Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Fast and Parallel Decomposition of Constraint Satisfaction Problems

Georg Gottlob!?, Cem Okulmus? and Reinhard Pichler?

!University of Oxford, UK
2TU Wien, Austria
georg.gottlob@cs.ox.ac.uk, {cokulmus,pichler } @dbai.tuwien.ac.at

Abstract

Constraint Satisfaction Problems (CSP) are noto-
riously hard. Consequently, powerful decompo-
sition methods have been developed to overcome
this complexity. However, this poses the challenge
of actually computing such a decomposition for a
given CSP instance, and previous algorithms have
shown their limitations in doing so. In this pa-
per, we present a number of key algorithmic im-
provements and parallelisation techniques to com-
pute so-called Generalized Hypertree Decomposi-
tions (GHDs) faster. We thus advance the ability to
compute optimal (i.e., minimal-width) GHDs for a
significantly wider range of CSP instances on mod-
ern machines. This lays the foundation for more
systems and applications in evaluating CSPs and
related problems (such as Conjunctive Query an-
swering) based on their structural properties.

1 Introduction

Many real-life tasks can be effectively modelled as CSPs,
giving them a vital importance in many areas of Computer
Science. As solving CSPs is a classical NP-complete prob-
lem, there is a large body of research to find tractable frag-
ments. One such line of research focuses on the underly-
ing hypergraph structure of a CSP instance. A key result in
this area is that CSP instances whose underlying hypergraph
is acyclic, can be solved in polynomial time [Yannakakis,
1981]. Several generalisations of acyclicity have been identi-
fied by defining various forms of hypergraph decompositions,
each associated with a specific notion of width [Gottlob et
al., 2000; Cohen et al., 2008]. Intuitively, the width mea-
sures how far away a hypergraph is from being acyclic, with
a width of 1 describing the acyclic hypergraphs.

In this work, we focus on Generalized Hypertree Decom-
positions (GHD) [Gottlob e al., 2009], and generalized hy-
pertree width (ghw). The computation of GHDs is itself in-
tractable in the general case, already for width 2 [Fischl et
al., 2018]. However, for (hypergraphs of) CSPs with realis-
tic restrictions, this problem becomes tractable. One such re-
striction is the bounded intersection property (BIP), which re-
quires that any two constraints in a CSP only share a bounded

1155

number of variables [Fischl er al., 2018]. Indeed, by exam-
ining a large number of CSPs from various benchmarks and
real-life applications, it has been verified that this intersec-
tion of variables tends to be small in practice [Fischl et al.,
2019]. In that work, over 3,000 instances of hypergraphs of
CSPs and also of Conjunctive Queries (CQs) were examined
and made publicly available in the HyperBench benchmark at
http://hyperbench.dbai.tuwien.ac.at

The use of such decompositions can speed up the solv-
ing of CSPs and also the answering of CQs significantly.
In fact, in [Aberger et al., 2016] a speed-up up to a fac-
tor of 2,500 was reported for the CQs studied there. Struc-
tural decompositions are therefore already being used in com-
mercial products and research prototypes, both in the CSP
area as well as in database systems [Aberger et al., 2016;
Aref et al., 2015; Amroun et al., 2016; Habbas et al., 2015;
Lalou er al., 2009]. However, previous decomposition algo-
rithms are limited in that they fail to find optimal decompo-
sitions (i.e., decompositions of minimal width) even for low
widths. This is also the case for various GHD computation
methods proposed in [Fischl et al., 2019; Fichte et al., 2018].
The overall aim of our work is therefore to advance the art of
computing hypergraph decompositions and to make the use
of GHDs for solving CSPs applicable to a significantly wider
range of CSP instances than previous methods. More specifi-
cally, we derive the following research goals:

Main Goal: Provide major improvements for computing hy-
pergraph decompositions.

As part of this main goal, we define in particular:

Sub-goal 1: Design novel parallel algorithms for structural
decompositions, in particular GHDs, and

Sub-goal 2: put all this to work, by implementing and ex-
tensively evaluating these improvements.

As a first step in pursuing the first goal, we aim at gen-
erally applicable simplifications of hypergraphs to speed up
the decomposition of hypergraphs. Here, “general applica-
bility” means that these simplifications can be incorporated
into any decomposition algorithms such as the ones presented
in [Fichte et al., 2018; Fischl et al., 2019] and also earlier
work such as [Gottlob and Samer, 2008]. Moreover, we aim
at heuristics for guiding the decomposition algorithms to ex-
plore more promising parts of the big search space first.

http://hyperbench.dbai.tuwien.ac.at

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

However, it will turn out that these simplifications and
heuristics are not sufficient to overcome a principal shortcom-
ing of existing decomposition algorithms, namely their se-
quential nature. Modern computing devices consist of multi-
core architectures, and we can observe that single-core per-
formance has mostly stagnated since the mid-2000s. So to
produce programs which run optimally on modern machines,
one must find a way of designing them to run efficiently
in parallel. However, utilising multi-core systems is a non-
trivial task, which poses several challenges. In our design of
parallel GHD-algorithms, we focus on three key issues:

i minimising synchronisation delay as much as possible,

ii finding a way to partition the search space equally
among CPUs, and thus utilising the resources optimally,

iii supporting efficient backtracking, a key element of all
structural decomposition algorithms presented so far.

