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Abstract
Learning pseudo-Boolean (PB) constraints in PB
solvers exploiting cutting planes based inference
is not as well understood as clause learning in
conflict-driven clause learning solvers. In this pa-
per, we show that PB constraints derived using cut-
ting planes may contain irrelevant literals, i.e., lit-
erals whose assigned values (whatever they are)
never change the truth value of the constraint. Such
literals may lead to infer constraints that are weaker
than they should be, impacting the size of the proof
built by the solver, and thus also affecting its perfor-
mance. This suggests that current implementations
of PB solvers based on cutting planes should be re-
considered to prevent the generation of irrelevant
literals. Indeed, detecting and removing irrelevant
literals is too expensive in practice to be considered
as an option (the associated problem is NP-hard).

1 Introduction
Even though modern SAT solvers are known to perform
well in practice on many industrial benchmarks, there ex-
ist instances which remain hard to solve, even for state-of-
the-art solvers [Järvisalo et al., 2012]. In particular, this
is true for unsatisfiable formulae for which inconsistency
can only be derived with an exponential number of resolu-
tion steps, e.g., for pigeonhole-principle formulae [Haken,
1985]. Many of those hard formulae require the solvers to
be able to either detect and break symmetries or to “count”
so as to generate short proofs [Benhamou and Sais, 1994;
Devriendt et al., 2016; Metin et al., 2019]. This was an im-
portant motivation for the development of pseudo-Boolean
(PB) reasoning [Roussel and Manquinho, 2009], which bene-
fits from the expressiveness of PB constraints (linear equa-
tions or inequations over Boolean variables) and from the
strength of the cutting planes proof system [Gomory, 1958;
Hooker, 1988; Nordström, 2015]. This proof system is in
theory strictly stronger than the resolution proof system used
in SAT solvers, as the former p-simulates the latter [Cook et
al., 1987]: any resolution proof can be simulated by a cutting
planes proof of polynomial size w.r.t. the size of the original
proof. Yet, in practice, none of the current PB solvers uses the
full power of the cutting planes proof system [Vinyals et al.,

2018]. Indeed, most of them are built on a specific form of
this proof system, which can be viewed as a generalization of
resolution [Hooker, 1988]. This allows to extend clausal in-
ference to pseudo-Boolean inference, inheriting many of the
techniques used in SAT solving [Dixon and Ginsberg, 2002;
Chai and Kuehlmann, 2005]. In particular, the success of the
conflict-driven clause learning architecture of modern SAT
solvers [Marques-Silva and Sakallah, 1999; Moskewicz et al.,
2001; Eén and Sörensson, 2004] motivated its generalization
to PB problems: when a conflict is encountered (i.e., when a
PB constraint becomes falsified), the cancellation rule is ap-
plied between the conflicting constraint and the reason for the
propagation of some of its literals to infer a new conflicting
constraint. Note that, contrary to what happens for resolution
based solvers, the reason may need to be weakened before
resolving to preserve the conflict. This operation is repeated
until the inferred constraint propagates some of its literals.
The constraint is then learned and a backjump is performed.

Over the years, many PB solvers implementing variants of
the cutting planes proof system have been developed [Dixon
and Ginsberg, 2002; Chai and Kuehlmann, 2005; Sheini and
Sakallah, 2006; Le Berre and Parrain, 2010]. Recently,
RoundingSat [Elffers and Nordström, 2018] introduced an
aggressive use of the division and weakening rules (see Sec-
tion 2 for details about cutting planes rules). However, since
the first PB evaluation [Manquinho and Roussel, 2006], it has
been observed that PB solvers are not as efficient as resolu-
tion based solvers, which can solve PB problems by encod-
ing PB constraints into clauses [Een and Sörensson, 2006;
Martins et al., 2014; Sakai and Nabeshima, 2015]. While
PB solvers based on cutting planes perform generally well
on specific classes of benchmarks, they fail to run uniformly
well on all benchmarks [Elffers et al., 2018a]. This is partly
due to the complexity of deciding when to use the rules of the
cutting planes proof system, and of implementing their appli-
cation efficiently. The initial trend has been to replace the ap-
plication of the resolution rules by the generalized resolution
rules [Hooker, 1988] during conflict analysis. However, this
approach is not satisfactory because it is equivalent to resolu-
tion when applied to clauses, and requires a specific prepro-
cessing to derive cardinality constraints [Biere et al., 2014;
Elffers and Nordström, 2020]. This is why recent years have
seen a renewed interest in PB solving and in the theory of
cutting planes based inference [Elffers and Nordström, 2018;
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Vinyals et al., 2018; Elffers et al., 2018a; Gocht et al., 2019].
In this paper, we provide a new perspective regarding the

