
Abstract
Constraint propagation and backtracking are two
basic techniques for solving constraint satisfaction
problems (CSPs). During the search for a solution,
the variable and value pairs that do not belong to any
solution can be discarded by constraint propagation
to ensure generalized arc consistency to avoid the
fruitless search. However, constraint propagation is
frequently invoked with little effect on many CSPs.
Much effort has been devoted to predicting when to
invoke constraint propagation for solving a CSP.
However, no effective approach has been developed
for the alldifferent constraint. Here we present a
novel theorem for identifying the edges in a value
graph of the alldifferent constraint whose removal
can lead to useless constraint propagation. We prove
that if an alternating cycle exists for a prospectively
removable edge that represents a variable-value as-
signment, the edge (and the assignment) can be dis-
carded without constraint propagation. Based on
this theorem, we developed a novel optimization
technique for early detection of useless constraint
propagation which can be incorporated in any exist-
ing algorithm for the alldifferent constraint. Our im-
plementation of the new method achieved speedup
by a factor of 1 to 5 over the state-of-art approaches
on 93 benchmark problem instances in 8 domains.
Besides, the new algorithm is scalable well and runs
increasingly faster than the existing methods on
larger problems.

1 Introduction
Constraint programing [Rossi et al., 2006] is a powerful tech-
nique for solving difficult combinatorial problems in wide
range applications of computer science and beyond. Con-
straint Satisfaction Problem (CSP) defines a set of variables
whose values must satisfy some specified constraints. The
alldifferent constraint [Lauriere, 1978] is a type of global
constraint where all variables must have different values. The

alldifferent constraint is one of the most important and diffi-
cult types of constraints and appears in many applications,
such as puzzles, graph coloring, scheduling, and recommen-
dation or matchmaking [Hoeve, 2001].
 Backtracking [Golomb and Baumert, 1965] and constraint
propagation [Apt, 1998] are the two most used techniques for
solving CSPs. Searching for a CSP solution amounts to the
traversal of all possible variable assignments, resulting in an
exponential time complexity in the worst case. Constraint
propagation is introduced to accelerate the search process by
pruning the useless branches of the search space or equiva-
lently removing the inconsistent variable-value assignments
that do not appear in any solution to the problem. If there is
no inconsistent value at a certain stage of the search, we say
that the constraint propagator has achieved Generalized Arc
Consistency (GAC) [Hentenryck et al. 1992] for the alldiffer-
ent constraint. A constraint propagation algorithm (or con-
straint propagator, filtering algorithm) is often used to filter
out inconsistent variable-value assignments – the sooner the
inconsistent assignments can be detected, the more effective
the constraint propagator is.
 Several constraint propagators have been developed to
achieve GAC for the alldifferent constraint. Régin first for-
mulated the constraint propagation for the alldifferent con-
straint as the maximum matching problem in a bipartite graph
[Régin, 1994]. Régin proved an insightful theorem showing
that the edges not belonging to any maximum matching of
the bipartite graph must be inconsistent variable-value as-
signments. These edges can be identified by computing a
maximum matching and Strongly Connected Components
(SCCs) of the variable-value graph. This theorem forms the
basis of nearly all existing constraint propagation algorithms
for GAC of the alldifferent constraint. As maximum match-
ing can be incrementally computed, the overall computation
of the Régin algorithm is dominated by the cost for compu-
ting SCCs. Gent et.al [Gent et al., 2008] presented an SCC
optimization technique to extend the Régin algorithm. It
splits individual SCCs during the search process and only
computes the SCCs that contain removed variable-value pairs.
In our previous work [Zhang et al., 2018] we presented a new

Early and Efficient Identification of Useless Constraint Propagation
for Alldifferent Constraints

Xizhe Zhang1,3, Jian Gao2, Yizhi Lv3 and Weixiong Zhang4
1School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China

2College of Information Science and Technology, Dalian Maritime University, Dalian, China
3School of Computer Science and Engineering, Northeastern University, Shenyang, China

4Department of Computer Science and Engineering, Washington University, St. Louis, MO, USA
zhangxizhe@gmail.com; gaojian@dlmu.edu.cn; weixiong.zhang@wustl.edu