In order to evaluate our algorithmic improvements and our
new parallel GHD-algorithms, we have implemented them
and tested them on the publicly available HyperBench bench-
mark mentioned above. For our implementation, we decided
to use the programming language Go proposed by Google
[Donovan and Kernighan, 20151, which is based on the clas-
sical Communication Sequential Processes pattern by [Hoare,
19781, since it reduces the need for explicit synchronisation.

To summarise the main results of this work:

e We have developed three parallel algorithms for computing
GHDs, where the first two are loosely based on the balanced
separator methods from [Akatov, 2010; Fischl et al., 2019].
Moreover, we have designed a hybrid approach, which com-
bines the strengths of parallel and sequential algorithms. This
hybrid approach ultimately proved to be the best.

e In addition to designing parallel algorithms, we propose
several algorithmic improvements such as applying multiple
pre-processing steps on the input hypergraphs and using vari-
ous heuristics to guide the search for a decomposition. More-
over, for the hybrid approach, we have explored when to best
switch from one approach to the other.

e We have implemented the parallel algorithms together
with all algorithmic improvements and heuristics presented
here. The source code of the program is available under
https://github.com/cem-okulmus/BalancedGo. With our new
algorithms and their implementation, dramatically more in-
stances from HyperBench could be solved compared with
previous algorithms. More specifically, we could extend the
number of hypergraphs with exact ghw known by over 50%.
In total, this means that for over 75% of all instances of Hy-
perBench, the exact ghw is now known. If we leave aside
the randomly-generated CSPs, and focus on the those from
real world applications, we can show an increase of close to
100%, almost doubling the number of instances solved.

Our work therefore makes it possible to compute GHDs
efficiently on modern machines for a wide range of CSPs. It
enables the fast recognition of low widths for many instances
encountered in practice (as represented by HyperBench) and
thus lays the foundation for more systems and applications in
evaluating CSPs and CQs based on their structural properties.

1156

The remainder of this paper is structured as follows: In
Section 2, we provide the needed terminology and recall pre-
vious approaches. In Section 3, we present our main algorith-
mic contributions. This is followed by presenting experimen-
tal evaluations in Section 4. In Section 5, we summarise our
main results and highlight directions for future work.

2 Preliminaries

CSPs & Hypergraphs. A constraint satisfaction problem
(CSP) P is a set of constraints (S;, R;), where S; is a set
of variables and R; a constraint relation which contains the
valid combination of values that variables in S; can take. A
solution to P is a mapping of variables to values, such that
for each constraint we map the variables to a corresponding
combination in its constraint relation. A hypergraph H is a
tuple (V(H), E(H)), consisting of a set of vertices V(H)
and a set of hyperedges (synonymously, simply referred to as
“edges”) E(H) C 2V () To get the hypergraph of a CSP P,
we consider V (H) to be the set of all variables in P, and each
S; to be one hyperedge. A hypergraph H is said to have the
bounded intersection property (BIP), if there exists a constant
¢ such that for any two edges e1,es € E(H),e; Nes < c.

Decompositions. A GHD of a hypergraph H =
(V(H),E(H)) is a tuple (T, x, \), where T' = (N, E(T))
is a tree, and y and A are labelling functions, which
map to each node n € N two sets, x(n) € V(H) and
A(n) C E(H). For a node n we call x(n) the bag, and
A(n) the edge cover of n. We denote with B(A(n)) the set
{v e V(H) | v € e;e € A(n)}, ie., the set of vertices
“covered” by A(n). The functions x and A have to satisfy the
following conditions:

1. Foreach e € E(H), thereisanode n € N s.t. e C x(n).

2. For each vertex v € V(H), {n € N | v € x(n)}isa
connected subtree of 7.

3. For each node n € N, we have that x(n) C B(A(n)).

The width of a GHD is defined as max{|A\(n)|: n € N}.
The generalized hypertree width (ghw) of a hypergraph is the
smallest width of any of its GHDs. Deciding if ghw(H) < k
for a hypergraph H and fixed k is NP-complete, as one needs
to consider exponentially many possible choices for the bag
x(n) for a given edge cover A(n).

It was shown in [Fischl er al., 2019] that for any class of
hypergraphs enjoying the BIP, one only needs to consider a
polynomial set of subsets of hyperedges (called subedges) to
compute their ghw.

Components & Separators. Consider a set of vertices
W C V(H). A set C of vertices with C C V(H)\ W
is [W]-connected if for any two distinct vertices v, w € C
there exists a sequence of vertices v = vg,..., 0, = W
and a sequence of edges eg,...,ep—1 (b > 0) such that
{vi,vit1} C (e; \ W), foreach ¢ € {0,...,h — 1}. A
set C C V(H) is a [W]-component, if C' is maximal [W]-
connected. For a set of edges S C F(H), we say that C is
“[S]-connected” or an “[S]-component” as a short-cut for C
is “[W]-connected” or a “[TW]-component”, respectively, with
W = U,.cg e Wealso call S a separator in this context. The

https://github.com/cem-okulmus/BalancedGo

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

size of an [S])-component C is defined as the number of edges
e € E(H) such that eNC # . For a hypergraph H and a set
of edges S C E(H), we say that S is a balanced separator if
all [S]-components of H have a size < \E(72H)I

It was shown in [Adler et al., 2007] that, for every GHD
(T, x, \) of a hypergraph H, there exists a node n € N such
that A(n) is a balanced separator of H. This property can
be made use of when searching for a GHD of size k of a
hypergraph H as we shall recall in Section 2.2 below.

