to be solved,
and other information may even be impossible to model. Of-
fering the user a small number of good solutions to a more
easily computable ‘base model’, among which they can hand
pick their favorite solution, is a feasible alternative.

A Formal Notion of Diversity. We choose a very natural
and general measure as our notion of diversity among solu-
tions. Given two subsets S and S’ of a set V' the Hamming
distance between S and S’ is the number

HamDist(S, ') = |S\S'] + |S"\S].

We define the diversity of a list Sy, ..., S, of subsets of V' to

be

Div(Sy,...,8) = »_  HamDist(S;,S;).
1<i<j<r
We can now define the diverse version of vertex-problems:
Definition 1 (Diverse Problem). Let Py, ..
problems, and let d € N. We let
Divi(Py,...,P.) = {(G, Xy,...
DiV(Xl, cee

., P, be vertex-

7XT) | (G)X’L) S piv
X,) > d}.

Intuitively, given vertex-problems P, ..., P, and a graph G,
we want to find subsets S, ..., S, of vertices of GG such that
for each i € {1,...,r}, S; is a solution for problem P; on
input GG, and such that the list S, . . ., S, has diversity at least
d. If all vertex-problems P4, . .., P,. are the same problem P,
then we write Div?(P) as a shortcut to Div4(Py, ..., P,).

Diversity and Dynamic Programming. The treewidth of
a graph is a structural parameter that quantifies how close
the graph is to being a forest (i.e., a graph without cy-
cles). The popularity of this parameter stems from the fact
that many problems that are NP-complete on general graphs
can be solved in polynomial time on graphs of constant
treewidth. In particular, a celebrated theorem due to Cour-
celle [Courcelle, 1990] states that any problem expressible
in the monadic second-order logic of graphs can be solved

in polynomial time on graphs of constant treewidth. Besides
this metatheorem, the notion of treewidth has found applica-
tions in several branches of Artificial Intelligence such as An-
swer Set Programs [Bliem et al., 2017], checking the consis-
tency of certain relational algebras in Qualitative Spacial Rea-
soning [Bodirsky and Wolfl, 2011], compiling Bayesian net-
works [Chavira and Darwiche, 2007], determining the win-
ners of multiwinner voting systems [Yang and Wang, 2018],
analyzing the dynamics of stochastic social networks [Bar-
rett et al., 20071, and solving constraint satisfaction prob-
lems [Jégou et al., 2007]. A large number of these algorithms
are in fact FPT-algorithms when treewidth is the parameter,
i.e. they run in time f(t) - n°, where f is a computable func-
tion, ¢ the treewidth of the input graph, n the number of its
vertices, and ¢ some fixed constant. Typically, such algo-
rithms are dynamic programming algorithms which operate
on a tree-decomposition in a bottom-up fashion by comput-
ing data from the leaves to the root.

Dynamic Programming Core Model. We introduce a for-
malism for dynamic programming based on a tree decompo-
sition, which we call the Dynamic Programming Core model.
This notion captures a large variety of dynamic programming
algorithms on tree decompositions. We use the model to de-
rive our main result (Theorem 10) which is a framework to
efficiently—and automatically—transform treewidth-based
dynamic programming algorithms for vertex-problems into
algorithms for the diverse versions of these problems. More
precisely, we show that if P;,..., P, are vertex-problems
where for each ¢ € {1,...,r}, P; can be solved in time
fi(t) - n®M then Dive(Py,...,P,) can be solved in time
(ITi—; £i(®)) - n®W. In particular, if a vertex-problem P
can be solved in time f(t) - n®(1), then its diverse version
DivZ(P) can be solved in time f(t)" - n®(1). The surpris-
ing aspect of this result is that the running time depends only
polynomially on d (which is at most 72n), while a naive
dynamic programming algorithm would have a runtime of

dOU) . f ()T - nPW,

Discussion of the Diversity Measure. Various measures of
diversity have been used, studied, and compared in differ-
ent areas of computer science. We choose the sum of the
Hamming distances over all pairs of elements for this work.
This measure is commonly used for population diversity in
genetic algorithms [Gabor er al., 2018; Wineberg and Op-
pacher, 2003]. Nonetheless, we would like to point out that
it has some weaknesses. For instance, taking many copies
of two disjoint solutions yields a relatively high diversity
value, and such a solution set is not ‘diverse’ from an intu-
itive point of view. We refer to [Baste et al., 2019b] for a
more detailed discussion. Another natural measure using the
Hamming distance is the minimum Hamming distance over
all pairs in a set, as it is done e.g. in [Hebrard er al., 2005;
Hebrard et al., 2007]. We would like to point out that
a straightforward adaptation of our algorithmic framework