desirable properties of the above proof systems. In particular,
we show in Section 3 that cutting planes based inference may
introduce irrelevant literals in the derived constraints, i.e., lit-
erals that have no effect on the truth value of the constraint
in which they appear. Such literals seem inherent to the use
of this proof system, as most of its rules may produce them,
meaning that PB solvers have either to switch back to a proof
system equivalent to the weaker resolution – which ensures to
produce no irrelevant literals, but can only infer clauses – or
to deal with these literals. Our main contribution is to show
that, not only irrelevant literals are produced by the deriva-
tion rules used in current PB solvers, but these literals also
contribute to the inference of constraints that are not as strong
as they should be. Unfortunately, checking whether a literal
is relevant is NP-complete [Crama and Hammer, 2011, Sec-
tion 9.6], so in practice it would be unrealistic to remove irrel-
evant literals from all PB constraints derived by a PB solver
so as to infer stronger constraints. As a workaround, we intro-
duce in Section 4 an incomplete algorithm for detecting and
removing these literals. We use it to show in Section 5 that
irrelevant literals are produced in practice by two PB solvers,
namely Sat4j [Le Berre and Parrain, 2010] and RoundingSat
[Elffers and Nordström, 2018], which competed in the PB
evaluation 2016. Our experiments also show that, for some
instances, irrelevant literals may have an impact on the size
of the proofs built by the solver, threatening its performance.

2 Preliminaries
We consider a propositional setting defined on a finite set of
propositional variables V which are classically interpreted. A
literal l is a propositional variable v ∈ V or its negation v̄. In
this context, Boolean values are represented by the integers 1
(true) and 0 (false) and thus v̄ = 1 − v. |= denotes logical
entailment and ≡ denotes logical equivalence.

Pseudo-Boolean Constraints
A pseudo-Boolean (PB) constraint is an inequation of the
form

∑n
i=1 αili M δ, where αis and δ are integers, lis are

literals and M∈ {≤, <,=, >,≥}. Each αi is called a weight
or coefficient and δ is called the degree of the constraint. Any
PB constraint can be normalized in linear time into (a con-
junction of) constraints of the form

∑n
i=1 αili ≥ δ in which

the coefficients and the degree are all positive integers. Thus,
in the following, we assume that all PB constraints are nor-
malized. A cardinality constraint is a PB constraint with all
its coefficients equal to 1, and a clause is a cardinality con-
straint with its degree equal to 1.

Inference Rules and Proof Systems
The PB counterpart of the well-known resolution proof sys-
tem is the cutting planes proof system [Gomory, 1958], which
defines the following rules [Roussel and Manquinho, 2009].

Saturation. The PB constraint αl +
∑n
i=1 αili ≥ δ where

α > δ is equivalent to δl +
∑n
i=1 αili ≥ δ.

Weakening. The PB constraint αl+
∑n
i=1 αili ≥ δ entails

the constraint
∑n
i=1 αili ≥ (δ − α).

Division. For any integer ρ, the constraint
∑n
i=1 αili ≥ δ

entails the constraint
∑n
i=1d

αi

ρ eli ≥ d
δ
ρe. When each αi is

divisible by ρ, both constraints are equivalent.

Multiplication. The PB constraint
∑n
i=1 αili ≥ δ is equiv-

alent to
∑n
i=1 µαili ≥ µδ for any integer µ > 0.

Addition. The conjunction of the two PB constraints∑n
i=1 αili ≥ δ and

∑n
i=1 α

′
il
′
i ≥ δ′ entails the sum of both

constraints, i.e.,
∑n
i=1 αili + α′

il
′
i ≥ (δ + δ′).