2.1 Computing Hypertree Decompositions (HDs)

We briefly recall the basic principles of the Det-K-Decomp
program from [Gottlob and Samer, 2008] for computing Hy-
pertree Decompositions (HDs), which was the first imple-
mentation of the original HD algorithm from [Gottlob et al.,
2002]. HDs are GHDs with an additional condition to make
their computation tractable in a way explained next.

For fixed k > 1, Det-K-Decomp tries to construct an HD of
a hypergraph H in a top-down manner. It thus maintains a set
C of vertices, which is initialised to C := V(H). For a node
n in the HD (initially, this is the root of the HD), it “guesses”
an edge cover A(n), i.e., A(n) C E(H) and |\(n)] < k.
For fixed k, there are only polynomially many possible val-
ues A(n). Det-K-Decomp then proceeds by determining all
[A(n)]-components C; with C; C C. The additional con-
dition imposed on HDs (compared with GHDs) restricts the
possible choices for x(n) and thus guarantees that the [\(n)]-
components inside C' and the [x(n)]-components inside C co-
incide. This is the crucial property for ensuring polynomial
time complexity of HD-computation — at the price of possibly
missing GHDs with a lower width.

Now let Cy,...,Cy denote the [\(n)]-components with
C; C C and let Ey,...,E, denote subsets of F(H) with
E; = {e | en C; # (0} for every i. By the maximality of
components, these sets F; are pairwise disjoint. Moreover, it
was shown in [Gottlob et al., 2002] that if H has an HD of
width < k, then it also has an HD of width < k such that
the edges in each E; are “covered” in different subtrees be-
low n. More precisely, this means that n has ¢ child nodes
ni, ..., Ny, such that for every ¢ and every e € F;, there ex-
ists a node n. in the subtree rooted at n; with e C x(ne).
Hence, Det-K-Decomp recursively searches for an HD of the
hypergraphs H; with E(H;) = E; and V(H;) = |J E; with
the slight extra feature that also edges from E'\ E; are allowed
to be used in the A-labels of these HDs.

2.2 Computing GHDs

It was shown in [Fischl ez al., 2018] that, even for fixed k = 2,
deciding if ghw(H) < k holds for a hypergraph H is NP-
complete. However, it was also shown there that if a class
of hypergraphs satisfies the BIP, then the problem becomes
tractable. The main reason for the NP-completeness in the
general case is that, for a given edge cover A(n), there can
be exponentially many bags x(n) satisfying condition 3 of
GHDs, ie., x(n) € B(A(n)). Now let A(n) = {ei;,...,€i,}
with ¢ < k. Of course, if we restrict each e, to the subedge
e;, = e;; N x(n) and define X'(n) = {ej ,... €]}, then

we get x(n) = B(X(n)). The key to the tractability shown

1157

in [Fischl et al., 2018] in case of the BIP (say, the intersection
of any two distinct edges is bounded by a constant b) is that
each e;J is either equal to e;; or a subset of e;; with \e;j| <
k - b. Hence, there are only polynomially many choices of
subedges e;j and also of x(n). In [Fischl er al., 2019], this
property was used to design a program for GHD computation
as a straightforward extension of Det-K-Decomp by adding
the relevant (polynomially many!) subedges.

In [Fischl er al., 2019], yet another GHD algorithm was
presented. It is based on the use of balanced separators and
extends ideas from [Akatov, 2010]. The motivation of this
approach comes from the observation that there is no useful
upper bound on the size of the subproblems that have to be
solved by the recursive calls of the Det-K-Decomp algorithm.
In fact, for some node n with corresponding component C
and edge set E, let C1, . .., Cy denote the [A(n)]-components
with C; C C. Then there may exist an 7 such that E; =
{e | eNC; # 0} is “almost” as big as E. In other words, in
the worst case, the recursion depth of Det-K-Decomp may be
linear in the number of edges.

The Balanced Separator approach from [Fischl et al., 2019]
uses the fact that every GHD must contain a node whose \-
label is a balanced separator. Hence, in each recursive decom-
position step for some subset F of the edges of H, the algo-
rithm “guesses” a node n’ such that A(n’) is a balanced sepa-
rator of the hypergraph with edges E¢. Of course, this node
n' is not necessarily a child node n; of the current node n but
may lie somewhere inside the subtree 7; below n. However,
since GHDs can be arbitrarily rooted, one may first compute
this subtree 7; with n/ as the root and with n; as a leaf node.
This subtree is then (when returning from the recursion) con-
nected to node n by rerooting T; at n; and turning n; into a
child node of n. The definition of balanced separators guaran-
tees that the recursion depth is logarithmically bounded. This
makes the Balanced Separator algorithm a good starting point
for our parallel algorithm to be presented in Section 3.2.

3 Algorithmic Improvements & Parallelism

In this section, we first present a list of algorithmic improve-
ments and then describe our strategy for designing parallel
decomposition algorithms. Finally, we will show how to ob-
tain a good hybrid strategy, which combines the strengths of
the parallel and sequential approaches.