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1126

https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Constraint_(mathematics)

graph theorem that can be used to remove some edges after
computing a maximum matching which can accelerate the
propagation process. All of these existing methods have the
same worst-case complexity because they all need to com-
pute a maximum matching and then SCCs.
 Despite the efficiency of the existing constraint propaga-
tors, a rarely addressed but critically important problem is
that the constraint propagator is frequently invoked but most
of the time removes no inconsistent value at all for solving
CSPs. It has been reported that a substantial amount of con-
straint propagation is useless and removes no inconsistent
value for the alldifferent constraint [Katriel, 2006; Gent et al.,
2006; Boisberranger et al., 2013]. We will also present simi-
lar and more detailed results on some benchmark instances in
Figure 4 in the Experiments section of this paper. Therefore,
a critical question is when to invoke constraint propagator for
the alldifferent constraint during the process of solving a CSP.
As constraint propagation contributes a bulk of the overall
computation cost, reducing the number of useless constraint
propagation can speed up the process of solving a CSP. The
sooner a useless constraint propagation can be detected, the
more efficient a CSP solver algorithm will be.
 However, it is technically challenging to determine if a
constraint propagation is effective. Katriel [Katriel, 2006]
carried out a theoretical analysis regarding when to enforce
GAC under the assumption that edges are randomly removed
from the value graph. She showed that very few edges were
important and removing them would help reduce the domain
sizes of some variables. She suggested postponing constraint
propagation until a certain number of important edges were
removed. However, as important edges are not evenly distrib-
uted in the search space, missing a useful propagator invoca-
tion early in the search will increase the overall computation
cost. Gent et.al [Gent et al., 2008] extended Katriel’s idea and
proposed a practical approach of dynamic triggers to avoid
useless propagation. Nevertheless, this approach failed to im-
prove performance. Gent et.al [Gent et al., 2008] reported that
dynamic triggers usually slowed down the overall running
time for the alldifferent constraint related problems.
Boisberranger [Boisberranger et al., 2013] presented a prob-
abilistic approach by calculating the invoking probability for
the propagator to enforce Bound Consistency (BC), which is
a much weaker form of GAC for the alldifferent constraint.
 In short, to our best knowledge, there is currently no prac-
tical method for the alldifferent constraint to accurately and
efficiently determine when constraint propagator should be
invoked during the process of solving a CSP. Ideally, all use-
less constraint propagations must be avoided and whenever a
constraint propagator is called up, it must help reduce the
search space by removing some inconsistent values. The little
progress made beyond Régin’s seminal theoretical work in-
spired us to reason that Régin’s insightful theorem may have
already been exploited to its limit by the existing methods.
The existing methods for alldifferent propagation are already
very fast, having nearly linear running time so that any
method for deciding when to invoke a constraint propagator
must be accurate and efficient and failure to do so will other-

wise slow down the search process. However, it is very diffi-
cult to determine whether the propagator should be called
upon without actually running the propagator.
 In this paper, we present a novel theorem and develop a
companion technique for early detection of useless constraint
propagation. The main idea is to let the propagator itself de-
cide whether the current constraint propagation is useful or
not and terminate the propagation process as soon as it deter-
mines the current propagation is not helpful. This idea stems
from a novel theorem for identifying unimportant edges in a
value graph for the alldifferent constraint. We rigorously
prove that an edge is not important if there exists an alternat-
ing cycle in the graph containing the end nodes of the edge
after removing it. To our knowledge, this is the first accurate
and efficient approach beyond the Régin’s theorem for early
determination if a constraint propagation is effective. Ex-
ploiting this theorem, we present a novel alldifferent propa-
gator that can efficiently identify and promptly stop useless
constraint propagations. We implement our algorithm in the
state-of-the-art CSP solver by Gent et al. [Gent et al., 2006]
and achieve speedup by a factor of 1~5 over the state-of-the-
art approach. Furthermore, our propagator performs better on
large problems, showing its favorable scalability.