would result in a running time of d°"). £ (£)7-n®®), where d
is the diversity, r the number of solutions, and ¢ the treewidth.
This remains FPT only when the diversity d is an additional
component of the parameter, or when d is naturally upper
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bounded by ¢ and r. Consider for instance DIVERSE VER-
TEX COVER, asking for vertex covers of size at most k. In
any nontrivial instance, ¢ is at most k, and the Hamming dis-
tance between two solutions is at most 2k, therefore we may
assume that d < 2k. This implies that DIVERSE VERTEX
COVER can be solved in time 207" e ©)+kr ., O(1) ysing the
minimum Hamming distance as a diversity measure.

Related Work. The above mentioned MAXIMUM DIVER-
SITY problem has applications in the generation of diverse
query results, see e.g. [Gollapudi and Sharma, 2009; Abbassi
et al., 2013]. Besides mixed integer programming [Glover et
al., 2000; Danna and Woodruff, 2009; Petit and Trapp, 2015],
binary integer linear programming [Greistorfer et al., 2008;
Trapp and Konrad, 2015] and constraint programming [He-
brard et al., 2005; Hebrard et al., 20071, diverse solution
sets have been considered in SAT solving [Nadel, 20111, rec-
ommender systems [Adomavicius and Kwon, 2014], rout-
ing problems [Schittekat and Soérensen, 2009], answer set
programming [Eiter et al., 2013], and decision support sys-
tems [Lgkketangen and Woodruff, 2005; HadZi¢ et al., 2009].

Several details that have been omitted due to space restric-
tions can be found in the full version [Baste ez al., 2019al.

2 Preliminaries

For positive integers a,b ; a < b we use [a, b] to denote the
set {a,a +1,...,b}. Weuse V(G) and E(G), respectively,
to denote the vertex and edge sets of a graph G. For a tree T’
rooted at ¢ we use 7} to denote the subtree of T rooted at a
vertex t € V(T'). A rooted tree decomposition of a graph G is
atuple D = (T, q, X), where T is a tree rooted at ¢ € V(T')
and X = {X; | t € V(T)} is a collection of subsets of V(G)
such that:

i UteV(T) Xy =V(G),

o for every edge {u,v} € E(G), thereisat € V(T) such
that {u,v} C Xy, and

o foreach {z,y, 2} C V(T) such that z lies on the unique
path between z and y in T, X, N X, C X..

We say that the vertices of T" are the nodes of D and that
the sets in X are the bags of D. Given a node t € V (T,
we denote by G the subgraph of G induced by the set of
vertices UseV(T,,) Xs. The width of a tree decomposition
D = (T,q,X) is defined as maxicy (1) |X¢| — 1. The
treewidth of a graph G, denoted by tw(G), is the smallest
integer w such that there exists a rooted tree decomposition
of G of width at most w. The rooted path decomposition of a
graph is a rooted tree decomposition D = (T, ¢, X') such that
T is a path and q is a vertex of degree 1. The pathwidth of
a graph G, denoted by pw((), is the smallest integer w such
that there exists a rooted path decomposition of G of width at
most w. Note that in a rooted path decomposition, every node
has at most one child.

For convenience we will always assume that the bag as-
sociated to the root of a rooted tree decomposition is empty.
For anode t € V(T') we use dp(t), or §(t) when D is clear
from the context, to denote the number of children of ¢ in the
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tree T. For nodes ¢ and ¢’ of V(T') where ¢’ is the parent of
t we use forg(t) = X; \ Xy to denote the set of vertices of
G which are forgotten at t. By convention, for the root g of
T, we let forg(q) = 0. For t € V(T') we denote by new(¢)

the set X; \ Uffl) X, where t1,...,t5¢) are the children of
t. Given a rooted tree decomposition D of a graph G one can
obtain, in linear time, a tree decomposition (7', ¢, X) of G of
the same width as D such that for each ¢t € V(T'), 6(t) < 2
and |new(t)| < 1 [Cygan et al., 2015]. From now on we
assume that every rooted tree decomposition is of this kind.