Cancellation. The conjunction of the two PB constraints
αl +

∑n
i=1 αili ≥ δ and αl̄ +

∑n
i=1 α

′
il
′
i ≥ δ′ entails∑n

i=1 αili + α′
il
′
i ≥ (δ + δ′ − α). Note that when both

constraints are clauses, cancellation is equivalent to classical
resolution [Hooker, 1988].

We denote by generalized resolution the proof system
based on the cancellation and saturation rules and by cutting
planes the proof system allowing unrestricted linear combi-
nations of PB constraints and divisions. Each of these proof
systems is refutationally complete [Hooker, 1988].

3 Irrelevant Literals in PB Constraints
A specific problem arising with general PB constraints but not
with clauses or cardinality constraints that are neither tauto-
logical nor contradictory is the presence of irrelevant literals,
which can be characterized using conditioning.

Definition 1 (Conditioning). Given a PB constraint χ and a
consistent term τ , χ|τ is the conditioning of χ by τ , obtained
by replacing each literal in χ by 1 if it appears in τ , or by 0
if its opposite appears in τ . The constraint is normalized by
moving constants in the left hand side to the right hand side.

Definition 2 (Irrelevant literal). A literal l is said to be irrel-
evant w.r.t. a constraint χ when χ|l ≡ χ|l̄. Otherwise, l is
said to be relevant w.r.t. χ (we also say that χ depends on l).
Equivalently, l is irrelevant w.r.t. χ when flipping the value of
l in any model M of χ cannot make it a counter-model of χ.

In the following, when there is no ambiguity about which
constraint is considered, we omit the constraint and simply
say that l is relevant or irrelevant.

The following proposition is an easy consequence of the
definition of literal relevance.

Proposition 1. If there exists an irrelevant literal l with co-
efficient α in a constraint χ, then all literals l′ having a coef-
ficient α′ ≤ α in χ are also irrelevant.

Proof. Towards a contradiction, let χ be the constraint αl +
α′l′ +

∑n
i=1 αili ≥ δ with α′ ≤ α and l irrelevant. Suppose

that l′ is relevant. There exists a model M of χ such that M
satisfies l′ and flipping its value makes M a counter-model
of χ. Let us noteM ′ this counter-model. As l is irrelevant, we
can suppose w.l.o.g. that it is falsified by M , and thus by M ′.
M satisfies the constraint χ|(l̄∧l′) ≡

∑n
i=1 αili ≥ δ−α′ (1),

and so it is for M ′, because M and M ′ coincide on lis. As l
is irrelevant, flipping its value cannot make M ′ a model of χ.
Thus,M ′ does not satisfy χ|(l∧ l̄′) ≡

∑n
i=1 αili ≥ δ−α (2).

However, because α′ ≤ α, we have (1) |= (2), which is
incompatible with the fact that M ′ |= (1).
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Example 1. In the constraint 10a+5b+5c+2d+e+f ≥ 15,
the literal d is irrelevant, and so it is for the literals e and f .
In particular, this means that assigning these literals to any
truth value preserves the semantics of the constraint. Thus,
the three constraints 10a + 5b + 5c + 2d + e + f ≥ 15,
10a + 5b + 5c ≥ 15 and 10a + 5b + 5c ≥ 11 are logically
equivalent.

Observe that, even though the constraints are logically
equivalent in the previous example, they are not equivalent
over the reals (in this case, the second one is the stronger).
Over the Booleans, the slack of a constraint [Chai and
Kuehlmann, 2005] is a good heuristic indicator of its strength.
Definition 3 (Slack). The slack of a PB constraint∑n
i=1 αili ≥ δ is the value (

∑n
i=1 αi)− δ.

Example 2. Let us consider the constraints in Example 1.
• 10a+ 5b+ 5c+ 2d+ e+ f ≥ 15 has slack 9.
• 10a+ 5b+ 5c ≥ 15 has slack 5.
• 10a+ 5b+ 5c ≥ 11 has slack 9.
This value has long been used by PB solvers, as it allows

to efficiently detect propagations and conflicts. In particular,
all coefficients having a weight greater than the slack have
to be satisfied. As such, the smaller the slack, the better the
constraint from the solver viewpoint.