3.1 Algorithmic Improvements

Hypergraph preprocessing
An important consideration for speeding up decomposition

algorithms is the simplification of the input hypergraph. Our
considered reductions are:

e applying the GYO reduction from [Graham, 1979; Yu and
Ozsoyoglu, 19791, which repeatedly allows a) the removal of
vertices occurring in a single edge, as well as b) edges con-
tained in other edges. Note that the application of one rule
may enable the application of the other rule, so their combi-
nation may lead to a greater simplification compared to just
any one rule alone.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

o the removal of all but one vertex out of a set of vertices of
the same fype. Here the type of a vertex v is defined as the set
of edges e which contain v.

It is important to note that all these reductions neither add
nor lose solutions. Formally, we get the following property:

Theorem 1 Preprocessing an input hypergraph by exhaus-
tive application of the GYO reduction and the elimination of
vertices of the same type as another vertex in the hypergraph,
is sound and complete. More specifically, let H' be the result
of applying this preprocessing to a hypergraph H. Then, for
any k > 1, we have ghw(H') < k if and only if ghw(H) < k.
Moreover, any GHD of H' can be efficiently transformed into
a GHD of H of the same width.

Finding balanced separators fast

It has already been observed in [Gottlob and Samer, 2008]
that the ordering in which edges are considered is vital for
finding an appropriate edge cover A(n) for the current node
n in the decomposition fast. However, the ordering used
in [Gottlob and Samer, 2008] for Det-K-Decomp, (which
was called MCSO, i.e., maximal cardinality search ordering)
turned out to be a poor fit for finding balanced separators. A
natural alternative was to consider, for each edge e, all pos-
sible paths between vertices in the hypergraph H, and how
much these paths increase after removal of e. This provides
a weight for each edge, based on which we can define the
maximal separator ordering. In our tests, this proved to be a
very effective heuristic. Unfortunately, computing the max-
imal separator ordering requires solving the all-pairs short-
est path problem. Using the well-known Floyd-Warshall al-
gorithm [Floyd, 1962; Warshall, 1962] as a subroutine, this
leads to a complexity of o(|E(H)| * |V (H)|?), which is pro-
hibitively expensive for practical instances. We thus explored
two other, computationally simpler, heuristics, which order
the edges in descending order of the following measures:

e The vertex degree of an edge e is defined as
> vee deg(v), where deg(v) denotes the degree of a ver-
tex v, i.e., the number of edges containing v.

* The edge degree of an edge e is [{f: e N f}], i.e., the
number of edges e has a non-empty intersection with.

In our empirical evaluation, we found both of these to be use-
ful compromises between speeding up the computation and
complexity of computing the ordering itself, with the vertex
degree ordering yielding the best results, i.e., compute A(n)
by first trying to select edges with higher vertex degree.

Reducing the search space
The GHD algorithm based on balanced separators presented
in [Fischl et al., 2019] searches through all ¢-tuples of edges
(with ¢ < k) to find the next balanced separator. The num-
ber of edge-combinations thus checked is >+, (V), where
N denotes the number of edges. Note that this number of
edges is actually higher than in the input hypergraph due to
the subedges that have to be added for the tractability of GHD
computation (see Section 2.2).

We can reduce this significantly by shifting our focus on
the actual bags x(n) generated from each A(n) thus com-
puted. Therefore, we initially only look for balanced sepa-

1158

rators of size k, checking () many initial choices of A(n).
Only if a choice of A(n) and x(n) = |JA(n) does not lead
to a successful recursive call of the decomposition procedure,
we also inspect subsets of x(n) — strictly avoiding the compu-
tation of the same subset of x(n) several times by inspecting
different subedges of the original edge cover A(n). We thus
also do not add subedges to the hypergraph upfront but only
as they are needed as part of the backtracking when the orig-
inal edge cover \(n) did not succeed. Separators consisting
of fewer edges are implicitly considered by allowing also the
empty set as a possible subedge.

Summary. Our initial focus was to speed up existing
decomposition algorithms via improvements as described
above. However, even though these algorithmic improve-
ments showed some positive effect, it turned out that a more
fundamental change is needed. We thus turned our attention
to parallelisation, which will be the topic of the next section.

3.2 Parallelisation Strategy

As described in more detail below, we use a divide and con-
quer method, based on the balanced separator approach. This
method divides a hypergraph into smaller hypergraphs, called
subcomponents. Our method proceeds to work on these sub-
components in parallel, with each round reducing the size
of the hypergraphs (i.e., the number of edges in each sub-
component) to at most half their size. Thus after logarith-
mically many rounds, the method will have decomposed the
entire hypergraph, if a decomposition of width K exists. For
the computation we use the modern programming language
Go [Donovan and Kernighan, 2015], which has a model of
concurrency based on [Hoare, 1978].

In Go, a goroutine is a sequential process. Multiple
goroutines may run concurrently. In the pseudocode pro-
vided, these are spawned using the keyword go, as can be
seen in Algorithm 1, line 15. They communicate over chan-
nels. Using a channel ch is indicated by <— ch for receiving
from a channel, and by ch < for sending to ch.

Overview

Algorithm 1 contains the full decomposition procedure,
whereas Algorithm 2 details the parallel search for separators,
as it is a key subtask for parallelisation. To emphasise the core
ideas of our parallel algorithm, we present it as a decision pro-
cedure, which takes as input a hypergraph H and a parameter
K, and returns as output either Accept if ghw(H) < K or
Reject otherwise. Please note, however, that our actual im-
plementation also produces a GHD of width < K in case of
an accepting run.