2 Preliminaries and the Existing Methods
Constraint programming. A constraint satisfaction problem
(CSP) is defined as a triple (X, D, C), where X is a set of var-
iables {x1, x2, ... , xn}, D is a set of domains {D1, D2, . . ., Dn}
where each variable xi∈X can take its values in the finite
domain Di∈D, C is a set of constraints, which specify all of
the allowable value-to-variable assignments. A solution to a
CSP P=(X, D, C) is a set of assignments of values (d1,...,dn)
∈ D1×···×Dn to variables such that for every constraint c∈C
on the variables xi1,...,xim, there exist (di1, ..., dim)∈c. A
constraint is generalized arc consistent (GAC) iff every value
of a variable can be extended to all the other variables of the
constraint maintaining satisfiability of the constraint. A
global constraint can capture a relation between a non-fixed
number of variables. It is a useful tool in modeling real-world
CSPs. Among various global constraints, the alldifferent con-
straint is one of the most important. An alldifferent constraint
c specifies that each pair of variables involved in c cannot
take the same value.

Graph Theory. Enforcing GAC on an alldifferent con-
straint requires finding a maximum matching on a bipartite
value graph of the alldifferent constraint. Given an alldiffer-
ent constraint c, a value graph of c is a bipartite graph B(c) =
(Xc, Dc, E), where Xc is a set of variables involved in c, Dc is
a value domain, and (xi, d) ∈ E iff d ∈ Di.

A matching is a set of edges that share no common node.
A maximum matching is matching with the maximum num-
ber of edges. A matched node is a node that connects to an
edge in a given matching, or a free node, otherwise. An alter-
nating path is a path whose edges alternate in and out of the
matching. An augmenting path is an alternating path whose
two end nodes are free. It is noted that maximum matching is
typically not unique for a bipartite graph; there may exist

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1127

multiple maximum matchings for a bipartite graph. An
allowed edge is an edge belonging to some, but not all, of
maximum matchings. Similarly, an allowed node is a node
covered by some, but not all, of maximum matchings. A
redundant edge is an edge that does not appear in any
maximum matching. An allowed edge can be determined by
an early theorem by Berge [Berge, 1973]:

The Berge Theorem. An edge is allowed, iff, for an ar-
bitrary maximum matching M, it belongs to either an
even alternating path that begins at a free node or an
even alternating cycle.
Enforcing the GAC for alldifferent. The first algorithm

enforcing GAC for the alldifferent constraint was proposed
by Régin based on the Berge Theorem. In this algorithm, the
redundant edges are removed from the value graph to achieve
GAC. The algorithm first computes a maximum matching of
the value graph and then constructs a directed version of the
value graph based on the maximum matching. The redundant
edges can be identified by computing the alternating paths
beginning at free nodes and the SCCs of the directed bipartite
graph. Figure 1 shows a simple example. The unmatched
edges between SCCs are the redundant edges and can and
should be removed.
 Since Régin’s GAC algorithm, there have been algorithmic
improvements and theoretical analyses. Gent et al. [Gent et
al., 2008] presented a method for splitting SCCs into small
ones and only checks individual SCCs containing changed
variable-value pairs between successive propagation. Be-
cause the method avoids the computation of unchanged SCC,
it runs 1-5 times faster than the Régin method. In our previous
work [Zhang et al., 2018], we proposed a new approach for
identifying redundant edges not using Berge’s Theorem. We
classified redundant edges into two types, the first type of
edges can be removed right after finding a maximum match-
ing, and the second type of edges can be removed by compu-
ting the SCCs in a smaller subgraph.

Figure 1: Constraint propagation of an alldifferent constraint.

3 Identify Unimportant Edges of Value Graph
Consider an alldifferent constraint A (X, D) and its value
graph B (X, D, E). We say a value graph is consistent if it has
no redundant edge. Therefore, enforcing GAC for the alldif-
ferent constraint is equivalent to making the value graph be
always consistent during the solving process. When a CSP
solver moves down in the searching tree, the value graph may

become inconsistent because some edges are removed from
the consistent value graph by other constraints. If an edge’s
removal affects the consistency of the value graph, we say it
is important. Formally, an edge e of a consistent value graph
B (X, D, E) is important, if graph B (X, D, E-e) has redundant
edges; otherwise, we call the edge unimportant. Removing
unimportant edges will not affect the consistency of the value
graph, and therefore there is no need to invoke a constraint
propagator. Thus, identifying unimportant edges is critical
for developing an efficient alldifferent propagator. Here, we
present two lemmas and a novel theorem to identify the un-
important edges of a value graph.
 Lemma 1. Consider a consistent value graph B (X, D, E)
and a maximum matching M for B, an edge e (x, y) ∈M is
unimportant, iff, graph B’ (X, D, E-e) has at least two arc-
disjoint M-alternating paths connecting node x and y.