3.1 Inference Rules Producing Irrelevant Literals
Irrelevant literals seem inherent to PB reasoning. Indeed, all
cutting planes rules may infer constraints containing irrele-
vant literals as long as they do not preserve equivalence, even
if the constraints used to produce them do not contain any
such literals, as shown by the following examples.
Weakening. Take the constraint 3a + 3b + c + d ≥ 4, in
which all literals are relevant. If this contraint is weakened
on d, the resulting constraint 3a+3b+c ≥ 3 does not depend
on c anymore.
Division. Take the constraint 6a+5b+c ≥ 6. All its literals
are relevant, but dividing it by 2 leads to the inference of the
same constraint as above, i.e., 3a+ 3b+ c ≥ 3.
Addition. Take the two constraints 4a + 3b + 3c ≥ 6 and
3b + 2a + 2d ≥ 3, which both depend on all their literals.
Adding them produces the constraint 6a+ 6b+ 3c+ 2d ≥ 9,
in which d is irrelevant.
Cancellation. If we cancel out literal e with the two con-
straints 4b + 3ē + 3c + 2a ≥ 6 and 4a + 3e + 2b + 2d ≥ 6,
in which all literals are relevant, we again get the constraint
6a+ 6b+ 3c+ 2d ≥ 9.

3.2 Artificially Relevant Literals in PB Solvers
Because the rules presented in the previous section are widely
used by PB solvers during their conflict analysis, these solvers
have to deal with constraints containing irrelevant literals. In
particular, the main issue arises when cutting planes rules are
applied to these constraints: these rules may cause irrelevant
literals to become relevant in the newly inferred constraint.
When this occurs, we say that the literal has become artifi-
cially relevant. As we show below, this may happen in differ-
ent circumstances.

Generalized Resolution Based Solvers
Let us consider a generalized resolution based PB solver, such
as Sat4j [Le Berre and Parrain, 2010]. Suppose that a conflict
occurs on 4a+ 4b+ 3ē+ 3g+ 3h+ 2i+ 2j ≥ 16 (◦). If the
reason for propagating e is 6a+6b+4c+3d+3e+2f ≥ 10,
the conflict analysis is performed by applying the cancellation
rule on e between these two constraints. However, in some
cases, the resulting constraint may not be conflicting any-
more. To preserve the CDCL algorithm invariant, the reason
of e may need to be weakened, e.g., on c. This produces the
constraint 6a+6b+3d+3e+2f ≥ 6 (�), in which f is irrel-
evant. Note that (�) has slack 14. Applying the cancellation
rule between the conflicting constraint (◦) and (�) produces
the constraint 10a+10b+3d+3g+3h+2f+2i+2j ≥ 19 (?),
in which f has become artificially relevant.

Division Based Solvers
A recent improvement in PB solving is RoundingSat [Elffers
and Nordström, 2018], which implements an aggressive use
of the division and weakening rules during conflict analysis.

Let us consider the constraint 17a + 17b + 8c + 4d +
2e + 2f ≥ 23 in which all literals are relevant. Suppose
that, during the search performed by RoundingSat, c and f
are satisfied and all other literals are falsified by some prop-
agations. This constraint is now conflictual: to analyze the
conflict, RoundingSat resolves it against the reason for one
of its falsified literals, e.g., the reason for d̄. RoundingSat
weakens the constraint on f , as it is not falsified and its co-
efficient (2) is not divisible by the coefficient of d (4), giving
the constraint 17a + 17b + 8c + 4d + 2e ≥ 21 (∇). Ob-
serve that e is now irrelevant and that (∇) has slack 27. When
RoundingSat applies the division by 4, the constraint becomes
5a+5b+2c+d+e ≥ 6 (∆), in which all literals are relevant.

As pointed out by a reviewer, in RoundingSat, irrelevant lit-
erals produced after weakening a reason are always falsified
by the current assignment. Indeed, suppose that the literal l
it propagates has coefficient α. By construction, all remain-
ing satisfied and unassigned literals have a coefficient that is
divisible by α, and thus that is greater than α. As l is propa-
gated, it is necessarily relevant, and Proposition 1 tells us that
this is also the case for these literals.