The parallel Balanced Separator algorithm begins with an
initial call to the procedure Decomp, as seen in line 1 of Al-
gorithm 1. The procedure Decomp takes two arguments, a
hypergraph H' for the current subcomponent considered, and
a set Sp of “special edges”. These special edges indicate the
balanced separators encountered so far, as can be seen in line
15, where the current separator subSep is added to the argu-
ment on the recursive call, combining all its vertices into a
new special edge. The special edges are needed to ensure that
the decompositions of subcomponents can be combined to an
overall decomposition, and are thus considered as additional

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

edges. The recursive procedure Decomp has its base case in
lines 3 to 4, when the size of H' and Sp together is less than
or equal to 2. The remainder of Decomp consists of two loops,
the Separator Loop, from lines 6 to 23, which iterates over all
balanced separators, and within it the SubEdge Loop, running
from lines 11 to 22, which iterates over all subedge variants
of any balanced separator. New balanced separators are pro-
duced with the subprocedure FindBalSep, used in line 7 of
Algorithm 1, and detailed in Algorithm 2. After a separator is
found, Decomp computes the new subcomponents in line 12.
Then goroutines are started using recursive calls of Decomp
for all found subcomponents. If any of these calls returns Re-
ject, seen in line 18, then the procedure starts checking for
subedges. If they have been exhausted, the procedure checks
for another separator. If all balanced separators have been
tried without success, then Decomp rejects in line 24.

We proceed to detail the parallelisation strategy of the two
key subtasks: the search for new separators and the recursive
calls over the subcomponents created from chosen separators.

Parallel search for balanced separators

For the search, while testing out a number of configurations,
we settled ultimately on the following scenario, shown in Al-
gorithm 2: The function FindBalSep first starts a number of
Worker goroutines, seen in lines 3 to 4. These are also passed
a channel, which they will use to send back any balanced sep-
arators they find. The worker procedure iterates over all can-
didate separators in its assigned search space, and sends back
the first balanced separator it finds over the channel. Then
FindBalSep waits for one of two conditions (whichever hap-
pens first): either one of the workers finds a balanced separa-
tor, lines 6 to 7, or none of them do and they all terminate on
their own once they have exhausted the search space. Then
the empty set is returned, as seen in line 8, indicating that no
further balanced separators exist.

This design reduces the need for synchronisation: each
worker is responsible for a share of the search space, and the
only time a worker is stopped is when either it has found a
separator which is balanced, or when another worker has done
so. The number of worker goroutines scales with the number
of available processors, thus allowing the search to optimally
use the available resources. Our design addresses backtrack-
ing in this way: the workers employ a simple data structure,
called M; in Algorithm 2, to store their current progress, al-
lowing them to generate the next separator to consider, and
this data structure is stored in Decomp, seen in line 5 of Al-
gorithm 1, even after the search is over. In case of backtrack-
ing, this allows to quickly continue the search exactly where
it left of, without losing any work. If multiple workers find
a balanced separator, one of them “wins”, and during back-
tracking, the other workers can immediately send their found
separators to FindBalSep again.

Parallel recursive calls.

For the recursive calls on subcomponents encountered, we
create for each such call its own goroutine, as explained in
the overview. This can be seen in Algorithm 1, line 15, where
the output is then sent back via the channel ch. Given enough
resources, this allows for each call to be run completely sep-

Algorithm 1: Parallel Balanced Separator algorithm

Input: H: Hypergraph
Parameter: K: width parameter
Output: Accept if ghw of H < K, else Reject
1 return Decomp (H, () > initial call
2 function Decomp (H’: Graph, Sp: Set of Special Edges)

3 if |H’ U Sp| <2 then > Base Case
4 | return Accept
5 M := a set of K-tuples
6 repeat > Separator Loop
7 sep := FindBalSep(H’, M)
8 if sep = () then
9 | break
10 subSep = sep
11 repeat > SubeEge Loop
12 comp := getComponents (subSep, H’, Sp)
13 ch := a channel
14 for ¢ € comp do
15 | goch < Decomp(c.H, c.Sp U subSep)
16 while any recursive call still running do
17 out — ch: > Wait on channel
18 if out = Reject then
19 subSep = NextSubedgeSep (subSep)
20 L continue SubEdge Loop
21 return Accept > Found decomposition
2 until subSep = ()
23 | until sep =1
24 return Reject > Exhausted Search Space

arately, thus easily fulfilling the need to minimise synchroni-
sation. This fact - that all recursive calls can be worked on in
parallel - is also in itself a major performance boost: in the
sequential case we execute all recursive calls in a loop, but in
the parallel case - see lines 14 to 15 in Algorithm 1 - we can
execute these calls simultaneously. Thus, if one parallel call
rejects, we can stop all the other calls early, and thus poten-
tially save a lot of time. It is easy to imagine a case where in
the sequential execution, a rejecting call is encountered only
near the end of the loop.

It is important to note that this parallel algorithm is still
a correct decomposition procedure. More formally, we state
the following property:

Theorem 2 The algorithm for checking the ghw of a hyper-
graph given in Algorithm 1 is sound and complete. More
specifically, Algorithm 1 with input H and parameter K
will accept if and only if there exists a GHD of H with width
< K. Moreover, by materialising the decompositions implic-
itly constructed in the recursive calls of the DECOMP func-
tion, a GHD of width < K can be constructed efficiently in
case the algorithm returns Accept.