Proof. Sufficiency. Suppose there exist two arc-disjoint al-
ternating paths P1(x, y) and P2(x, y) in graph B’ (X, D, E-e)
(Figure 2A). Because e is a matched edge, P1 and P2 must be
augmenting paths w.r.t. M. We can expand P1 and get new
matching M’= P1⊕M, therefore, P1 became an alternating
path and P1+P2 is an alternating cycle w.r.t. M’. Therefore, x
and y are still in the same alternating cycle. Because the only
difference between B and B’ is the removal of edge e (x, y)
and x and y are mutually reachable, all nodes of B’ are in the
same SCC and B’ remains consistent.
 Necessity. Suppose e is unimportant, which means that B’
(X, D, E-e) and B (X, D, E) have the same SCCs. Because x
and y are in the same SCC, there must be at least two paths
connecting x and y. Because e is a matched edge, B’ must
have a new maximum matching M’. Therefore, there must be
an augmenting path connecting x and y w.r.t. M. Therefore,
B’ (X, D, E-e) has at least two arc-disjoint M-alternating paths
connecting nodes x and y w.r.t. M, which completes the proof.
□
 Lemma 2. For a consistent value graph B and one of its
maximum matching M, an unmatched edge e (x, y) is unim-
portant, iff, graph B’ (X, D, E-e) has at least two arc-disjoint
alternating paths connecting nodes x and y, and one of the
paths starts and ends with matched edges.
 Proof. Sufficiency. Suppose there exist two arc-disjoint al-
ternating paths P1(x, y) and P2(x, y) and P1(x, y) starts and
ends with matched edges (Figure 2B), it is straightforward to
see that P1+P2 forms an alternating cycle w.r.t. M Therefore,
nodes x and y must be in the same SCC. The only difference
between B and B’ is the removal of e (x, y), therefore, B’ must
have the same SCCs as B and still be consistent.
 Necessity. Suppose e is unimportant and B’ (X, D, E-e) has
the same SCCs as B. Because x and y are in the same SCC,
there must be at least two paths with inverted directions con-
necting x and y, which completes the proof. □

The main idea underlying Lemma 1 and 2 is that when an
edge e (x, y) is removed from a consistent value graph, the
value graph remains consistent if there exists an alternative
cycle containing nodes x and y. When the removed edge is a
matched edge, the constraint propagator needs to first repair
the maximum matching, and then computes the SCCs. The

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1128

two arc-disjoint M-alternating paths w.r.t. the original maxi-
mum matching is exactly the alternative cycle w.r.t. the new
maximum matching (Figure 2A), as proved in Lemma 1.
When the removed edge is unmatched, we only need to “re-
pair” the deleted edge, which can be done by finding an al-
ternating cycle connecting the end nodes of the edge as
proved in Lemma 2. Furthermore, the above Lemmas can be
readily extended to the cases where multiple edges are re-
moved from the consistent value graph, as stated in the fol-
lowing Theorem:
 Theorem 1. For a consistent value graph B (X, D, E) and a
set of edges RE= {e1(x1, y1), e2(x2, y2) ,…, ei(xi,yi)}, B’(X,D,E-
RE) is consistent, iff, for every node pair (xi, yi) in RE, there
exist at least two arc-disjoint alternating paths connecting xi
and yi.

Figure 2: Illustration of Lemma 1 and 2

 Figure 3 shows an example of removing two edges from a
consistent value graph of an alldifferent constraint. The CSP
solver may assign values to variables or invoke the propaga-
tor on the other constraints, which may remove edges from
the consistent value graph. For example, e(b,2) and e(c,4) are
removed from the value graph (Figure 3A). As removing the
two edges may affect the consistency of the value graph, we
need to decide whether the propagator should be called or not.
This can be done by first repairing the maximum matching
(Figure 3B) and then finding alternating cycles between the
end nodes of edges e(b,2) and e(c,4) (Figure 3C). As we only
traverse the partial graph to find alternating cycles (yellow
shaded area in Figure 3B), our approach is faster than Régin’s
and Gent’s GAC algorithms which traverse the whole value
graph.