3.3 Impact of Artificially Relevant Literals
Artificially relevant literals in the constraints inferred by the
solver may lead to infer constraints that are weaker than they
could be if irrelevant literals were not there in the first place.
Indeed, remember that, by definition, an irrelevant literal may
be removed from the constraint. This can be achieved by lo-
cally assigning it to a truth value, as shown below.

Removal by Weakening
A first approach is assigning irrelevant literals to 1, i.e., ap-
plying the weakening rule to these literals. This approach
may sometimes trigger the saturation rule, so that coefficients
are kept small enough. This may have an impact on the solver
efficiency, especially when arbitrary precision is required.

Let us consider the case of generalized resolution based
solvers above. If the irrelevant literal f is weakened away
from (�), this constraint becomes 6a + 6b + 3d + 3e ≥ 4,
which is saturated into 4a + 4b + 3d + 3e ≥ 4 (�w), which
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has slack 10. If this constraint is used in place of (�) when
applying the cancellation with (◦), one gets 8a + 8b + 3d +
3g + 3h+ 2i+ 2j ≥ 17 (?w), which is strictly stronger than
the constraint (?) (a ∧ b is not an implicant of the constraint
any longer).

However, this approach does not always allow to infer
stronger constraints. Indeed, if we apply it to the Round-
ingSat example, e is weakened away from (∇), giving the
constraint 17a+ 17b+ 8c+ 4d ≥ 19 (∇w), which has slack
27. When the division by 4 is applied, the constraint becomes
5a + 5b + 2c + d ≥ 5 (∆w). Observe that c and d are now
irrelevant: the constraint is equivalent to a+ b ≥ 1, which is
strictly weaker than the constraint we obtained previously.

Simple Removal
The second approach is assigning irrelevant literals to 0, i.e.,
removing them without modifying anything else on the con-
straint. This approach allows to strengthen the constraint over
the reals, although it remains equivalent over the Booleans.

If we apply it to the RoundingSat example, it indeed al-
lows to derive a stronger constraint: from (∇), we now get
17a+17b+8c+4d ≥ 21 (∇r), which has slack 25. This con-
straint produces, after applying the division by 4, the stronger
constraint 5a+ 5b+ 2c+ d ≥ 6 (∆r).

However, considering the example of generalized resolu-
tion based solvers, this approach removes f from (�), giving
6a+6b+3d+3e ≥ 6 (�r), which has slack 12. When apply-
ing the cancellation rule between this constraint and (◦), one
gets 10a+ 10b+ 3d+ 3g + 3h+ 2i+ 2j ≥ 19 (?r), which
is stronger than (?), but weaker than (?w). In this case, the
weakening based approach is better.

Slack Based Approach
The previous examples show that neither of the two removal
approaches is stronger in every situation. We thus consider
a case-by-case approach for deciding which one to choose.
To this end, we consider the slack of the PB constraint as a
heuristic. Indeed, the slack is subadditive: given two PB con-
straints, the constraint obtained by adding them has a slack
that is at most equal to the sum of the slacks of the original
constraints. Minimizing the slack of the constraint to choose
will put a stronger upper bound on the slack of the constraints
that will be derived later on.

4 Eliminating Irrelevant Literals
To evaluate the impact of irrelevant literals on PB solvers,
we designed an approach for identifying and removing them
from PB constraints. Since deciding whether a literal is rel-
evant in a given PB constraint is NP-complete [Crama and
Hammer, 2011, Section 9.6], in practice, it seems unrealistic
to perform a relevance test for each literal of each constraint
derived by the solver. We thus propose an incomplete but
efficient algorithm for testing literal relevance.

For the sake of illustration, the following PB constraint χ,
in which we would like to decide whether l is relevant, will
be used as running example:

αl +
n∑
i=1

αili ≥ δ

Recall that l is irrelevant if and only if χ|l ≡ χ|l̄. Note that
χ|l and χ|l̄ only differ in the degree, and that the degree of
χ|l̄ is greater. Thus, clearly χ|l̄ |= χ|l, and the equivalence
test boils down to checking whether:

n∑
i=1

αili ≥ δ − α |=
n∑
i=1

αili ≥ δ

Observe that this statement holds if and only if there is
no interpretation of

∑n
i=1 αili equal to any number between

δ − α and δ− 1. Thus, checking that l is irrelevant is equiv-
alent to checking that there is no subset of α1, ..., αn whose
sum equals any of these numbers, i.e., solving an instance of
the subset-sum problem for each of these inputs.