Based on this parallelisation scheme, we produced a par-
allel implementation of the Balanced Separator algorithm,
with the improvements mentioned in Section 3.1. We already
saw some promising results, but we noticed that for many in-

1159

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Algorithm 2: Parallel Search for Separators

1 function FindBalSep(H’: Graph, M: Set of K-tuples)
2 ch := a channel

3 for M; € M do

4 | g0 WORKER(M;, ch)

5 while any worker still running do

6 out <— ch: > Wait on channel

7 return out

8 | returnempty set > Exhausted Search Space

9 function Worker (M;: K -tuple of integers,ch: Channel)
10 for sep € NextSeparator(M;) do
11 if IsBalanced(sep, H’) then

L L ch « sep > Send sep to Master

13 return

> No separator found within M;

stances, this purely parallel approach was not fast enough. We
thus continued to explore a more nuanced approach, mixing
both parallel and sequential algorithms.

3.3 Hybrid Approach - Best of Both Worlds

We now present a novel combination of parallel and sequen-
tial decomposition algorithms. It contains all the improve-
ments mentioned in Section 3.1 and combines the Balanced
Separator algorithm from Section 3.2 and Det-K-Decomp re-
called in Section 2.1.

This combination is motivated by two observations: The
Balanced Separator algorithm is very effective at splitting
larger hypergraphs into smaller ones and in negative cases,
where it can quickly stop the computation if no balanced
separator for a given subcomponent exists. It is slower for
smaller instances where the computational overhead to find
balanced separators at every step slows things down. Further-
more, for technical reasons, it is also less effective at mak-
ing use of caching. Det-K-Decomp, on the other hand, with
proper heuristics, is very efficient for small instances and it
allows for effective caching, thus avoiding repetition of work.

The Hybrid approach proceeds as follows: For a fixed
number m of rounds, the algorithm tries to find balanced sep-
arators. Each such round is guaranteed to half the number
of hyperedges considered. Hence, after those m rounds, the
number of hyperedges in the remaining subcomponents will
be reduced to at most % The Hybrid algorithm then
proceeds to finish the remaining subcomponents by using the
Det-K-Decomp algorithm.

This required quite extensive changes to Det-K-Decomp,
since it must be able to deal with Special Edges. Formally,
each call of Det-K-Decomp runs sequentially. However, since
the m rounds can produce a number of components, many
calls of Det-K-Decomp can actually run in parallel. In other
words, our Hybrid approach also brings a certain level of par-
allelism to Det-K-Decomp.

4 Experimental Evaluation and Results

We performed our experiments on the HyperBench bench-
mark, with the goal to determine the exact generalized hyper-

1160

tree width of all instances. We evaluated how our approach
compares with existing attempts to compute the ghw, and
we investigated how various heuristics and parameters prove
beneficial for various instances. The detailed results of our
experiments', in addition to the source code of our Go pro-
grams? are publicly available. Together with the benchmark
instances, which are detailed below and also publicly avail-
able, this ensures the reproducibility of our experiments.

4.1 Benchmark Instances and Setting

HyperBench. The instances used in our experiments are
taken from the benchmark HyperBench, collated from var-
ious sources in industry and the literature, which was re-
leased by [Fischl et al., 2019] and made publicly available
at http://hyperbench.dbai.tuwien.ac.at. It consists of 3071
hypergraphs from CQs and CSPs, where for many CSP in-
stances the exact ghw was still undetermined.

Hardware and Software. We used Go 1.2 for our imple-
mentation, called BalancedGo. Our experiments ran on a
cluster of 12 nodes, running Ubuntu 16.04.1 LTS with a 24
core Intel Xeon E5-2650v4 CPU, clocked at 2.20 GHz, each
node with 160 GB of RAM. We disabled HyperThreading for
the experiments.

Setup and Limits. For the experiments, we set a number of
limits to test the efficiency of our solution. For each run, con-
sisting of the input (i.e., hypergraph H and integer K) and a
configuration of the decomposer, we set a one hour (3600 sec-
onds) timeout and limit available RAM to 1 GB. These limits
are justified by the fact that these are the exact same limits
as were used in [Fischl ef al., 2019], thus ensuring the direct
comparability of our test results. To enforce these limits and
run the experiments, we used the HTCondor software [Thain
et al., 2005], originally named just Condor.

4.2 Results

The key results from our experiments are summarised in Ta-
ble 1. Under “Decomposition Algorithms” we use (ensemble)
to indicate that results from two algorithms are collected, i.e.,
results from the Hybrid algorithm and the parallel Balanced
Separator algorithm. To also consider the performance of one
of the individual approaches introduced in Section 3, namely
the results of the Hybrid approach (from Section 3.3) is sep-
arately shown in a section of the table. As a reference point,
we considered the NewDetK solver from [Fischl et al., 2019].
For each of these three, we also listed the average time and
the maximal time to compute a GHD of optimal-width for
each group of instances of HyperBench, as well as the stan-
dard deviation. The minimal times are left out for brevity,
since they are always near or equal to 0. Note that for Hyber-
Bench the instance groups “CSP App.” or “CQ App.”, listed
in Table 1, are hypergraphs of (resp.) CSP or CQ instances
from real world applications.