3 A First Example: Diverse Vertex Cover

The main result of this paper is a general framework to au-
tomatically translate tree-decomposition-based dynamic pro-
gramming algorithms for vertex-problems into algorithms for
the diverse versions of these problems. We develop this
framework in Section 4. In this section we illustrate the main
techniques used in this conversion process by showing how to
translate a tree-decomposition-based dynamic programming
algorithm for the VERTEX COVER problem into an algorithm
for its diverse version DIVERSE VERTEX COVER. Given a
graph G and three integers k, r, and d, the DIVERSE VERTEX
COVER problem asks whether one can find r vertex covers in
G, each of size at most k, such that their diversity is at least
d. Our algorithm for this problem runs in 2°*") |V (G)| time.

3.1 Incremental Computation of Diversity

Recall that we defined the diversity of a list Sy, So, . ..
subsets of a set V' to be

DiV(Sl, ey S,) =

, Sy of

Z HamDist(S;, S;).

1<i<j<r

We will now describe a way to compute the diversity
Div(Si,...,S,) in an incremental fashion, by incorporating
the influence of each element of V' in turn. For each ele-
ment v € V and each pair of subsets S,.5” of V, we define
v(S, 8, v)tobe Lifv € (S\S)U (S \S), and to be 0
otherwise. Intuitively, (.S, S’,v) is 1 if and only if the ele-
ment v contributes to the Hamming distance between S and
S’. Given this definition we can rewrite HamDist (.S, S’) as

>SS
veV
, S, of subsets of V" as

HamDist(S, ") =

and the diversity of a list 51, . ..

Div(Sy,....S) = > > (S 8;0)
1<i<j<rveVv
=Y [ :veS [ : v S
veV
Now, if we define the influence of v on the list Sy, ..., S,
as I(Sy,...,S8v)=|{¢ : ve Se}|-[{l : v & Se}|, then

we have that Div(Sy,...,S,) = >,y I(S1,..., 5, v).

3.2 From Vertex Cover to Diverse Vertex Cover

We now solve DIVERSE VERTEX COVER using dynamic pro-
gramming over a tree decomposition of the input graph.
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Let (G,k,r,d) be an instance of DIVERSE VERTEX
COVER and let D = (T, ¢, X) be a rooted tree decomposi-
tion of G. For each node ¢ € V' (T'), we define the set

Ty = {((S1, 1), (Sny50),0) | £ € [0,d],
Vi € [1,7“] ,Si C Xy, s € [O,k‘}}

This set Z;, t € V(T), is such that the partial solutions
we will construct for the node ¢ will always be a subset of Z;.
Note that for each t € V(T), |Z;| < (2! (k+1))"-(d+1).
Now, our dynamic programming algorithm for DIVERSE
VERTEX COVER consists in constructing for each ¢t € V(T')
a subset Ry C Z; as follows. Let ¢t be a node in V(T') with
children #q,...,%50). We recall that, by convention, this set
of children is of size 0, 1, or 2. We let R; be the set of all tu-
ples ((S1,81),...,(Sr,8r),€) € Z; satisfying the following
additional properties:

1. Foreach j € [1,7], E(G[X: \ S;]) = 0.

2. For each i € [1,6(t)] there exists a tuple
((S%,8%),...,(SE, sb), £;) in Ry, such that
(@ S;NXy, = S; N X, for each ¢ € [1,0(¢)] and each
j &L,
(b) Foreachj € [1,r], s; = |forg(t) N S;| + ngl) 5%,
(c) and ¢ = min(d,m) where m =
S vctorgty 151, -+, Soyv) + 20 44
Lemma 2. (G,k,r,d) is a YES-instance of DI-

VERSE VERTEX COVER if and only if there is a tuple
((S1,81)s -+, (Sr,8r),£) in Ry such that ¢ = d.

Proof. Using induction, one can see that for each t € V(T),
R is the set of every element of Z; such that, with Y; = X, \

forg(t), there exists (51, ..., 5,) € V(G,)", that satisfies:

e foreachi € [1,r], §¢ is a vertex cover of Gy,

e foreachic [1,7], 5;N X, = S;,

foreachi € [1,7], |S; \ Y¢| = s;, and

min(d, Div(5; \ V..., 58, \ ¥;)) = L.