Figure 3: An example for removing two unimportant edges from a

consistent value graph

4 Fast Alldifferent Propagator by Early Detec-
tion

We are now ready to present a fast filtering algorithm for
alldifferent constraint. Theorem 1 allows us to identify unim-
portant edges of a consistent value graph by finding alternat-
ing cycles. Here we will show how to effectively incorporate
the identification of unimportant edges into an existing con-
straint propagator with very little computation.
 A naïve idea is to find a cycle for each removed edge in the
directed value graph. If the edge is unimportant, no constraint
propagation is needed; otherwise, the whole value graph may
need to be traversed. As discussed in Section 2, the bulk of
the overall computation for a propagator is used to compute
SCCs which can be done in linear time by Tarjan’s algorithm
[Tarjan, 1972]. If we encounter an important edge, we need
first to traverse the whole graph to find an alternating cycle,
which will be failed because the edge was important. And
then we need to traverser the graph again to find SCCs of the
graph. Therefore, the whole computation cost will be at least
twice as much time as the original approach, which will sig-
nificantly slow down the whole algorithm.
 To address the issue above, we designed an effective ap-
proach to introduce the identification of important edges into
Tarjan’s SCC algorithm. It is important to note that a depth-
first search (DFS) on the value graph is sufficient to find cy-
cles for removed edges. Also, note that Tarjan’s SCC algo-
rithm itself runs DFS. As such it can naturally accommodate
the finding of a cycle for a deleted edge. More specifically, if
a back-edge, a non-tree edge pointing to a visited node, is
found during the DFS search, we must have already found a
cycle and only need to check whether the cycle contains the
end nodes of the deleted edge. If all deleted edges are found
in a cycle, we can immediately terminate the process of con-
straint propagation.
 We modified Tarjan’s SCC algorithm by checking if the
removed edges are important or not. If all removed edges are
unimportant, we immediately stop the procedure for finding
SCCs. When there are important edges, we continue to find
SCCs and remove the redundant edges between the SCCs.
Overall, our approach only adds a small amount of computa-
tion for checking if the removed edges are in cycles when
searching for SCCs. This idea and steps for early detection in
SCCs are formulated in Algorithm 1.
 The main procedure of the above algorithm is the same as
Tarjan’s SCC algorithm. We only add lines 12-14 to check
whether the deleted edges are in the cycles and lines 18-19 to
decide when to stop the current propagation. During the DFS
search, if we encounter a back-edge e (a, b), the nodes in the
DFS tree between nodes a and b must be in a cycle. Therefore,
we use two numbers (the DFS index of first visited node and
the last visited node) to represent a cycle. The function
addCycles is for maintaining the existing cycles. If we find a
back-edge, we either push it as a new cycle or merging it into
existing cycles (lines 22-29). The function inCycles is for
testing whether an edge e (a, b) is in a cycle, which can be
done by comparing the DFS index of the edge (line 32). If we
found a partial SCC during the DFS (line 20), we will not

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1129

check the cycles and the algorithm will run as Tarjan’s SCC
algorithm. Therefore, our modification can be done very ef-
ficiently.

 Algorithm 1 shows the steps for SCCs with early termina-
tion. For the remaining parts of the alldifferent propagator,
such as computing a maximum matching, we use the same
method as [Gent et al., 2008].

5 Experimental Analysis
To evaluate the performance of our new method, we used
Minion constraint solver 1.8 [Gent et al., 2006] to implement
our algorithm. All experiments were run on a Windows 10
workstation with an Intel Xeon E5-2680 v2 processor of 2.8