Across all experiments, out of the 3071 instances in Hyper-
Bench, our implementation BalancedGo solved over 2300,
as seen in Table 1. By “solved” we mean that the precise

!See: Raw data available under [Gottlob ez al., 2020]
%See: https://github.com/cem-okulmus/BalancedGo

http://hyperbench.dbai.tuwien.ac.at
https://github.com/cem-okulmus/BalancedGo

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Instances | Decomposition Algorithms
Group #graphs | NewDetK [Fischl er al., 2019] Hybrid Approach BalancedGo ensemble

#solved avg max stdev |#solved avg max stdev |#solved avg max stdev
CSP App. 1090 386 150.82 2608.0 490.47 762 36.60 3293.73 229.25 763 42.21 3479.05 248.65
CSP Random 863 412 65.78 3240.0 379.12 557 30.47 3465.20 226.93 625 24.75 3465.20 194.30
CSP Other 82 27 126.43 2538.0 422.42 40 80.38 2376.52 331.53 42 72.89 2376.52 296.52
CQ App. 535 535 0.00 0.0 0.00 535 0.00 0.01 0.00 535 0.00 032 0.01
CQ Random 500 281 2.12 3350.0 21.14 325 16.41 3213.82 183.30 354 18.18 3213.82 176.01
Total 3071 1642 59.00 3240.0 325.03| 1730 30.00 346520 216.64| 2320 29.36 3479.05 209.72

Table 1: Overview on the number of instances solved and running times (in seconds) for producing optimal-width GHDs

ghw could be determined in these cases. We observed that
the number of 2320 solved instances exceeds the sum of the
solved cases by the two individual implementations of Hybrid
algorithm and parallel Balanced Separator. This is due to the
fact that the “ensemble” combines results from all individual
approaches. We mean with “combine” that we use informa-
tion gained from runs of all possible algorithms. For a hyper-
graph H and a width k, an accepting run gives us an upper
bound (since the optimal ghw(H) is then clearly < k), and a
rejecting run gives us a lower bound (since then we know that
ghw(H) > k). By pooling multiple algorithms, we can com-
bine these produced upper and lower bounds to compute the
optimal width (when both bounds meet) for more instances
than any one algorithm could determine on its own. We note
that the results for NewDetK from (Fischl et al, 2019) are also
such an “ensemble”, combining the results of three different
GHD algorithms. It turned out that parallel Balanced Separa-
tor is particularly well suited for deriving lower bounds (i.e.,
detecting “Reject”-cases), while the Hybrid algorithm is best
for deriving upper bounds (i.e., detecting “Accept’-cases).

For the computationally most challenging instances of Hy-
perBench, those of ghw > 3, this signifies an increase of over
70 % in solved instances when compared with [Fischl ez al.,
2019]. In addition, when considering the CSP instances from
real world applications, we managed to solve 763 instances,
almost doubling the number from NewDetK. In total, we now
know the exact ghw of around 70% of all hypergraphs from
CSP instances and the exact ghw of around 75% of all hyper-
graphs of HyperBench.

We stress that, in the first place, our data is not about time,
but rather about the number of instances solved within rea-
sonable time constraints. And here we provide an improve-
ment for these practical CSP instances of near 100% on the
current state of the art; no such improvements have been
achieved by other techniques recently. It is also noteworthy,
that the Hybrid algorithm alone solved 1730 total cases, thus
beating the total for NewDetK in [Fischl et al., 2019], which,
as mentioned, combines the results of three different GHD
algorithms.

5 Conclusion and Outlook

We presented novel parallel algorithms in this paper, advanc-
ing the ability to compute GHDs of a significantly larger set
of CSPs. This paves the way for more applications to use

1161

them to speed up the evaluation of CSP instances.

For immediate future work, we want to look at paral-
lel approaches to compute plain Hypertree Decompositions
(HDs), since the Balanced Separator approach does not di-
rectly translate to them. Another interesting goal is harness-
ing Go’s excellent cloud computing capabilities to extend our
results beyond the computation of GHDs to actually evaluat-
ing large real-life CSPs in the cloud.

Acknowledgments

This work was supported by the Austrian Science Fund
(FWF):P30930-N35. Georg Gottlob is a Royal Society Re-
search Professor and acknowledges support by the Royal So-
ciety for the present work in the context of the project "RAI-
SON DATA” (Project reference: RP\R1\201074). Gottlob
is, moreover, grateful to Cristina Zoltan for having suggested
Go as an appropriate language for the parallelisation of com-
puting hypertree decompositions.

References

[Aberger et al., 2016] Christopher R. Aberger, Susan Tu,
Kunle Olukotun, and Christopher R€. EmptyHeaded: A
relational engine for graph processing. In Proceedings
of the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pages 431-446, 2016.

[Adler er al., 2007] Isolde Adler, Georg Gottlob, and Martin
Grohe. Hypertree width and related hypergraph invariants.
Eur. J. Comb., 28(8):2167-2181, 2007.

[Akatov, 2010] Dmitri Akatov. Exploiting parallelism in de-
composition methods for constraint satisfaction. PhD the-
sis, University of Oxford, UK, 2010.

[Amroun et al., 2016] Kamal Amroun, Zineb Habbas, and
Wassila Aggoune-Mtalaa. A compressed generalized hy-
pertree decomposition-based solving technique for non-
binary constraint satisfaction problems. Al Comm.,
29(2):371-392, 2016.

[Aref et al., 2015] Molham Aref, Balder ten Cate, Todd J.
Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic,
Todd L. Veldhuizen, and Geoffrey Washburn. Design and

Implementation of the LogicBlox System. In Proceedings
of the 2015 ACM SIGMOD International Conference on

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Management of Data, Melbourne, Victoria, Australia, May
31 - June 4, 2015, pages 1371-1382, 2015.