As the root g of the tree decomposition D is such that

X, = 0, we obtain that the elements in R, are the el-
ements ((0,s1),...,(0,s,),¢) of Z, such that there exists

-~

(§1, ..., 8r) € V(G)", that satisfy,
e foreachi € [1,7], §l is a vertex cover of Gy,

e foreachi € [1,r], |§Z| =s; < k,and
e min(d, Div(§1, LS =2

As such, atuple (Si, ..., S,) of subsets of V(G) is a solution
of DIVERSE VERTEX COVER if and only if ¢ > d, the lemma
follows. O

Theorem 3. Given a graph G, integers k,r,d, and a rooted
tree decomposition D = (T, q, X) of G of width w, one can
determine whether (G, k, r, d) is a YES-instance of DIVERSE
VERTEX COVER in time

OFQ" - (2T (E+1)%"-d"-w-r-n),
where a = maxcy () 6(t) < 2andn = |V(T)|.
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Proof. Let us analyze the time needed to compute R,. We
have that, foreacht € V(D), |Z;| < (215 (k41))"-(d+1).

Note that given I, ..., I5) be elements of Ry, , ..., Ry,

there are at most 21"V < 2" ways to create an element I
of R; by selecting, or not the (potential) new element of X;
for each set S;, ¢ € [1,7]. The remaining is indeed fixed by
I, ..., I54). Thus, R; can be computed in time O(r-| X¢|-2"-

Hfﬁ} |R¢;|), where the factor r - | X;| appears when verifying
that the element we construct satisfy Vj € [1,7], E(G[X; \
S;]) = 0. As we need to compute R, for each ¢ € V(D) and
that |[V(D)| = O(n) and we can assume that §(t) < 2 for
each t € V (D), the theorem follows. O

Remark 4. Given a graph G and a vertex cover Z of G
of size k, one can find a rooted path decomposition D =
(T, q,X) of G of width k, in linear time.

This can be done by considering the bags Z U {v} for each
v € V(@) in any fixed order. Thus, from Theorem 3, we get
the following corollary, which establishes an upper bound for
the running time of our dynamic programming algorithm for
DIVERSE VERTEX COVER solely in terms of the size k of
the vertex cover, the number r of requested solutions, and the
diversity d.

Corollary 5. DIVERSE VERTEX COVER can be solved on an
input (G, k,r,d) in time O((2**2 . (k+1))"-d-k-r- |V (G))).

4 Computing Diverse Solutions using the
Dynamic Programming Core model

In this section we show that the process illustrated in Section
3, of lifting a dynamic programming algorithm for a combi-
natorial problem to an algorithm for its diverse version, can
be generalized to a much broader context. As a first step, we
introduce the notion of dynamic programming core, a suitable
formalization of the intuitive notion of tree-width based dy-
namic programming that satisfies three essential properties.
First, this formalization is general enough to be applicable to
a large class of combinatorial optimization problems. Sec-
ond, this formalization is compatible with the notion of di-
versity, in the sense that the lifting of an algorithm for a prob-
lem to an algorithm for the diverse version of this problem
can be done automatically, without requiring human ingenu-
ity. Third, the resulting lifted algorithm is fast when com-
pared with the original one. In particular, the running time of
the resulting algorithm is polynomial on the diversity param-
eter. This is a highly desired property, since this allows our
framework to be applied in the context where the sizes of the
considered solution sets are not bounded.

Below, we let G be the set of simple, undirected graphs
whose vertex set is a finite subset of N. We say that a sub-
set P C @G is a graph problem. Intuitively, a dynamic pro-
gramming algorithm working on tree decompositions may be
understood as a procedure that takes a graph G € G and a
rooted tree decomposition D of G as input, and constructs
a certain amount of data for each node of D. The data at
node ¢ is constructed by induction on the height of ¢, and in
general, this data is used to encode the existence of a partial
solution on the graph induced by bags in the sub-tree of D
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rooted at . In the below definition, this is captured in the re-
lation Processe ¢, p(t). Such an algorithm accepts the input
graph G if the data associated with the root node contains a
string belonging to a set of accepting strings, captured below
in the set Accepte ¢ p- We formalize this intuitive notion in
the following concept of dynamic programming core.

Definition 6 (Dynamic Programming Core). A dynamic pro-
gramming core is an algorithm € that takes a graph G € G
and a rooted tree decomposition D of G as input, and pro-
duces the following data.

e A finite set AccethG’D C 2f0.1}7

s+ for each

e A finite set Processe ¢ p(t) C (2{01}7)

t e V(D).
We let 7(€, G, D) be the overall time necessary to con-
struct the data associated with all nodes of D. The size of €

on a pair (G, D) is defined as
Size(€, G, D) = max{|Processe ¢, p(t)| | t € V(D)}.