GHz and 16GB DDR3 1600MHz RAM. The Minion con-
straint solver already has an implementation of alldifferent
propagator with several optimization techniques, such as in-
cremental matching [Régin, 1994], BFS matching [Cormen
et al., 1990], staged propagation [Schulte and Stuckey, 2004],
priority Queue [Schulte and Stuckey, 2004], assign optimiz-
ing and SCC splitting [Gent et al., 2008]. To implement our
algorithm, we used BFS maximum matching and Tarjan’s
SCC algorithms. We adopted the depth-first chronological
backtracking as the search strategy.
 The benchmark problems for valuation were from the CSP
Lib (http://www.csplib.org/) and Minion constraint solver
(https://constraintmodelling.org/minion/), which include sev-
eral typical alldifferent constraint problems. These problems
including Langford’s number problem (prob024 in CSPLib),
Golomb ruler problem (prob006 in CSPLib), Quasigroup ex-
istence (prob003 in CSPLib), Social golfers (prob010 in
CSPLib), Graceful graphs (prob053 in CSPLib), Magic
Squares (prob019 in CSPLib), N-Queens (prob054 in
CSPLib) and Sports scheduling (prob026 in CSPLib). We
generated 93 problem instances with different sizes for the
above eight problems by using Minion, Conjure [Frisch et al.,
2005], and Savile row [Nightingale et al., 2017] generator.
We generated Golomb ruler instances with the number of
ticks from 50 to 80 and the max length of the ruler from 2500
to 6400; graceful graphs instances with five cliques and num-
ber of nodes in each clique from 25 to 40; Langford's number
instances with 20 and 100 sets and numbers in a set from 5 to
49, quasigroup existence instances with orders from 30 to 65,
social golfers instances with 9 groups, 4 golfers in each group
and number of weeks from 11 to 15; magic squares instances
with orders from 4 to 70, n-queens instances with the number
of queens from 128 to 2048; sports scheduling instances with
the number of teams from 30 to 80.
 To appreciate the importance of detecting useless con-
straint propagation, we first analyzed how frequent useless
constraint propagation was invoked. We selected 31 in-
stances from the eight problems and used Minion’s default
alldifferent propagator, which was proposed by [Gent et al.,
2008]. These instances are relatively small and can be solved
within a time limit to allow an efficient benchmarking of the
effectiveness of the propagator. To this end, we counted the
fraction of the total invocations in which the propagator does
not remove any inconsistency (Figure 4). As expected, most
of the invocations are useless. For example, for problems of
Sports scheduling, Quasigroup existence and Graceful graphs,
more than 80% to 90% invocations are useless and can thus
be skipped to reduce overall computation.

Figure 4: Fraction of useless propagator invocation

Algorithm 1: Find SCCs With Early Detection
1. Input: directed value graph B(c) = (Xc, Dc, E), deleted

edges DE;
2. Output: SCCs
3. function Tarjan (B, DE)
4. cycles← ∅; S ← ∅; index←0; unconnected←false;
5. for each unvisited node v∈Xc∪Dc
6. Strongconnect(v);

7. function Strongconnect(v)
8. DFS[v] ← index; lowLink[v] ← index; index ← index + 1;

S.push(v);
9. for each e (v, w) ∈E do
10. if w∈S then
11. lowLink[v] ← min(lowLink[v], DFS[w])
12. if unconnected = false then
13. addCycles (lowLink[w], index-1)
14. while inCycles(DE.top()) = true do
15. DE.pop();
16. else if w is unvisited then
17. Strongconnect(w);
18. lowLink[v] ← min(lowLink[v], lowLink[w]);
19. if lowLink[v] = DFS[v] then
20. pop nodes before v and pop v from S, add them to SCCs

as an SCC; unconnected←true;
21. if unconnected = false and DE is empty then
22. stop the current propagation

23. function addCycles (a, b)
24. for each pair (a’, b’) ∈cycles
25. if interval [a, b] is overlapped with interval [a’,b’] then
26. a’←min(a’,a) and b’←max(b’,b);
27. return
28. cycles.push(a, b)
29. return

30. function inCycles (e(a,b))
31. for each pair (a’, b’) ∈cycles
32. if both DFS[a] and DFS[b] are in the interval [a’, b’]

then
33. return true
34. return false

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1130

 Next, we compared our algorithm with Régin’s algorithm
[Régin, 1994], Gent’s algorithm [Gent et al., 2008], and
Zhang’s algorithm [Zhang et al., 2018] on the 93 problem in-
stances. The individual optimizing techniques used in these
algorithms are listed in Table 1. Because most of the problem
instances tested are very large and cannot be solved quickly,
we set the time limit to 1,200 seconds and counted the num-
ber of nodes searched per second following [Gent et al.,
2008]. Figures 5 show the ratios of the numbers of nodes
searched per second of our algorithm and the other three al-
gorithms, showing the expected speedup the new algorithm
offered. As expected, our algorithm is faster than the previous
algorithms for most instances, with up to more than 5 times
speedup.