[Cohen et al., 2008] David A. Cohen, Peter Jeavons, and
Marc Gyssens. A unified theory of structural tractability
for constraint satisfaction problems. J. Comput. Syst. Sci.,
74(5):721-743, 2008.

[Donovan and Kernighan, 2015] Alan A. A. Donovan and
Brian W. Kernighan. The Go programming language.
Addison-Wesley Professional, 2015.

[Fichte et al., 2018] Johannes Klaus Fichte, Markus Hecher,
Neha Lodha, and Stefan Szeider. An SMT approach to
fractional hypertree width. In Principles and Practice of
Constraint Programming - 24th International Conference,
CP 2018, Lille, France, August 27-31, 2018, Proceedings,
pages 109-127, 2018.

[Fischl et al., 2018] Wolfgang Fischl, Georg Gottlob, and
Reinhard Pichler. General and fractional hypertree de-
compositions: Hard and easy cases. In Proceedings of the
37th ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems, Houston, TX, USA, June 10-
15, 2018, pages 17-32, 2018.

[Fischl er al., 2019] Wolfgang Fischl, Georg Gottlob, Da-
vide Mario Longo, and Reinhard Pichler. Hyperbench: A
benchmark and tool for hypergraphs and empirical find-
ings. In Proceedings of the 38th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems,
PODS 2019, Amsterdam, The Netherlands, June 30 - July
5, 2019, pages 464—480, 2019.

[Floyd, 1962] Robert W. Floyd. Algorithm 97: Shortest path.
Commun. ACM, 5(6):345, 1962.

[Gottlob and Samer, 2008] Georg Gottlob and Marko Samer.
A backtracking-based algorithm for hypertree decompo-
sition. ACM Journal of Experimental Algorithmics, 13,
2008.

[Gottlob er al., 2000] Georg Gottlob, Nicola Leone, and
Francesco Scarcello. A comparison of structural CSP de-
composition methods. Artif. Intell., 124(2):243-282, 2000.

[Gottlob er al., 2002] Georg Gottlob, Nicola Leone, and
Francesco Scarcello. Hypertree decompositions and
tractable queries. J. Comput. Syst. Sci., 64(3):579-627,
May 2002.

[Gottlob ef al., 2009] Georg Gottlob, Zoltin Miklés, and
Thomas Schwentick. Generalized hypertree decompo-
sitions: NP-hardness and tractable variants. J. ACM,
56(6):30:1-30:32, September 2009.

[Gottlob er al., 2020] Georg Gottlob, Cem Okul-
mus, and Reinhard Pichler. Raw Data on Ex-
periments for BalancedGo. Zenodo, April 2020.
doi:10.5281/zenodo.3767137.

[Graham, 1979] M. H. Graham. On The Universal Relation.
Technical report, University of Toronto, 1979.

[Habbas et al., 2015] Zineb Habbas, Kamal Amroun, and
Daniel Singer. A forward-checking algorithm based on

1162

a generalised hypertree decomposition for solving non-
binary constraint satisfaction problems. J. Exp. Theor. Ar-
tif: Intell., 27(5):649-671, 2015.

[Hoare, 1978] C. A. R. Hoare. Communicating sequential
processes. Commun. ACM, 21(8):666-677, 1978.

[Lalou et al., 2009] Mohammed Lalou, Zineb Habbas, and
Kamal Amroun. Solving hypertree structured CSP: se-
quential and parallel approaches. In Marco Gavanelli
and Toni Mancini, editors, Proceedings of the 16th
RCRA workshop on Experimental Evaluation of Algo-
rithms for Solving Problems with Combinatorial Explo-
sion, RCRA@AT*IA 2009, Reggio Emilia, Italy, December
11-12, 2009, volume 589 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2009.

[Thain er al., 2005] Douglas Thain, Todd Tannenbaum, and
Miron Livny. Distributed computing in practice: the Con-
dor experience. Concurrency - Practice and Experience,

17(2-4):323-356, 2005.

[Warshall, 1962] Stephen Warshall. A theorem on boolean
matrices. Journal of the ACM, 9(1):11-12, 1962.

[Yannakakis, 1981] Mihalis Yannakakis. Algorithms for
acyclic database schemes. In Very Large Data Bases, 7th
International Conference, September 9-11, 1981, Cannes,
France, Proceedings, pages 82-94, 1981.

[Yu and Ozsoyoglu, 1979] C. T. Yu and M. Z. Ozsoyoglu.
An algorithm for tree-query membership of a distributed
query. In The IEEE Computer Society’s Third Interna-
tional Computer Software and Applications Conference,
COMPSAC 1979, 6-8 November, 1979, Chicago, Illinois,
USA, pages 306-312, 1979.

	Introduction
	Preliminaries
	Computing Hypertree Decompositions (HDs)
	Computing GHDs

	Algorithmic Improvements & Parallelism
	Algorithmic Improvements
	Hypergraph preprocessing
	Finding balanced separators fast
	Reducing the search space

	Parallelisation Strategy
	Overview
	Parallel search for balanced separators
	Parallel recursive calls.

	Hybrid Approach - Best of Both Worlds

	Experimental Evaluation and Results
	Benchmark Instances and Setting
	Results

	Conclusion and Outlook