Next, we define the notion of a witness for a dynamic pro-
gramming core. Intuitively such witnesses are certificates of
existence of a solution.

Definition 7. Let € be a dynamic programming core, G be
a graphin G, and D = (T, q, X) be a rooted tree decompo-
sition of G. A (€, G, D)-witness is a function o : V(T) —
{0, 1}* such that the following conditions are satisfied.

1. For each t € V(T), with children tq,...

(a(t),alt),...,altsw))) € Processe,a,p(t).

2. a(q) € Accepty.

Using the notion of witness, we define formally what it
means for a dynamic programming core to solve a combina-
torial problem.

7t5(t)r

Definition 8. We say that a dynamic programming core €
solves a problem P if for each graph G € G, and each rooted
tree decomposition D of G, G € P ifand only ifa (€, G, D)-
witness exists.

Theorem 9. Let P be a graph problem and € be a
dynamic programming core that solves P. Given a
graph G € G and a rooted tree decomposition D
of G, one can determine whether G € P in time

o (ZteV(T) |Processe ¢, p(t)| + 7(€, G, D)>.

4.1 Dynamic Programming Cores for Vertex
Problems

Let € be a dynamic programming core. A C-vertex-
membership function is a function p : N x {0,1}* — {0,1}
such that for each graph G, each rooted tree decomposition
D = (T,q,X) of G and each (€, G, D)-witness «, it holds
that p(v, a(t)) = p(v,a(t’)) for each edge (t,t') € E(T)
and each vertex v € X; N Xy . Intuitively, if G is a graph
and D is a rooted tree decomposition of G, then a €-vertex-
membership together with a (€, G, D)-witness, provide an
encoding of a subset of vertices of the graph. More precisely,
we let

S,(G,D, o) ={v |3t € V(Ip),pv,a(t)) =1}
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be this encoded vertex set. Given a €-vertex-membership
function p, we let p : {0,1}* — 2N be the function that
sets p(w) = {v € N | p(v,w) = 1} for each w € {0, 1}*.

Let P be a vertex-problem, € be a dynamic programming
core, and p be a €-vertex-membership function. We say that
(€, p) solves P if for each graph G € G, each subset S C
V(G), and each rooted tree decomposition D, (G, S) € P if
and only if there exists a (€, G, D)-witness « such that S =
S,(G,D, ).

The following theorem is the main result of this section.
It shows how to transform dynamic programming cores for
problems Py, ..., P, into a dynamic programming core for
the problem Div?(Py, ..., P,).

Theorem 10. Let Py, ..., P, be vertex-problems, let (€;, p;)
be a dynamic programming core for P;, and let d be an inte-
ger. The problem Divd(Pl7 ..., Pp), on graph G with rooted
tree decomposition D = (T, q, X), can be solved in time

O - |v(m) - ﬁSize(€i7G7D) + ET:T(Q, G, D)),

i=1 i=1

where a = max,cy (1) 6(t) < 2.

4.2 An Illustrative Application of Theorem 10

In this subsection we show how to apply Theorem 10 in
the construction of an improved dynamic programming algo-
rithm for DIVERSE VERTEX COVER. The first thing to do is
to describe a dynamic programming core Cvc for k-VERTEX
COVER. Given a graph G and a rooted tree decomposition
D = (T,q,X), this dynamic programming core €y pro-
duces:

Accepte g p = {(5,5) | S € Xg,5 < k}

Processe ¢ p(t) = {((S, ), (S, s'),..., (Sé(t)7 55(75))) |
E(GIX:\ S]) =0,
Vie[1,6(t)]: 8" NX,=8SnX,,

5(t) .
s = |forg(t) N S| + Zt:l s'}

Provided the width of the decomposition is at most k, this
can be done in time O((2*+1 - (k +1))®") . k- §(t)) for each
t € V(T), where the factor k - §(t) appears as we need the
conditions E(G[X;\ S]) =0 and Vi € [1,6(¢)],S° N X; =
S N X, to be verified. It is easy to verify that Cy¢ is a dy-
namic programming core for the VERTEX COVER problem.
As described in Remark 4, we know that we can construct
a rooted path decomposition of G of width k. We are now
considering this rooted path decomposition. Thus, for each
t € V(T), |Processe ¢,p(t)| < 2- 251 . (k +1). By Theo-
rem 10, we obtain the following corollary, improving Corol-
lary 5.