It is folklore that this can be done in time O(nδ) using
dynamic programming [Cormen et al., 2009, Chapter 34.5]
that is pseudopolynomial in the encoding size. However, in
our context, both n and δ may be very large, and it would
be very inefficient to solve subset-sum on such inputs. As a
workaround, we present an approach for solving subset-sum
incompletely. Our detection algorithm needs to ensure that
there is no solution to the considered subset-sum instance in
order to correctly detect irrelevant literals, even though some
of them may be missed. To this end, we introduce a detec-
tion algorithm based on solving subset-sum modulo a given
positive integer p (fixed for all applications of this algorithm).
Since modular arithmetic is compatible with addition, one can
ensure that, if there is a solution for the subset-sum problem
with the original values, this solution is also a solution of the
subset-sum problem considered modulo p.

As this procedure remains time consuming, one can also
take advantage of Proposition 1 to reduce the number of
checks to perform. This can be achieved by ordering the liter-
als by ascending coefficients. Only one check per coefficient
is required, and once a relevant literal is identified, there is no
more irrelevant literal to remove.
Example 3. Take the constraint 12a+6b+6c+2d+2e ≥ 18.
If we want to check the relevance of e in this constraint, the
multiset of coefficients to consider is {12, 6, 6, 2} (as e is ig-
nored for the purpose of the check).

First, let us consider p = 5. The multiset of coefficients
modulo p is {2, 1, 1, 2}. The set of all possible subset sums
modulo 5 is thus {0, 1, 2, 3, 4}, and e is wrongly detected as
relevant, since there exists a subset sum equal to 2 ≡ 17
mod 5. If we now consider p = 6, the multiset of coefficients
becomes {0, 0, 0, 2}, and the possible subset sums modulo 6
are {0, 2}. It is thus impossible to find any sum equal to either
4 ≡ 16 mod 6 or 5 ≡ 17 mod 6, so e is irrelevant.

As a consequence, d can also be removed, since it has the
same coefficient as e. Then, as c is relevant, it is detected as
such by our algorithm, which never gives the wrong answer
for relevant literals. All remaining literals are thus relevant
and the removal stops.

5 Experimental Results
This section provides experimental results showing to what
extent irrelevant literals are present in the constraints inferred
by PB solvers. We also give an attempt to evaluate their im-
pact on the performance.
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To do so, we implemented the incomplete detection algo-
rithm presented above in Sat4j [Le Berre and Parrain, 2010],
and consider the whole set of decision benchmarks containing
only small integers used in the PB evaluation since its very
first edition [Manquinho and Roussel, 2006]. After some pre-
liminary experiments, we chose 4547 as parameter p of our
incomplete subset-sum algorithm, and 500 as bound on the
number of literals in the constraints to consider. These val-
ues have been chosen in a way that nearly all constraints in
our experiments are treated efficiently, while the number of
literals wrongly detected as relevant remains reasonable.

All experiments presented in this section have been run on
a cluster equipped with quadcore bi-processors Intel XEON
E5-5637 v4 (3.5 GHz) and 128 GB of memory, with a mem-
ory limit set to 64 GB.

5.1 Production of Irrelevant Literals
In order to see to what extent PB solvers produce irrelevant
literals, we first use the set of benchmarks as input for both
Sat4j’s implementation of generalized resolution (Sat4j-CP)
[Le Berre and Parrain, 2010] and RoundingSat [Elffers and
Nordström, 2018], without modifying their conflict analysis.
We chose these two solvers because, in the latest competi-
tion, no other solver implemented cutting planes based infer-
ence to solve PB instances (note that RoundingSat was called
cdcl-cuttingplanes at that time). For these experiments, we
let these solvers run for 5 minutes, and let them dump at
most 100,000 constraints derived during their conflict analy-
ses, which are then given to the detection algorithm we imple-
mented in Sat4j. The constraints are dumped after the appli-
cation of any rule that may introduce irrelevant literals. In the
case of Sat4j-CP, irrelevant literals may be produced either
after having applied the weakening operation on the reason,
or after having applied the cancellation rule between the rea-
son and the conflicting constraints. Regarding RoundingSat,
irrelevant literals are always “hidden”. Indeed, for efficiency
reasons, the weakening and division rules are applied at the
same time (we decoupled these two operations for our exper-
iments, as time was not considered). However, by construc-
tion, if the weakening operation produces irrelevant literals,
the following division, by ensuring that the pivot for the can-
cellation rule has a weight equal to 1, will make all irrelevant
literals artificially relevant (the pivot can never be irrelevant,
and so do literals sharing the same coefficient at the end).
As such, irrelevant literals produced in RoundingSat become
systematically artificially relevant at the same step.