Optimizing Technique Régin’s Gent’s Zhang’s Our
Incremental matching
Staged propagation
Priority Queue
Assign optimizing
Matching optimizing
SCC splitting
Early detection (Our)

Table 1: Optimizing technique used in the experiments.
Furthermore, our new algorithm exhibits a better perfor-

mance on the problems of Langford’s number, Golomb ruler,
and Graceful graph (Figure 5). We believe this is primarily
because these problems have large value graphs. On a large
problem instance, an invocation of constraint propagator in
our algorithm only needs to transverse a small part of the
value graph and prunes a large portion of the search space. In
contrast, for small problems with small value graphs, our al-
gorithm may have minor performance improvements. To
support that, we designed two simulated experiments focus
on SCC computation to evaluate the performance of our al-
gorithm on a seizes of synthetic bipartite graphs with differ-
ent sizes. Similar to the filtering process of the alldifferent
constraint, we randomly removed edges from these graphs
and computed the SCC until there exist multiple SCCs in the
graph. Figure 6A showed the speedup ratio of the total
runtime of our algorithm compared to Tarjan’s SCC algo-
rithm. As we expected, denser graphs have higher speedup
ratios. Furthermore, we also performed the above experiment
on bipartite graphs which have the same size as the alldiffer-
ent instances. Figure 6B showed that, for graphs whose sizes
are the same as Golomb, Graceful graph, Langford, and
Magic square problems, the speedup ratio is greater than the
others, such as social golfer, quasigroup. The speedup ratio
difference is correlated with the average degree of the graphs
(Figure 6B).

As indicated by the better performance on larger problem
instances, the new algorithm enjoys excellent scalability. To
quantify this scalability, we used instances of varying sizes
for Langford’s number, Golomb ruler, and Graceful graph
problems. The speedup of our method over Gent’s algorithm
increases steadily and significantly with the problem size
(Figure 7). This suggests that the new algorithm is the method
of choice for large alldifferent constraint problems in practice.

Figure 5: Speedup of our algorithm over Gent’s, Régin’s and
Zhang’s algorithms

Figure 6: Speedup of our algorithm over Tarjan’s algorithm. A.
Speedup versus average degree on graphs with different sizes; B.
Speedup on bipartite graphs which have the same size as the alldif-
ferent instances.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1131

Figure 7: Speedup of our algorithm over Gent’s algorithm for prob-
lem instances of different sizes.

6 Conclusion and Discussion
Alldifferent constraints appear broadly in many real-world
constraint problems, and efficiently propagating alldifferent
constrains is of great importance for constrain programming.
Despite many efforts, no theoretical advance has been made
since Régin’s seminal work on formulating constraint propa-
gation as maximum matching in a bipartite graph, and the ex-
isting methods based on Régin’s theorem seemed to reach an
algorithmic bottleneck. The lack of effective means to predict
useless constraint propagation is the main roadblock prevent-
ing further development to advance CSP research. In this pa-
per, we presented a novel theorem for the identification of
unimportant edges in the value graph of an alldifferent con-
straint problem whose removal does not need to invoke con-
straint propagation. This is a long-waited theoretical im-
provement to the Régin’s result. Exploiting this theoretical
result, we developed a new optimizing technique for early de-
termination of useless constraint propagation and an efficient
filtering algorithm that can significantly reduce or even avoid
useless constraint propagations. We compared our algorithm
with Régin’s algorithm and the other state-of-the-art ap-
proaches on benchmark instances, showing that the new al-
gorithm significantly outperforms the existing approaches.
More importantly, the performance of our algorithm im-
proves as instance sizes increase, indicating that the new al-
gorithm has favorable scalability.
 The idea of merging the detection of useless constraint
propagation with backtracking search is general and can be
adopted for other constraint propagators beyond the alldiffer-
ent constraint. As many other global constraints, such as car-
dinality constraints [Thalheim, 1992], can be modeled by
value graphs, our method has a great potential for efficiently
solving constraint satisfaction problems that contain alldiffer-
ent and similar global constraints.

Acknowledgments
We would like to thank the anonymous reviewers for their
constructive comments. The work was partially supported by
the National Natural Science Foundation of China (Granted
No. 61972063).

References
[Apt, 1998] Apt, Krzysztof R. The Essence of Constraint Pr

opagation. Theoretical Computer Science, pages 179-21
0, 1998.