Corollary 11. DIVERSE VERTEX COVER can be solved on
an input (G, k,r,d) in time
O(d-|V(G)|- (252 (k+ 1))+ |V(G)|- 25T - (k+1) - k).

Note that we obtain a slightly better running time than for
Corollary 5. This is due to the fact that verifying the proper-
ties E(G[X:\ S]) = 0and Vi € [1,4(¢)],S*NX; = SN Xy,
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is done when constructing €y¢ and not when constructing €.
Note also that, formally, we need to construct €y r times
but as it is r times the same, we do the operation only once.

5 Diversity in Kernelization

Another key concept in the field of parameterized complex-
ity is that of a kernelization algorithm [Fomin et al., 2019].
We have obtained some parallel results about the kerneliza-
tion complexity of diverse problems as well that we want to
briefly sketch in this section. A polynomial kernel of a param-
eterized problem is a polynomial-time algorithm that given
any instance either solves it, or constructs in polynomial time
an equivalent' instance whose size is polynomial in the pa-
rameter. It is known that a parameterized problem is FPT if
and only if it has a (not necessarily polynomial) kernel, and a
natural step after proving a parameterized problem to be FPT
is to decide whether or not it has a polynomial kernel.

We show that the diverse variants of several basic problems
parameterized by the number of requested solutions plus so-
lution size admit polynomial kernels as well. This is done via
a variant of the recently introduced notion of loss-less ker-
nels [Carbonnel and Hebrard, 2016] which are a special class
of kernelizations that - very roughly speaking - for each but
polynomially many bits of the input can either decide whether
it has to be part of every solution or if it may be added to a
solution without ‘destroying’ it.

For instance, consider the famous Buss kernel for VERTEX
COVER [Buss and Goldsmith, 1993]: Given a graph G and
an integer k, we want to decide if G has a vertex cover of
size k. Each vertex of degree at least £ + 1 must be in each
solution. Otherwise, we have to include its (at least) k& + 1
neighbors, exceeding the size constraint. On the other hand,
each isolated (degree-0) vertex can be included in a vertex
cover without destroying it, but it does not cover any edge.
In the ‘non-diverse’ variant, we may remove these isolated
vertices, and in the diverse variant, we have to keep some of
them - they may be used to increase diversity - however, poly-
nomially (in £ and r) many such vertices suffice. Via such
arguments, we obtain the following result about polynomial
kernels of diverse problems.

Theorem 12. The following diverse subset minimization
problems parameterized by k + r admit polynomial kernels:

e DIVERSE VERTEX COVER, on O(k(k + 1)) vertices;

e DIVERSE d-HITTING SET for fixed d, on O(k? + kr)
vertices;

e DIVERSE POINT LINE COVER, on O(k(k + r)) points;

e DIVERSE FEEDBACK ARC SET IN TOURNAMENTS, on
O(k(k + 1)) vertices.

6 Conclusion

In this work, we considered a formal notion of diversity of
a set of solutions to combinatorial problems in the setting
of parameterized algorithms. We showed how to emulate

"Meaning that the constructed instance is a YES-instance if and
only if the original instance was.
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treewidth based dynamic programming algorithms in order
to solve diverse problems in FPT time, with the number r of
requested solutions being an additional parameter.

This line of research is now wide open, with many nat-
ural questions to address. As all our results are of a posi-
tive nature, we ask: when can diversity be a source of hard-
ness? Concretely, a natural target in parameterized complex-
ity would be to identify a parameterized problem II that is
FPT, however DIVERSE 1I being W[1]-hard when 7 is an
additional parameter. For positive results, an interesting re-
search direction would be to generalize our framework for
diverse problems to other well studied width measures for
graphs, as well as to other structures, such as matroids.

In this work, we considered the sum of all pairwise Ham-
ming distances of a set as a measure of diversity. As pointed
out, this measure has some weaknesses, and another widely
used measure is the minimum Hamming distance. In this
setting, we only obtain FPT-results when the diversity is
bounded by a function of the treewidth and the number of so-
lutions, but not in general. So, a natural follow-up question is
whether or not we can obtain FPT-results under the minimum
Hamming distance, even if the diversity is unbounded.
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