The results of these experiments are shown in Figures 1
and 2 with boxplots illustrating how many irrelevant literals
were produced by the solver for each family. Each boxplot
displays the quartiles with the horizontal bars and the esti-
mated minimum and maximum with the vertical bars com-
puted from the number of detected irrelevant literals in each
instance of this family. Points represent outliers, which are
instances for which the number of detected irrelevant literals
is either below or above the estimated minimum or maximum,
respectively. Because there are big differences between the
families, boxplots are drawn using logarithmic scales. Also,
the number of constraints in which irrelevant literals appear
varies between the families: in some families, only few con-
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Figure 1: Number of irrelevant literals produced by Sat4j-CP. For
readability, only submitters’ names are displayed.
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Figure 2: Number of irrelevant literals produced by RoundingSat.
For readability, only submitters’ names are displayed.

straints contain many irrelevant literals, whereas in some oth-
ers up to 75% of the constraints contain irrelevant literals.
These boxplots reveal that Sat4j produces irrelevant literals
(see Figure 1), and that this is also the case for RoundingSat,
but to a lesser extent (see Figure 2). However, because all
irrelevant literals produced by RoundingSat become imme-
diately artificially relevant literals, they appear as irrelevant
only once, while irrelevant literals produced by Sat4j during
conflict analysis may remain irrelevant in several consecutive
derivation steps, and thus appear as such multiple times.

5.2 Removal of Irrelevant Literals
As we showed in a previous section, the presence of irrele-
vant literals in the constraints that are derived during conflict
analysis may lead to the inference of weaker constraints. If
we want to avoid this behavior, we need to remove all irrel-
evant literals produced during this process. Since this task is
NP-hard, we used the incomplete approach (described above)
for detecting these literals. However, this approach remains
costly in practice, as 26% of the runtime is spent in aver-
age to detect irrelevant literals. For some families, such as
Aardal 1, armies, ShortestPathBA and tsp, more than
75% of the runtime is required for most of the instances. This
is why we considered a time independent measure to evaluate
the impact of irrelevant literals: for all instances, we com-
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Figure 3: Comparison of the size of the proof built by Sat4j-CP
on all unsatisfiable instances. The families used to describe the in-
stances are the most specific subfamilies.

pared the sizes of the proofs built by the solver, measured
in number of generalized resolution steps applied during the
whole execution of the solver. Only unsatisfiable instances
are considered here, as the size of the proofs only makes sense
for such instances. The results are shown on Figure 3.

At first sight, it seems that there is not a great difference
between the two approaches (this is also the case between
the three different approaches presented in this paper for re-
moving irrelevant literals, omitted for space reason). How-
ever, remember that our approach is incomplete and that, even
though nearly all constraints are treated in most families (less
than 75% of the constraints are treated only for instances from
d-equals-n k, FPGA SAT05, robin, ShortestPathBA and
ShortestPathNG), we may wrongly detect as relevant lit-
erals that are actually irrelevant. To really evaluate the im-
pact of irrelevant literals on the solver performance, we would
need to remove all of them. However, in practice, a complete
approach is clearly unreasonable: our algorithm manages to
deal with constraints having a degree up to 10410415 which is
out of reach of any complete approach.