[Berge, 1973] Berge, Claude. Graphs and Hypergraphs. Nor
th-Holland Publishing Company, New York, 1973.

[Boisberranger et al., 2013] Du Boisberranger J, Danièle Ga
rdy, Lorca, X and Truchet, C. When Is It Worthwhile to
Propagate a Constraint ? A Probabilistic Analysis of All
Different. Analytic Algorithmics and Combinatorics, 201
3.

[Cormen et al., 1990] Thomas H. Cormen, Charles E. Leiser
son, and Ronald L. Rivest. Introduction to Algorithms. T
he MIT Press, 1990.

[Frisch et al., 2005] Alan M. Frisch, Chris Jefferson, Bernad
ette Martínez-Hernández, and Ian Miguel. The Rules of
Constraint Modelling. In International Joint Conference
on Artificial Intelligence, 2005.

[Gent et al., 2006] Ian P. Gent, Christopher Jefferson, and Ia
n Miguel. MINION: A Fast, Scalable, Constraint Solver,
(slides) in Proceedings of the 17th European Conference
on Artificial Intelligence (ECAI), 2006.

[Gent et al., 2008] Ian P. Gent, Ian Miguel, and Peter Nighti
ngale. Generalized arc consistency for the alldifferent co
nstraint: An empirical survey. Artificial Intelligence, 172
(18): 1973-2000, 2008.

[Golomb and Baumert, 1965] Solomon W. Golomb and Leo
nard D.Baumert. Backtrack Programming. Journal of the
 ACM (JACM), 12(4):516-524,1965.

[Hentenryck et al., 1992] Pascal Van Hentenryck, Yves Dev
ille, and Choh-Man Teng. A Generic Arc-Consistency Al
gorithm and Its Specializations. Artificial Intelligence, 57
(2–3): 291–321, 1992.

[Hoeve, 2001] Willem Jan Hoeve. The Alldifferent Constrai
nt: A Survey. In Proceedings Sixth Annual Workshop of t
he ERCIM Working Group on Constraints, 1–42, 2001.

[Katriel, 2006] Irit Katriel. Expected-Case Analysis for Dela
yed Filtering. International Conference on Integration of
Artificial Intelligence. Springer-Verlag, 2006.

[Lauriere, 1978] Jena-Lonis Lauriere. A language and a prog
ram for stating and solving combinatorial problems. Artif
icial intelligence 10(1): 29-127, 1978.

[Nightingale et al., 2017] Peter Nightingale, Özgür Akgün, I
an Gent, Christopher Jefferson, Ian Miguel, and Sprackle
n, P. Automatically Improving Constraint Models in Savi
le Row. Artificial Intelligence, 251, 2017.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1132

[Régin, 1994] Jean-Charles Régin. A filtering algorithm for
constraints of difference in CSPs. Twelfth National
Conference on Artificial Intelligence American
Association for Artificial Intelligence, pages 362-367,
1994.

[Rossi et al., 2006] Francesca Rossi, Peter van Beek, and
Toby Walsh. Handbook of Constraint Programming.
Elsevier, 2006.

[Schulte et al., 2004] Christian Schulte and Peter J. Stuckey.
Speeding up constraint propagation. Principles and
Practice of Constraint Programming - CP 2004,
International Conference, CP 2004, Toronto, Canada,
September 27 - October 1, 2004, Proceedings DBLP,
pages 619-633, 2004.

[Tarjan, 1972] Robert Tarjan. Depth-first search and linear
graph algorithms. SIAM journal on computing 1(2):
146160, 1972.

[Thalheim, 1992] Bernhard Thalheim. Fundamentals of Car
dinality Constraints. In Lecture Notes in Computer Scien
ce (Including Subseries Lecture Notes in Artificial Intelli
gence and Lecture Notes in Bioinformatics), 1992.

[Zhang et al., 2018] Xizhe Zhang, Qian Li, and Weixiong Z
hang. A Fast Algorithm for Generalized Arc Consistency
 of the Alldifferent Constraint Joint Laboratory of Artific
ial Intelligence and Precision Medicine of China Medical
 University And. Proceedings of the Twenty-Seventh Inte
rnational Joint Conference on Artificial Intelligence, Jul
y, 1398–1403, 2018.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1133