Also, note that removing irrelevant literals impacts the
heuristic used to select the variables to assign. Indeed, as
for classical SAT solving, PB solvers use a heuristic based
on VSIDS [Moskewicz et al., 2001]. This heuristic bumps
the variables that are involved in a conflict, i.e., makes them
more likely to be chosen next. When irrelevant literals are
removed, the associated variables are not bumped anymore,
which alters the behavior of the heuristic, and may have un-
expected side effects as this heuristic is not fully understood
[Elffers et al., 2018b]. In particular, it is hard to evaluate the
impact of bumping irrelevant literals. On the one hand, one
could argue that, because these literals are irrelevant, they do
not play any role in the conflict. On the other hand, if they
were relevant at some point, then their assignment may have
triggered some propagations, and, in such a case, they may
actually have contributed to the falsification of the constraint.

However, our contribution is not to find a solution to the
problem of irrelevant literals, but to get a better understand-
ing of their impact. To this end, let us consider more specif-
ically the vertexcover-completegraph family for which
Figure 3 shows that elimination of irrelevant literals has a sig-
nificant impact on the size of the proof produced by Sat4j.

The instances of this family encode that complete graphs do
not have small vertex covers [Elffers et al., 2018a]. As shown
by Figure 3, the number of performed cancellations is expo-
nentially smaller after removing irrelevant literals. A closer
inspection at the solver’s behavior shows that only few ir-
relevant literals are actually removed during the search. In
particular, all these literals are detected and removed after the
first conflict analysis, which produces a constraint of the form
kx1+x2+...+xk ≥ k, where k = dn2 e−1. One can observe
that x2, ..., xk are all irrelevant because their coefficients sum
up to only k− 1, and that the constraint is actually equivalent
to the unit clause x1 ≥ 1. In all further conflict analyses, no
irrelevant literals are produced: this illustrates how few irrel-
evant literals may have an impact on the whole proof built by
the solver, and may threaten its performance.

6 Conclusion and Future Works
In this paper, we have shown that irrelevant literals may be
introduced in the constraints derived by PB solvers using cut-
ting planes rules, and that such literals may have an impact
on the strength of the reasoning. In particular, when irrele-
vant literals appear in the intermediate constraints, the learned
constraint may be weaker than it could be, as it may contain
artificially relevant literals. This may even happen when the
constraint is a clause or a cardinality constraint, despite the
fact that such constraints cannot contain irrelevant literals.
We emphasized that while assigning irrelevant literals pro-
duces logically equivalent constraints, their slack may differ.
The slack provides thus a convenient heuristic to handle ir-
relevant literals in a solver. To evaluate the practical impact
of these literals on PB solvers, we designed an approximation
algorithm for detecting and removing them at each derivation
step. Our experimental results show that this approach al-
lows to find irrelevant literals in PB solvers such as Sat4j and
RoundingSat, and that these literals may have an impact on
the size of the proof they build.

Our approach for eliminating irrelevant literals is however
too costly in practice to be considered as a counter-measure to
their production in current PB solvers. A possible improve-
ment for our algorithm, as suggested by one of the reviewers,
is to consider multiple subset sum problems with small prime
numbers, instead of one problem with a single large number,
as for the Chinese remainder theorem. However, the best ap-
proach would be to avoid introducing irrelevant literals. Our
ultimate goal is to define a proof system on PB constraints
which ensures that constraints derived from PB constraints
with only relevant literals do not contain irrelevant literals.
The main difficulty is to find a complete set of rules that can
be efficiently implemented to perform conflict analysis, and
replace the current approaches used in PB solvers.
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Giráldez-Crú, Stephan Gocht, and Jakob Nordström. In
Between Resolution and Cutting Planes: A Study of Proof
Systems for Pseudo-Boolean SAT Solving. In Proceedings
of SAT’18, pages 292–310, 2018.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1154


	Introduction
	Preliminaries
	Pseudo-Boolean Constraints
	Inference Rules and Proof Systems


	Irrelevant Literals in PB Constraints
	Inference Rules Producing Irrelevant Literals
	Artificially Relevant Literals in PB Solvers
	Generalized Resolution Based Solvers
	Division Based Solvers

	Impact of Artificially Relevant Literals
	Removal by Weakening
	Simple Removal
	Slack Based Approach


	Eliminating Irrelevant Literals
	Experimental Results
	Production of Irrelevant Literals
	Removal of Irrelevant Literals

	Conclusion and Future Works

